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Studying networks

Network as data

→ centralized algorithms...

Network as environment

→ decentralized algorithms...
(a.k.a. distributed)
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The world is dynamic...

In technologies In nature
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(Highly) dynamic networks?

Example of scenario

Modeling

Properties:

▶ Temporal connectivity? T C
▶ Repeatedly? T CR

▶ Recurrent links? ER

▶ In bounded time? EB

▶ ...

→ Classes of temporal graphs
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Temporal graphs (a.k.a. time-varying, time-dependent, evolving, dynamic,...)

G = (V,E, λ), where λ : E → 2N assigns time labels to edges.
|

footprint of G

a b

c d

e

Example:

Can also be viewed as a sequence of

snapshots {Gi = {e ∈ E : i ∈ λ(e)}}

5,7

2,5 1,2,9

1,4

2 4,5

Temporally
connected

Special types of graphs: simple (λ : E → N); proper (λ locally injective), happy (both).

Temporal paths

▶ e.g. ⟨(a, c, 2), (c, d, 4), (d, e, 5)⟩ (strict)

▶ e.g. ⟨(a, c, 2), (c, d, 4), (d, e, 4)⟩ (non-strict)

Temporal connectivity: All-pairs reachability (class TC).

→ Warning: In general, reachability is non-symmetrical... and non-transitive!
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Time versus structure (basic observations)

Centrality?

(time mod 7)
a b c d e

1 2 3 4

Optimal paths? [Bui-Xuan, Ferreira, Jarry, 2003]

a

b
c

d

e

f g

1

3

5

4 10

6

7

8

Which path is optimal from a to d?
-min hop?

-earliest arrival?

-fastest traversal?

shortest

foremost

fastest

Diameter of the snapshots versus propagation time

– Small diameter / Large propagation time (→)

– Large diameter / Small propagation time (↓)

Informed Non-informed
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Impact of non-transitivity (Example: CONNECTED COMPONENTS)

In static graphs

- Components define a partition
- Easy to compute

In temporal graphs

2 1,3 2 - Maximal components may overlap
- Can be exponentially many

COMPONENT is NP-hard! (from CLIQUE) [Bhadra, Ferreira, 2003]

−→

u

v

u

v

1

21

2 - Replace edges with semaphore gadgets
- Cliques become temporal components
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Spanning trees

In static graphs

→ - Existence is guaranteed

- Size is always n − 1

Temporal spanning tree ?

Input: A temporal graph G ∈ TC.

Goal: Find a spanning tree S of the footprint, so that G[S] ∈ TC.

a

b

c

d

2,7 3,5

1,4

1,64

2,7 3,5

1,4

1,64

Does not always exist:

1

2

1

2

In fact, NP-hard to decide! [C., Corsini, 2024]
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Lanscape of hardness for SPANNING TREE

Happy
Simple Proper

Strict

Non-strict

NP-Hard / Polynomial / Always no
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Searching for the lost tree

What to replace trees?

→ Small reachability substructures (temporal spanners).

Temporal spanners

Input: a temporal graph G ∈ TC

Output: a temporal subgraph G′ ⊆ G such that G′ ∈ TC

Cost measure: # edges or # labels

a

b

c

d

2,7 3

1,4

1,64 →
a

b

c

d

2,7 3
1,4

3 edges

a

b

c

d

2 3

14

4 labels

Complexity:
▶ MIN-LABEL: APX-hard for non-simple, non-proper, strict [Akrida, Gasieniec, Mertzios, Spirakis, 2017]

▶ MIN-EDGE (and MIN-LABEL): APX-hard for simple, non-proper, non-strict [Axiotis, Fotakis, 2016]

Open for happy graphs (i.e. both simple and proper), could be polynomial.
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From this point on, all temporal graphs are happy

3

1

2

4

4 5

2 1

▶ Simple =⇒ MIN-LABEL = MIN-EDGE

▶ Proper =⇒ strict = non-strict
▶ Good prototype
▶ (Almost) no loss of generality

Approved by
Pharrell W.:
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Structural results
Given a temporal graph G that is temporally connected (G ∈ TC),
is there any guarantee on the size of a minimum spanner G′ ⊆ G?

Note: The absolute minimum is 2n− 4 [Bumby, 1979 (gossip theory)]

▶ Are spanners of size O(n) always guaranteed?
→ Nope, hypercubes may fail [Kleinberg, Kempe, Kumar, 2000]

▶ Are spanners of size o(n2) always guaranteed?
→ Not even! [Axiotis, Fotakis, 2016]

Any positive results?

Good news 1 (probabilistic): [C., Raskin, Renken, Zamaraev, 2021]:
▶ Nearly optimal spanners (of size 2n+ o(n)) almost surely exist in

random temporal graphs, and so, as soon as the graph becomes TC!

Good news 2 (deterministic): [C., Peters, Schoeters, 2019]:
▶ Spanners of size O(n logn) always exist in

temporal cliques

Open: O(n) in temporal cliques?
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Good news 1:

Spanners of size 2n+ o(n) almost surely exist

in random temporal graphs

(with)
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Connectivity in random temporal graphs (C., Raskin, Renken, Zamaraev, 2021)

Random happy temporal graphs:

1. Pick an Erdös-Rényi G ∼ Gn,p

2. Permute the edges randomly,
interpret as (unique) presence time

Timeline for p (as n → ∞):

0 1
logn
n

Standard connectivity

Most vertices
reach most vertices
(∼∗⇝ ∼∗)

2 logn
n

First source
(1⇝ ∗)

Most vertices
are sources
(∼∗⇝ ∗)

4 logn
n

Pivotal spanner
(size 2n − 2)

3 logn
n

Temporal
connectivity
(∗⇝ ∗)

Nearly optimal spanner
(size 2n + o(n))

Optimal spanner
(size 2n − 4)

All the thresholds are sharp.
(sharp: ∃ϵ(n) = o(1), not true at (1 − ϵ(n))p, true at (1 + ϵ(n))p)
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Good news 2:

Temporal cliques admit sparse spanners

(with)
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Dismountability

Find a node u s.t. :
▶ uv = min edge of v
▶ uw = max edge of w

Then spanner(G) := spanner(G[V \u]) + uv + uw

→ Recurse.

→

spanner of size 2n − 3.Not always feasible.

Relaxed version: k-hop dismountability
▶ Temporal paths u⇝ v ending at e−(v) and w ⇝ u starting at e+(w)

Select these 2k edges, then recurse → O(n)-spanner if k constant.

Not always feasible, but...



17/12

What if dismountability fails?

If G is neither 1-hop nor 2-hop dismountable, then
the following is guaranteed:

▶ Complete bipartite graph H ⊆ G
(n/2 vertices in each part)

▶ Min edges of green nodes form a matching

▶ Max edges of red nodes form a matching

▶ Both matchings are disjoint

▶ A spanner of H is a spanner of G

New goal: → Sparsify H.

Main lemma:
Half of the green vertices can be iteratively removed, at doubling cost.
Repeat logn times.

→ Spanners of size O(n logn) always exist.
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Open questions on spanners

Algorithmic
▶ Complexity of MIN-SPANNER in happy graphs?

Structural

▶ Do cliques admit spanners of size O(n)?

▶ Do cliques admit spanners of size 2n− 3?

▶ What else than cliques?
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Distributed Algorithms

(Think globally, act locally)

Collaboration of distinct entities to perform a common task.

No centralization available, interactions among neighbors.

Theoretical aspects of collective intelligence.

Examples of problems:

Broadcast

→
Spanning tree

→

Election

→
Counting

→ 9

Consensus, naming, routing, exploration, coloring, dominating sets, ...
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Some classes of temporal graphs

T C⟲
T C

(∗⇝∗)
J∀1

(∗⇝1)

J1∀
(1⇝∗)

T CR

ER

KR

EBEP

T CBα-T CB

PRCRC∗C∩

K
(∗–∗)

E1∀
(1–∗)

infinite lifetime finite lifetime

? ?

Foremost broadcast

Shortest broadcast

Fastest broadcast

Population
protocols

Retry
routing

Retry
broadcast

Bounded
broadcast

Speed up for
some prob-
lems

Ring exploration

BroadcastCounting

Leader
election

Broadcast +
acknowledgment

Distributed algorithm

Centralized algorithm Movement synthesis

Exploitation

Analysis Induce
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Thanks!

(Battelle, Dec 3, 2023)


