Temporal Cliques admit Sparse Spanners (reloaded)

Arnaud Casteigts¹ University of Geneva

May 27, 2025

¹ Joint work with:

⁻ Joseph Peters and Jason Schoeters (ICALP 2019)

⁻ Daniele Carnevale and Timothée Corsini (SAND 2025).

⁺ Disjoint work by Angrick et al. (ESA 2024).

 $\mathcal{G}=(V,E,\lambda),$ where $\lambda:E\to 2^{\mathbb{N}}$ assigns time labels to edges.

footprint of G

Example:

Restrictions on labeling: *simple* ($\lambda : E \to \mathbb{N}$); *proper* (λ locally injective), *happy* (both).

Temporal paths

• e.g.
$$\langle (a, c, 2), (c, d, 4), (d, e, 5) \rangle$$
 (strict)

• e.g.
$$\langle (a, c, 2), (c, d, 4), (d, e, 4) \rangle$$
 (non-strict)

Temporal connectivity: All-pairs reachability (class TC).

→ Warning: In general, reachability is non-symmetrical... and non-transitive!

Spanning trees

In static graphs

- Existence is guaranteed
- Size is always n-1

Temporal spanning tree ?

Input: A temporal graph $\mathcal{G} \in TC$.

Goal: Find a spanning tree S of the *footprint*, so that $\mathcal{G}[S] \in \mathsf{TC}$.

Does not always exist:

In fact, NP-hard to decide!

[Casteigts, Corsini, 2024]

Searching for the lost tree

What to replace trees?

→ Small reachability substructures (*temporal spanners*).

Temporal spanners

Input: a temporal graph $G \in TC$

Output: a temporal subgraph $\mathcal{G}'\subseteq\mathcal{G}$ such that $\mathcal{G}'\in\mathsf{TC}$

Cost measure: #edges or #labels

Complexity:

MIN-EDGE (and MIN-LABEL): APX-hard for simple, non-proper, non-strict

[Axiotis, Fotakis, 2016]

► MIN-LABEL: APX-hard for non-simple, non-proper, strict

[Akrida, Gasieniec, Mertzios, Spirakis, 2017]

► MIN-EDGE: NP-hard for non-simple, proper

[Casteigts, Corsini, 2024]

From this point on, all temporal graphs are happy

- Simple
- Proper

Approved by Pharrell W.:

Structural results

Given a temporal graph $\mathcal G$ that is temporally connected ($\mathcal G\in\mathsf{TC}$), is there any guarantee on the size of a minimum spanner $\mathcal G'\subseteq\mathcal G$?

Note: The absolute minimum is 2n-4 [Bumby, 1979 (gossip theory)]

- Are spanners of size O(n) always guaranteed? \rightarrow Nope, some hypercubes are minimal with $\Theta(n \log n)$ edges [Kleinberg, Kempe, Kumar, 2000]
- lacktriangle Are spanners of size $o(n^2)$ always guaranteed?
 - \rightarrow Not even! [Axiotis, Fotakis, 2016]

Any positive results?

Good news 1 (probabilistic): [Casteigts, Raskin, Renken, Zamaraev, 2021]:

Nearly optimal spanners (of size 2n + o(n)) almost surely exist in random temporal graphs, and so, as soon as the graph becomes TC!

Good news 2 (deterministic): [Casteigts, Peters, Schoeters, 2019]:

Spanners of size O(n log n) always exist in temporal cliques.
Achieved using dismountability + a number of other techniques.

This talk: dismountability is all you need! [Carnevale, Casteigts, Corsini, 2025]

Temporal cliques admit $O(n \log n)$ spanners

(1-hop) dismountability

Find a node u s.t. :

- $\qquad \qquad uv = \text{minimum edge of some } v \text{ (denoted } e^-(v))$
- $\qquad \qquad \mathbf{w} = \text{maximum edge of some } w \text{ (denoted } e^+(w) \text{)}$

Then spanner $(\mathcal{G}) := \operatorname{spanner} (\mathcal{G}[V \setminus u]) + uv + uw \to \operatorname{Recurse}.$

If applicable recursively, gives spanner of size 2n-3.

Unfortunately, not always applicable :-(

Relaxed version: k-hop dismountability

Temporal paths $u \leadsto v$ ending at $e^-(v)$ and $w \leadsto u$ starting at $e^+(w)$

(a) Example of 2-hop dismountable

(b) Example of 3-hop dismountable

- → select both paths in the spanner
- \rightarrow recurse! (in $\mathcal{G} \setminus u$)

If applicable recursively for some k = O(1), we get a O(n) spanner.

Again, not always feasible, but...

The absence of dismountability gives rise to an interesting structure.

$$V^- = \{u \in V : uv = e^-(v) \text{ for some } v\} \qquad V^+ = \{u \in V : uv = e^+(v) \text{ for some } v\}$$

$$V^+ = \{ u \in V : uv = e^+(v) \text{ for some } v \}$$

 $V^0 = \text{rest of the nodes.}$

What if V^- and V^+ overlap?

 $\implies \exists u \in V^- \cap V^+$, so u is 1-hop dismountable! \rightarrow recurse.

If the clique is non 1-hop dismountable, then V^- , V^+ , and V^0 must partition V.

Thm: If the minimum edge of two or more vertices in V^+ go to a **same** vertex in V^- , then the graph is 2-hop dismountable.

The same holds for maximum edges of vertices in V^- .

Consequence: non $\{1, 2\}$ -hop dismountable cliques satisfy:

- ▶ The edges $\{e^-(v): v \in V^+\}$ form a matching.
- ▶ The edges $\{e^+(v): v \in V^-\}$ form a matching.
- V^- and V^+ have equal size.

Example:

V⁺ V⁻ V⁺

V⁰ V⁺

What about V^0 ?

If \mathcal{G} is non $\{1,2\}$ -hop dismountable, then V^0 is empty!

Summary of non $\{1, 2\}$ -hop dismountability

If \mathcal{G} is non $\{1,2\}$ -hop dismountable, then:

- 1. V^- and V^+ are the same size and **partition** of V.
- 2. The set $M^-:=\{e^-(v):v\in V^+\}$ is a perfect matching.
- 3. The set $M^+:=\{e^+(v):v\in V^-\}$ is a perfect matching. (If fact, if and only if)

A non $\{1,2\}$ -hop dismountable clique is 3-hop dismountable if and only if we have such temporal paths:

Theorem 3,7 k-hop dismountable $\implies \{1, 2, 3\}$ -hop dismountable

 \implies We can stop the analysis at k=3.

 \implies Any **minimal counter-example** to the existence of 4n spanners must have all the properties of non $\{1,2,3\}$ -hop dismountability.

Exploiting the structure

As far as O(n) spanners are concerned (let apart the constant), excluding $\{1, 2\}$ -hop dismountability is sufficient.

Why?

- Let $\mathcal{G}' \subseteq \mathcal{G}$ be the bipartite part between V^- and V^+ .
- G' is extremally matched (reciprocal — and + edges)
- \triangleright $G' \in TC$
- \blacktriangleright Any spanner of \mathcal{G}' is a spanner of \mathcal{G}

Thm: Extremally matched bicliques admit O(n) spanners if and only if temporal cliques admit O(n) spanners.

Let's work in extremally matched temporal bicliques!

Remarks:

- 1. We can add the two matchings to the spanner (essentially free)
- Focus on preserving reachability from left to right only (together with the matchings, this guarantees the spanner is TC)

Can we find a O(n) spanner in this setting? (Spoiler alert: We still don't know (open problem)... but)

$O(n \log n)$ spanners using one-sided dismountability

Input: Extremally matched temporal biclique.

Goal: Find a spanner that preserves Left-to-Right reachability.

Thm: $O(n \log n)$ spanners always exist [Casteigts, Peters, Shoeters, 2019]

↓ A much simpler proof by [Angrick et al., 2024]

- 1. Split the work, achieving both halves of V^+ to all of V^- separately.
- 2. Dismount vertices of V^- whose + collide in V^+ (pay two edges).
- Recurse.

$$cost(n) = 2 \cdot cost(n/2) + O(n)$$

By the Master's theorem for recurrences, the total cost is $O(n \log n)$

16/21

Open questions

Algorithmic

► Complexity of MIN-SPANNER in happy graphs?

Structural

- ▶ Do temporal cliques admit spanners of size O(n)?
- ▶ Do temporal cliques admit spanners of size 2n 3? (at least true for $n \le 8$)
- ► Beyond temporal cliques?

Thanks!

