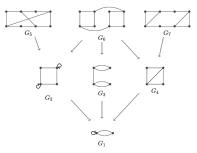
Random thoughts on coverings

Arnaud Casteigts Marseille Covering Days 2023

February 14, 2023

Mazurkiewicz's algorithm

(here: asynchronous message passing with port #)



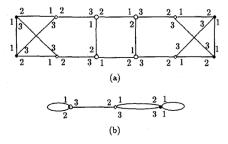
(port numbers preserving symmetries (omitted) - disconnected graphs omitted - bidirectional arcs as edges)

Can we recognize the underlying graph G in the following cases? (knowing n)

- 1. G is G_7 (n = 8)
- 2. n = 8 and $\mathcal{M}(G)$ computes G_4
- 3. n = 8 and $\mathcal{M}(G)$ computes G_3
- **4**. G is G_1 (n = 4)

Remark: Computing the views always gives us G_1 (does not exploit asynchrony!)

Yamashita and Kameda's quotient graphs (versus coverings?)



- LEMMA 11. A graph G has a cycle if, for any local edge labeling f, G/f has one of the following:
 - 1) a self-loop $(T_i, T_i; p, q), (p \neq q),$
 - two self-loops, (T_i, T_i: p, p) and (T_i, T_j: q, q), where p = q is not excluded if i ≠ j, or
 a cycle of length ≥ 2.
- LEMMA 9. Given a graph G and a local edge labeling \mathbf{f} for G, let $G/\mathbf{f} = (\mathcal{T}_{\ell}, \mathcal{E}_{\ell})$. Consider any edge $e = (T_1, T_2; p, q) \in \mathcal{E}_{\ell'}$ and let $V_1 = \{u \mid T(u) \equiv T_1\}$ and $V_2 = \{u \mid T(u) \equiv T_2\}$.
 - 1) If $T_1 = T_2$, i.e., e is a self-loop, and p = q, then $F_1 = (V_1, \tau_f^{-1}(e))$ is a 1-factor of G_{V_1} .
 - 2) If $T_1 = T_2$, i.e., e is a self-loop, and $p \neq q$, then $F_2 = (V_1, \tau_f^{-1}(e))$ is a 2-factor of G_{V_1} .
 - If T₁ ≠ T₂, then F₃ = (V₁ // V₂, τ_f⁻¹(e)) is a 1-regular bipartite graph.

Given a quotient graph Q = G'/f' = (W, A), where $W = (w_1, ..., w_s)$, for each $w_i \in W$, define three parameters, ℓ_i , m_i and \hat{m}_i , as follows:

- \$\ell_i\$ the number of self-loops of the form (\$w_i\$, \$w_i\$, \$p\$, \$p\$) for some \$w_i\$ and \$p\$,
- *m_i*: the number of self-loops of the form (*w_i*, *w_i*: *p*, *q*) for some *w_i* and *p*, *q* (*p* ≠ *q*).
- *m*_i = max_{j(≠1)} *m*_{ij} , where *m*_{ij} is the number of parallel edges connecting *w*_i and *w_i*.

Define further

$$m = \max_{w_i \in W} \{1 + l_i + 2m_i, \hat{m}_i\},\$$

and

$$M = \begin{cases} m & \text{if } m \text{ is even or } l_i = 0 \text{ for all } w_i \in W, \\ m+1 & \text{otherwise.} \end{cases}$$

A conjecture on neighbor graphs?

Neighbor graphs: $G_1 = G_2 \pm e$.

Conjecture: If G_1 is non-minimal, then G_2 is minimal or quasi-minimal

(quasi-minimal = only divisible by 2)

// unclear

By contradiction, suppose $G_1 \xrightarrow{k_1} H_1$ and $G_2 \xrightarrow{k_2} H_2$, with $k \ge 3$.

- \implies H_1 and H_2 have different densities
- \implies some "pattern" in H_2 does not exist in H_1 (nor in G_1) // unclear
- $\implies \geq 3$ disjoint manifestations of this pattern exist in G_2
- \implies Changing an edge can only affect two of them
- \implies G_1 and G_2 are not neighbors.

Complexity of deciding minimality of a given graph (centralized problem)

Known to be NP-complete.

The above conjecture implies:

If G_1 is non-minimal, then testing minimality of G_2 reduces to testing its divisibility by 2

 \rightarrow How hard is this?

Thanks!