# Temporal graph theory: paradigm and algorithmic challenges

Arnaud Casteigts University of Geneva

June 26, 2024 Swiss OR days, Haute École de Gestion (Geneva)

# Studying networks



Network as data

 $\rightarrow$  centralized algorithms...



Network as environment

 $\rightarrow$  decentralized algorithms... (a.k.a. distributed)



# The world is dynamic...

## In technologies



#### In nature

























# (Highly) dynamic networks?



#### Example of scenario



#### Modeling



#### Properties:

| Temporal connectivity? | $\mathcal{TC}$               |
|------------------------|------------------------------|
| Repeatedly?            | $\mathcal{TC}^{\mathcal{R}}$ |
| Recurrent links?       | $\mathcal{E}^{\mathcal{R}}$  |
| In bounded time?       | $\mathcal{E}^{\mathcal{B}}$  |
|                        |                              |

#### $\rightarrow$ Classes of temporal graphs

# **Temporal graphs**

#### (a.k.a. time-varying, time-dependent, evolving, dynamic,...)



Special types of graphs: *simple* ( $\lambda : E \to \mathbb{N}$ ); *proper* ( $\lambda$  locally injective), *happy* (both).

#### Temporal paths

- e.g.  $\langle (a, c, 2), (c, d, 4), (d, e, 5) \rangle$  (strict)
- e.g.  $\langle (a, c, 2), (c, d, 4), (d, e, 4) \rangle$  (non-strict)

Temporal connectivity: All-pairs reachability (class TC).

 $\rightarrow$  Warning: In general, reachability is non-symmetrical... and non-transitive!

# Time versus structure (basic observations)

# Centrality?



## Optimal paths?

[Bui-Xuan, Ferreira, Jarry, 2003]



Which path is optimal from a to d? -min hop? -earliest arrival? -fastest traversal?

## Diameter of the snapshots versus propagation time

- Small diameter / Large propagation time  $\checkmark(\rightarrow)$
- Large diameter / Small propagation time  $\checkmark(\downarrow)$





# Impact of non-transitivity

## (Example: CONNECTED COMPONENTS)

## In static graphs



- Components define a partition
- Easy to compute

## In temporal graphs



- Maximal components may overlap
- Can be exponentially many

COMPONENT is NP-hard! (from CLIQUE)

[Bhadra, Ferreira, 2003]





- Replace edges with semaphore gadgets
- Cliques become temporal components

# Spanning trees

In static graphs



- Existence is guaranteed
- Size is always n-1

## Temporal spanning tree ?

Input: A temporal graph  $\mathcal{G}\in\mathsf{TC}.$ 

Goal: Find a spanning tree S of the *footprint*, so that  $\mathcal{G}[S] \in \mathsf{TC}$ .



In fact, NP-hard to decide!

[C., Corsini, 2024]

# Lanscape of hardness for SPANNING TREE



#### NP-Hard / Polynomial / Always no

# Searching for the lost tree

What to replace trees?

 $\rightarrow$  Small reachability substructures (*temporal spanners*).

## Temporal spanners

Input: a temporal graph  $\mathcal{G} \in \mathsf{TC}$ 

Output: a temporal subgraph  $\mathcal{G}'\subseteq \mathcal{G}$  such that  $\mathcal{G}'\in\mathsf{TC}$ 

Cost measure: # edges or # labels



Complexity:

- MIN-LABEL: APX-hard for non-simple, non-proper, strict [Akrida, Gasieniec, Mertzios, Spirakis, 2017]
- MIN-EDGE (and MIN-LABEL): APX-hard for simple, non-proper, non-strict [Axiotis, Fotakis, 2016]

Open for happy graphs (i.e. both simple and proper), could be polynomial.

## From this point on, all temporal graphs are happy



- Proper ⇒ strict = non-strict
- Good prototype
- (Almost) no loss of generality

Approved by Pharrell W.:



# Structural results

Given a temporal graph  $\mathcal{G}$  that is temporally connected ( $\mathcal{G} \in \mathsf{TC}$ ), is there any guarantee on the size of a minimum spanner  $\mathcal{G}' \subseteq \mathcal{G}$ ? Note: The absolute minimum is 2n - 4 [Bumby, 1979 (gossip theory)]

- ► Are spanners of size O(n) always guaranteed? → Nope, hypercubes may fail [Kleinberg, Kempe, Kumar, 2000]
- ► Are spanners of size o(n<sup>2</sup>) always guaranteed? → Not even! [Axiotis, Fotakis, 2016]

## Any positive results?

#### Good news 1 (probabilistic): [C., Raskin, Renken, Zamaraev, 2021]:

Nearly optimal spanners (of size 2n + o(n)) almost surely exist in random temporal graphs, and so, as soon as the graph becomes TC!

#### Good news 2 (deterministic): [C., Peters, Schoeters, 2019]:

 Spanners of size O(n log n) always exist in temporal cliques

## Open: O(n) in temporal cliques?





## Good news 1:

# Spanners of size 2n + o(n) almost surely exist

in random temporal graphs

(with)



# Connectivity in random temporal graphs

#### (C., Raskin, Renken, Zamaraev, 2021)

Random happy temporal graphs:

- 1. Pick an Erdös-Rényi  $G \sim G_{n,p}$
- 2. Permute the edges randomly, interpret as (unique) presence time



Timeline for p (as  $n \to \infty$ ):



All the thresholds are sharp.

(sharp:  $\exists \epsilon(n) = o(1)$ , not true at  $(1 - \epsilon(n))p$ , true at  $(1 + \epsilon(n))p$ )

## Good news 2:

Temporal cliques admit sparse spanners



(with)



# Dismountability

Find a node u s.t. :

- $uv = \min \text{ edge of } v$
- uw = max edge of w

Then spanner( $\mathcal{G}$ ) := spanner( $\mathcal{G}[V \backslash u]$ ) + uv + uw

 $\rightarrow \text{Recurse}.$ 





#### Not always feasible.

spanner of size 2n - 3.

## Relaxed version: k-hop dismountability

Function Temporal paths  $u \rightsquigarrow v$  ending at  $e^{-}(v)$  and  $w \rightsquigarrow u$  starting at  $e^{+}(w)$ 

Select these 2k edges, then recurse  $\rightarrow O(n)$ -spanner if k constant.

Not always feasible, but...

# What if dismountability fails?

If  $\mathcal{G}$  is neither 1-hop nor 2-hop dismountable, then the following is guaranteed:

- Complete bipartite graph H ⊆ G (n/2 vertices in each part)
- Min edges of green nodes form a matching
- Max edges of red nodes form a matching
- Both matchings are disjoint
- ▶ A spanner of *H* is a spanner of *G*

New goal:  $\rightarrow$  Sparsify  $\mathcal{H}$ .



# What if dismountability fails?

If  $\mathcal{G}$  is neither 1-hop nor 2-hop dismountable, then the following is guaranteed:

- Complete bipartite graph H ⊆ G (n/2 vertices in each part)
- Min edges of green nodes form a matching
- Max edges of red nodes form a matching
- Both matchings are disjoint
- ▶ A spanner of *H* is a spanner of *G*

New goal:  $\rightarrow$  Sparsify  $\mathcal{H}$ .

#### Main lemma:

Half of the green vertices can be iteratively removed, at doubling cost. Repeat  $\log n$  times.

 $\rightarrow$  Spanners of size  $O(n \log n)$  always exist.



# Open questions on spanners

## Algorithmic

Complexity of MIN-SPANNER in happy graphs?

## Structural

- Do cliques admit spanners of size O(n)?
- Do cliques admit spanners of size 2n 3?
- What else than cliques?

# **Distributed Algorithms**

(Think globally, act locally)



Collaboration of distinct entities to perform a common task.

No centralization available, interactions among neighbors.

Theoretical aspects of collective intelligence.

#### Examples of problems:



Consensus, naming, routing, exploration, coloring, dominating sets, ...











# Thanks!



(Battelle, Dec 3, 2023)