Temporal graph theory: paradigm and algorithmic challenges

Arnaud Casteigts University of Geneva

March 20, 2024 Séminaire "Opérations", HEC Lausanne

Theory of networks

Network as data

 \rightarrow centralized algorithms...

Network as environment

 \rightarrow decentralized algorithms... (a.k.a. distributed)

The world is dynamic...

In technologies

In nature

(Highly) dynamic networks?

Example of scenario

Modeling

Properties:

Temporal connectivity?	\mathcal{TC}
Repeatedly?	$\mathcal{TC}^{\mathcal{R}}$
Recurrent links?	$\mathcal{E}^{\mathcal{R}}$
In bounded time?	$\mathcal{E}^{\mathcal{B}}$

\rightarrow Classes of temporal graphs

Some classes of temporal graphs

Some classes of temporal graphs

Distributed algorithm

Some classes of temporal graphs

Temporal graphs

(a.k.a. time-varying, time-dependent, evolving, dynamic,...)

Temporal paths

- e.g. $\langle (a, c, 3), (c, d, 4), (d, e, 5) \rangle$ (strict)
- e.g. $\langle (a, c, 3), (c, d, 4), (d, e, 4) \rangle$ (non-strict)

Temporal connectivity: Temporal paths between all vertices.

 \rightarrow Warning: Reachability is non-symmetrical... and non-transitive!

Some restrictions: *simple* ($\lambda : E \to \mathbb{N}$); *proper* (λ locally injective), *happy* (both).

Impact of non-transitivity

(Example: connected components)

In static graphs

- Components define a partition
- Easy to compute

In temporal graphs

- Maximal components may overlap
- Can be exponentially many

MAX COMPONENT is NP-hard! (from CLIQUE)

Bhadra, Ferreira, 2003

- Replace edges with semaphore gadgets
- Cliques become temporal components

Spanning trees

In static graphs

Spanning tree:

- Existence is guaranteed
- Size is always n-1

In temporal graphs ?

ightarrow Restrict the footprint to a spanning tree, while *preserving* temporal connectivity.

In fact, NP-hard to decide!

Hardness of Spanning trees

[C., Corsini (SIROCCO 2024)]

NP-Hard / Polynomial / Impossible

Searching for the lost tree

How to relax the definition?

 \rightarrow "small" temporal spanners

Temporal spanners

Input: a temporally connected graph \mathcal{G} ($\mathcal{G} \in TC$) Output: a temporal subgraph $\mathcal{G}' \subseteq \mathcal{G}$ that preserves reachability ($\mathcal{G}' \in TC$) Cost measure: # edges or # labels

Bad news

Structural results

- Size O(n) ? Nope (Kleinberg, Kempe, Kumar, 2000)
- Size o(n²) ? Nope (Axiotis, Fotakis, 2016)

Complexity

- MIN-LABEL: APX-hard (non-simple, non-proper, strict) (Akrida, Gasieniec, Mertzios, Spirakis, 2017)
- MIN-EDGE (and MIN-LABEL): APX-hard (simple, non-proper, non-strict) (Axiotis, Fotakis, 2016)
- Open in *happy* graphs (i.e. simple and proper).

Beyond size (positive and negative)

- Distance-preserving (Bilò, D'Angelo, Gualà, Leucci, Rossi, 2022)
- Fault-tolerant (Bilò, D'Angelo, Gualà, Leucci, Rossi, 2022)

Good news

Good news 1: (C., Raskin, Renken, Zamaraev, FOCS 2021):

Nearly optimal spanners (of size 2n + o(n)) almost surely exist in random temporal graphs, as soon as the graph becomes temporally connected

Good news 2: (C., Peters, Schoeters, ICALP 2019):

Spanners of size O(n log n) always exist in temporal cliques

Good news 1:

Spanners of size 2n + o(n) almost surely exist

in random temporal graphs

(with)

Connectivity in random temporal graphs

(C., Raskin, Renken, Zamaraev, 2021)

Random happy temporal graphs:

- 1. Pick an Erdös-Rényi $G \sim G_{n,p}$
- 2. Permute the edges randomly, interpret as (unique) presence time

Timeline for p (as $n \to \infty$):

All the thresholds are sharp.

(sharp: $\exists \epsilon(n) = o(1)$, not true at $(1 - \epsilon(n))p$, true at $(1 + \epsilon(n))p$)

Good news 2:

Temporal cliques admit sparse spanners

(with)

Dismountability

Find a node *u* s.t. :

- $uv = \min \text{ edge of } v$
- uw = max edge of w

Then spanner(\mathcal{G}) := spanner($\mathcal{G}[V \backslash u]$) + uv + uw

 $\rightarrow \text{Recurse}.$

Not always feasible.

spanner of size 2n - 3.

Relaxed version: k-hop dismountability

Function Temporal paths $u \rightsquigarrow v$ ending at $e^{-}(v)$ and $w \rightsquigarrow u$ starting at $e^{+}(w)$

Select these 2k edges, then recurse $\rightarrow O(n)$ -spanner if k constant.

Not always feasible, but...

What if dismountability fails?

If \mathcal{G} is neither 1-hop nor 2-hop dismountable, then the following is guaranteed:

- Complete bipartite graph H ⊆ G (n/2 vertices in each part)
- Min edges of green nodes form a matching
- Max edges of red nodes form a matching
- Both matchings are disjoint
- ▶ A spanner of *H* is a spanner of *G*

New goal: \rightarrow Sparsify \mathcal{H} .

What if dismountability fails?

If \mathcal{G} is neither 1-hop nor 2-hop dismountable, then the following is guaranteed:

- Complete bipartite graph H ⊆ G (n/2 vertices in each part)
- Min edges of green nodes form a matching
- Max edges of red nodes form a matching
- Both matchings are disjoint
- ▶ A spanner of *H* is a spanner of *G*

New goal: \rightarrow Sparsify \mathcal{H} .

Main lemma:

Half of the green vertices can be iteratively removed, at doubling cost. Repeat $\log n$ times.

 \rightarrow Spanners of size $O(n \log n)$ always exist.

Open questions on spanners

Algorithmic

Complexity of MIN-SPANNER in happy graphs?

Structural

- Do cliques admit spanners of size O(n)?
- Do cliques admit spanners of size 2n 3?
- What else than cliques?

Enumeration of happy temporal graphs

Equivalence based on reachability

How to capture this equivalence?

Canonical representatives

Good news:

- Finite number
- Canonization, isomorphism testing, and automorphism generators all computable in *polynomial time*.

Combinatorial problems revisited

E.g.: Covering problems like DOMINATING SET

→ Temporal variant

Combinatorial problems revisited

E.g.: Covering problems like DOMINATING SET

→ Temporal variant

→ Evolving variant (a.k.a. "dynamic graph algorithms")

Combinatorial problems revisited

E.g.: Covering problems like DOMINATING SET

→ Temporal variant

- → Evolving variant (a.k.a. "dynamic graph algorithms")
- → Permanent variant

Combinatorial problems revisited

E.g.: Covering problems like DOMINATING SET

- → Temporal variant
- → Evolving variant (a.k.a. "dynamic graph algorithms")
- → Permanent variant

 $PermanentDS \supseteq EvolvingDS_i \supseteq TemporalDS.$

+ sliding windows versions (many results recently).

Distributed problems revisited

E.g.: Election, Spanning trees, ...

How are they defined?

- \rightarrow Several options
- One global leader, elected once and forever

Distributed problems revisited

E.g.: Election, Spanning trees, ...

How are they defined?

 \rightarrow Several options

One global leader, elected once and forever

 One leader per component, updated as the graph changes

Distributed problems revisited

E.g.: Election, Spanning trees, ...

How are they defined?

 \rightarrow Several options

One global leader, elected once and forever

 One leader per component, updated as the graph changes

Distributed problems revisited

E.g.: Election, Spanning trees, ...

Both are very different in essence!

How are they defined?

 \rightarrow Several options

One global leader, elected once and forever

 One leader per component, updated as the graph changes

Optimal temporal paths?

Which way is optimal from a to d?

Optimal temporal paths?

Which way is optimal from a to d?

-min hop?

Optimal temporal paths?

Which way is optimal from a to d?

-min hop?

-earliest arrival?

Optimal temporal paths?

Which way is optimal from a to d?

-min hop?

-earliest arrival?

-fastest traversal?

Optimal temporal paths?

Which way is optimal from a to d?

-min hop?

-earliest arrival?

-fastest traversal?

Waiting constraints

[C., Himmel, Molter, Zschoche, 2021]

[Bui-Xuan, Ferreira, Jarry, 2003]

Goal: define new parameters which are themselves temporal!

Thanks!

G. Stauffer (Sep 19, 2023) :-)