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Theory of networks

Network as data

→ centralized algorithms...

Network as environment

→ decentralized algorithms...
(a.k.a. distributed)
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The world is dynamic...

In technologies In nature
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(Highly) dynamic networks?

Example of scenario

Modeling

Properties:

▶ Temporal connectivity? T C
▶ Repeatedly? T CR

▶ Recurrent links? ER

▶ In bounded time? EB

▶ ...

→ Classes of temporal graphs
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Some classes of temporal graphs
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Temporal graphs (a.k.a. time-varying, time-dependent, evolving, dynamic,...)

G = (V,E, λ), where λ : E → 2N assigns time labels to edges.
|

footprint of G

a b

c d

e

Example:

Can also be viewed as a sequence of

snapshots {Gi = {e ∈ E : i ∈ λ(e)}}

5,7

3,5 1,2,9

1,4

2 4,5

Temporally
connected

Temporal paths

▶ e.g. ⟨(a, c, 3), (c, d, 4), (d, e, 5)⟩ (strict)

▶ e.g. ⟨(a, c, 3), (c, d, 4), (d, e, 4)⟩ (non-strict)

Temporal connectivity: Temporal paths between all vertices.

→ Warning: Reachability is non-symmetrical... and non-transitive!

Some restrictions: simple (λ : E → N); proper (λ locally injective), happy (both).
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Impact of non-transitivity (Example: connected components)

In static graphs

- Components define a partition
- Easy to compute

In temporal graphs

2 1,3 2 - Maximal components may overlap
- Can be exponentially many

MAX COMPONENT is NP-hard! (from CLIQUE) Bhadra, Ferreira, 2003

−→

u

v

u

v

1

21

2 - Replace edges with semaphore gadgets
- Cliques become temporal components
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Spanning trees

In static graphs
Spanning tree:

→ - Existence is guaranteed

- Size is always n − 1

In temporal graphs ?

→ Restrict the footprint to a spanning tree, while preserving temporal connectivity.

a

b

c

d

2,7 3,5

1,4

1,64

2,7 3,5

1,4

1,64

Does not always exist:

1

2

1

2

In fact, NP-hard to decide!
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Hardness of Spanning trees [C., Corsini (SIROCCO 2024)]

Happy

Simple Proper

Strict

Non-strict

NP-Hard / Polynomial / Impossible
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Searching for the lost tree

How to relax the definition?

→ “small” temporal spanners

Temporal spanners

Input: a temporally connected graph G (G ∈ TC)

Output: a temporal subgraph G′ ⊆ G that preserves reachability (G′ ∈ TC)

Cost measure: # edges or # labels

a
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d
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Bad news

Structural results
▶ Size O(n) ? Nope

(Kleinberg, Kempe, Kumar, 2000)

▶ Size o(n2) ? Nope
(Axiotis, Fotakis, 2016)

Complexity

▶ MIN-LABEL: APX-hard (non-simple, non-proper, strict) (Akrida, Gasieniec, Mertzios, Spirakis, 2017)

▶ MIN-EDGE (and MIN-LABEL): APX-hard (simple, non-proper, non-strict) (Axiotis, Fotakis, 2016)

▶ Open in happy graphs (i.e. simple and proper).

Beyond size (positive and negative)

▶ Distance-preserving (Bilò, D’Angelo, Gualà, Leucci, Rossi, 2022)

▶ Fault-tolerant (Bilò, D’Angelo, Gualà, Leucci, Rossi, 2022)
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Good news

Good news 1: (C., Raskin, Renken, Zamaraev, FOCS 2021):
▶ Nearly optimal spanners (of size 2n+ o(n)) almost surely exist in random

temporal graphs, as soon as the graph becomes temporally connected

Good news 2: (C., Peters, Schoeters, ICALP 2019):
▶ Spanners of size O(n logn) always exist in

temporal cliques
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Good news 1:

Spanners of size 2n+ o(n) almost surely exist

in random temporal graphs

(with)
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Connectivity in random temporal graphs (C., Raskin, Renken, Zamaraev, 2021)

Random happy temporal graphs:

1. Pick an Erdös-Rényi G ∼ Gn,p

2. Permute the edges randomly,
interpret as (unique) presence time

Timeline for p (as n → ∞):

0 1
logn
n

Standard connectivity

Most vertices
reach most vertices
(∼∗⇝ ∼∗)

2 logn
n

First source
(1⇝ ∗)

Most vertices
are sources
(∼∗⇝ ∗)

4 logn
n

Pivotal spanner
(size 2n − 2)

3 logn
n

Temporal
connectivity
(∗⇝ ∗)

Nearly optimal spanner
(size 2n + o(n))

Optimal spanner
(size 2n − 4)

All the thresholds are sharp.
(sharp: ∃ϵ(n) = o(1), not true at (1 − ϵ(n))p, true at (1 + ϵ(n))p)
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Good news 2:

Temporal cliques admit sparse spanners

(with)
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Dismountability

Find a node u s.t. :
▶ uv = min edge of v
▶ uw = max edge of w

Then spanner(G) := spanner(G[V \u]) + uv + uw

→ Recurse.

→

spanner of size 2n − 3.Not always feasible.

Relaxed version: k-hop dismountability
▶ Temporal paths u⇝ v ending at e−(v) and w ⇝ u starting at e+(w)

Select these 2k edges, then recurse → O(n)-spanner if k constant.

Not always feasible, but...



17/24

What if dismountability fails?

If G is neither 1-hop nor 2-hop dismountable, then
the following is guaranteed:

▶ Complete bipartite graph H ⊆ G
(n/2 vertices in each part)

▶ Min edges of green nodes form a matching

▶ Max edges of red nodes form a matching

▶ Both matchings are disjoint

▶ A spanner of H is a spanner of G

New goal: → Sparsify H.

Main lemma:
Half of the green vertices can be iteratively removed, at doubling cost.
Repeat logn times.

→ Spanners of size O(n logn) always exist.
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Open questions on spanners

Algorithmic
▶ Complexity of MIN-SPANNER in happy graphs?

Structural

▶ Do cliques admit spanners of size O(n)?

▶ Do cliques admit spanners of size 2n− 3?

▶ What else than cliques?
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Enumeration of happy temporal graphs
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Equivalence based on reachability

6

4 5

1

2 17

∼=

G1

10

8 3

2

3 11

G2

→

4

3 2

1

2 3

Grep

How to capture this equivalence?

▶ Canonical representatives

Good news:
▶ Finite number
▶ Canonization, isomorphism testing, and automorphism generators

all computable in polynomial time.
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Miscellaneous (1)

Combinatorial problems revisited
E.g.: Covering problems like DOMINATING SET

G1 G2 G3

→ Temporal variant

→ Evolving variant (a.k.a. “dynamic graph algorithms”)

→ Permanent variant

PermanentDS ⊋ EvolvingDSi ⊋ TemporalDS.

+ sliding windows versions (many results recently).
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Miscellaneous (2)

Distributed problems revisited
E.g.: Election, Spanning trees, ...

How are they defined?

→ Several options

▶ One global leader, elected once and forever

▶ One leader per component, updated as the graph
changes

Both are very different in essence!
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Miscellaneous (3)

Optimal temporal paths? [Bui-Xuan, Ferreira, Jarry, 2003]

a

b
c

d

e

f g

1

3

5

4 10

6

7

8

Which way is optimal from a to d?

-min hop?

-earliest arrival?

-fastest traversal?
shortest

foremost

fastest

Waiting constraints

[C., Himmel, Molter, Zschoche, 2021]

Goal: define new parameters which are themselves temporal!
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Thanks!

G. Stauffer (Sep 19, 2023) :-)


