Biconnecting a Network of Mobile Robots using Virtual Angular Forces

Arnaud Casteigts', Jérémie Albert?, Serge Chaumette?, Amiya Nayak!, and Ivan Stojmenovié

SITE, University of Ottawa, Canada
{casteig,anayak,ivan} @site.uottawa.ca

Abstract—This paper proposes a new solution to the problem of
self-deploying a network of wireless mobile robots with simultane-
ous consideration to several criteria, that are, the fault-tolerance
(biconnectivity) of the resulting network, its coverage, its diameter,
and the quantity of movement required to complete the deployment.
These criteria have already been addressed individually in previous
works, but we propose here an elegant solution to address all of
them at once. Our approach is based on combining two comple-
mentary sets of virtual forces: spring forces, whose properties are
well known to provide optimal coverage at reasonable movement
cost, and angular forces, a new type of force proposed here whose
effect is to rotate two angularly consecutive neighbors toward
one another when the corresponding angle is larger than 60°
(even if these nodes are not direct neighbors). Angular forces
have the global effect of biconnecting the network and reducing
its diameter, while not affecting the benefits obtained by spring
forces on coverage. In this paper we give a detailed description
of the combination of both types of forces. We also provide an
implementation relying only on position exchanges within two
hops. Simulations results are finally presented to evaluate our
solution with respect to the four considered criteria (coverage,
biconnectivity, quantity of movements, and diameter), and compare
it with prior approaches.

I. INTRODUCTION AND RELATED WORK

This paper addresses the problem of self-deploying a swarm
of wireless mobile robots in a biconnected fashion. The motiva-
tions for deploying robotic sensor networks in general include
accessing places where human cannot go (e.g. remote planets,
underwater area, dangerous spots with chemical or radioactive
leaks), or automating fastidious large scale deployment (e.g.
spreading intrusion or fire detectors over a large area). Once
deployed, the robots are intended to perform collective tasks
related to the monitoring, collection, or processing of informa-
tion sensed in the surrounding environment.

The efficiency and reliability of such networks depend on
several criteria. To be fault-tolerant (tolerate the failure of any
single robot), the resulting network must be biconnected. A
network is biconnected if it remains connected after excluding
any of its nodes from the network. Besides fault-tolerance, it is
important to maximize the collective coverage of the network
(that is, the overall area the robots can sense from or serve),
while minimizing the network diameter (longest shortest path
between any pair of nodes) to ensure efficient communications.
Finally, these criteria should not be satisfied at the expense of a
too high energy consumption, and must thus be achieved with
moderate movements by the robots.

The problem of maximizing the coverage of a network of
robots has already been addressed in numerous works, using
either virtual repulsion forces (or a combination of repulsion and
attraction forces, called spring forces) [6-8, 12] or geometrical
approaches [1, 8, 9] that equivalently regulate the inter-nodal
distance, and as a side effect organize the robots as equilateral
triangles (whose good properties with regards to coverage
are well known). Interestingly, these approaches can indirectly
create, or maintain, biconnectivity at places where the density
of robots is already high. Yet, they do not achieve it otherwise.

1

2LaBRI, University of Bordeaux, France
{albert,chaumett } @labri.fr

Biconnectivity has been explicitely addressed in other works.
In the most general context (targetting arbitrary, sparse, and
even possibly disconnected topologies), solutions based on a
common reference point toward which all robots can converge
and biconnect were proposed in [6, 10, 11]. Having a common
reference point known by all the robots makes the biconnectivity
problem trivial to solve (at least, without obstacles), but is a
fairly strong assumption. Without this assumption, other solu-
tions have been proposed to biconnect networks that are already
connected [2, 5], based on the movements of some selected
robots, but these solutions do not consider the coverage nor
the diameter of the resulting network. In addition, the solutions
in [2] are centralized, and the algorithm in [5] fails to biconnect
in numerous situations (which is explicitly conceded by the
authors).

The solution we propose in this paper does not use a common
reference point, and therefore does not handle arbitrarily dis-
connected topologies. It addresses however any kind of initially
connected topology (regardless of whether released as a high
density conglomerate or as a randomly distributed set of robots),
and also deals with initially disconnected topologies in closed
areas when the number of robots is sufficient to allow repulsion
forces to make them connect with each other (this feature can
be found in any repulsion-based solution). Besides obtaining a
much higher success rate than [5], the main novelty is to address
all the criteria described above at once. Its principle is based on
combining spring forces with a new kind of force called angular
forces. Whereas spring forces determine the distances between
nodes and naturally form equilateral triangles at dense places,
angular forces strive to reduce the angles formed by pairs of
angularly consecutive neighbors of a same node regardless of
whether these neighbors are already in range of each other (so
that equilateral triangles are also formed at sparse places). At
a global scale, angular forces have the effect of biconnecting
the network and reducing its diameter at the same time. The
intuition of this behavior can be obtained by looking at Figure 1.

Fig. 1.

Intuitive example of the effect of angular forces.

The paper is organized as follows. The assumptions, nota-
tions, and network model are given in Section II. Section III
presents our solution and describe the technical challenges that
had to be faced to successfully combine angular forces with
spring forces (without negative interference between them). A
possible implementation is then proposed in Section IV. Note
that the principle of rotation can be implemented using at
least two possible approaches, depending on what robot does
what action (e.g. does a robot ask its neighbors to rotate, or
do these neighbors take such decision alone). In the proposed

implementation all robots acquire (a subset of) the two-hop
neighbors positions and then determine their movements alone.
We then briefly discuss some of the simulation results we
obtained in Section V, and eventually conclude with some
remarks.

II. NETWORK MODEL, NOTATIONS, AND ASSUMPTIONS

We consider a network of autonomous mobile robots enabled
with wireless communication and movement capabilities. We
assume that each robot is able to acquire frequently its absolute
position (the very principle of angular forces might however
work with relative positions). Each robot has communication
and sensing ranges that are distinct, but uniform among the
swarm. The communication range, C'r, determines the distance
up to which two robots can directly communicate. The sensing
range, SR, determines the circular area around a robot from
which it can acquire information about the monitored environ-
ment. This is referred to as its coverage.

In the proposed implementation, robots are assumed to dis-
cover their neighborhood by means of periodic beacon ex-
changes that comprise position information. We assume that
beacons support piggybacking (insertion of data in a dedicated
field), up to 6 times the size of a position (in order to
propagate two-hops information). No additional communication
is used beyond the beacons. Finally, as the robots apply the
algorithm, they regulate their inter-distance around a threshold
dir,. Whereas no restrictions apply on C'g and Sg, we require
dr, < 0.851 Cg (for reasons developed in Section III-E).

III. THE PROPOSED VIRTUAL FORCE SCHEME
A. Representing individual forces

Individual forces are usually represented as two-dimensional
polar coordinate vectors F = (direction, magnitude), with the
strength of the force being directly encoded in the magnitude
(e.g. as a linear, quadratic, or exponential expression of the
quantity to correct). We represent forces differently, using a
three-dimensional vector F containing a direction, a magnitude,
and a separate weight, respectivelly noted Hﬁ, f and Wg-
This solution allows us to disassociate the magnitude of a force
from its real strength (weight), and thus to use the magnitude
to represent the exact distance to the force’s equilibrium point.

B. Directions and Magnitudes

We describe now the computation of directions and magni-
tudes of individual force vectors, for both spring and angular
forces. The way these forces are weighted and combined with
each other is discussed later. Each spring force involves a pair
of node (whose inter-distance is to be regulated), whereas an
angular force involves three nodes: a center node and two
of its angularly consecutive neighbors (whose angle is to be
regulated).

1) Spring Forces: given two nodes ¢ and j, and their
inter-nodal distance d;;, we call spring correction (and
abbreviate cor) the difference between d;; and the de-
sired threshold dg,. So cor ‘d”fd”“/é . (This quan-
tity is expressed as a ratio over dth for independence
to the wunit.) The definition of spring forces is then

[(0.7, den X cor, weight s (cor)),
T (05, dyp, x cor, weight s (cor)),

if dij > dyp,

i otherwise

where 91.3. is the orientation of the segment linking ¢ to j,

weightg() is a function defined hereafter, and ﬁji can be read
as the spring force that j exerts on i. Note that the same weight
function is considered for both attraction and repulsion.

2) Angular Forces: for a given angle v = abc, where a and
c are two consecutive neighbors of b in the clockwise direction
(see Figure 5(a) for an 1llustrat10n) the magnitude of the force
applying on a, noted |Fb,w| (Fbap can be read as the angular
force that b exerts on a with respect to c.), is 0 if v < 60°, and
din, X tan(f) otherwise, where 5, called the correction angle,
is half the difference between the current angle and 60° (7/3 in
radians). As for the direction, it simply corresponds to a physical
torque applied to the two nodes, i.e., =90° relative to the angle
of the segment from the node to the center, depending on their
relative position (6,5 + 90° for a and 6., — 90° for ¢, in the
example of Figure 5(a)).
Remark: we described here angular forces irrespective of their
implementation. At least two approaches could be considered in
practice: either node b computes the forces it exerts on @ and ¢
and sends them the corresponding vectors, or a and ¢ compute
these vectors themselves thanks to a 2-hop position knowledge
they have on their neighborhood (this latter solution is the one
we propose in Section 1V).

C. Cases where forces apply

Both spring and angular forces do not systematically apply
among all neighbors. There are two restrictions: one for both
types of forces, and the second specific to angular forces.

1) Neighbors selection: in order for the robots to stabilize
as equilateral triangles, the number of neighbors a robot can
interact with should be limited to 6 (since 60° x 6 = 360°). The
strategy proposed in [6] is to have some neighbors shielding the
others (i.e., making them not considered). More precisely, for a
given node 4, a neighbor k shields another neighbor K if k is
closer to ¢ and the angle kik’ is smaller than 60°. This scheme is
illustrated on Figure 2(a) (where nodes s1, s2, S3, and s4 shield
nodes eq, es, €3, e4, and e5).

We adopt the same principle but consider another value than
60°. Indeed, this value does not allow to select more than
5 neighbors in practice (because selecting 6 neighbors would
require that the angles between them are all exactly equal
to 60°). In order to maximize the possibility of selecting 6
neighbors while forbidding the selection of 7 neighbors, one
might reduce the shielding angle down to 360/7° (~ 51.43°).
In fact, we reduce it only to 54° because smaller values would
allow pentagonal configurations to be stably maintained by
spring forces (e.g. we wants a to dismiss ¢ because of b, in
Figure 2(b))

(a) Example of selection. (b) Minimal shielding angle w.r.t. pentagons.

Fig. 2. Neighbor selection.

2) Largest angle: given a node and n angles formed by its
n selected neighbors, angular forces do not exert relatively to
the largest angle if n < 6. (Looking again at the example of
Figure 1, this causes e.g. the angle bad to be ignored.)

D. Averaging the sums and moving

In every iteration, a given node can be subject to a number
of spring forces and angular forces competing with each other.
Determining how these vectors are combined to generate an
effective movement is a crucial step in the solution.

Virtual force schemes usually combine several vectors by
summing them. Keeping in mind that usual vectors are only
two-dimensional (direction, magnitude), the problem with this
approach is that if several vectors pull or push the node in a same
direction, the magnitude of the resulting vector is accordingly
increased, with the consequence that the node may be asked to
move beyond the equilibrium position (then reverse its direction
at the next iteration, and so forth), which generates unwanted
oscillation movements. This motivates the choice of averaging
the vectors instead of summing them.

Hence, given the set F of all forces exerting on a given node,
each having the form (direction ¢ z, magnitude |ﬁ |, and weight
wz)), we combine them by means of a weighted average. This
weighted average reduces the set of all force vectors into a
single two-dimensional distance vector (in Cartesian coordinates
of unit d,y), hereafter called the resulting vector, as follows

V _(zﬁg(cos(eﬁ)x|ﬁ\xwﬁ) zﬁg(sm(eﬁmﬁ\xwﬁ))
res 2 Fer W ’ Y Fer W '

The contribution of a given force vector to the resulting vector
is now directly proportional to the product of its magnitude
by its weight. Therefore, in order to set the weights function
properly, we have to consider their impact through this particular
product, hereafter referred to as strength.

E. Weights

At places with sufficient densities, spring forces alone suffice
to build equilateral triangles. Angular forces should preferably
not interfere with this. In fact, it would be convenient to
consider any equilateral triangle maintained by spring forces as
an unbreakable compound, and limit the role of angular forces to
form new such structures or to rotate existing structures toward
one another in order to form larger compounds (as in the case
of Figure 1).

This strategy dictates a set of constraints. First, spring forces
must have priority over angular forces, that is, angular forces
must be neglected as long as spring forces are not close to
their equilibrium, and then take over progressively (in physical
terms, we could call it an asymptotic freedom of angular forces
with respect to spring forces). We achieve this by weighting
spring forces exponentially (weights(cor) = exp(cor)), while
maintaining angular forces below a given threshold (this priority
relation is illustrated on Figure 3).

— Spring strength Angular forces must prevail only
~-- (up. bound on) Angular strength when spring forces are nearly satis-

=) fied. An additional constraint is to
8 ensure that the angular strength is
2 always significantly lower than the
5 spring strength at dtp, /0.851 (min-
. imal Cg), so that angular forces
cannot disconnect the network in

0 e case of conflicting configuration.
Inter-nodal distance
Fig. 3. Priority between forces

Before discussing more precisely the upper limit of angular
forces, let us first focus on their independent behavior with

respect to the correction angle. A specific requirement is that
angular forces get stronger as the correction angle decreases.
The reason for this counter-intuitive design choice is that
local configurations with several competing outcomes must not
stabilize in an even state. An example of such even configuration
is given in Figure 4. Hence, the strength of the angular forces
(that is, the product magnitude x weight) must increase as the
correction decreases, still being equal to 0 when the correction is
0 (angle of 60°), and finally be continuous over all its definition
domain, from 0 to 7 /3 (the correction at 180° is 7/3), which
generates an apparent contradiction.

b If the angular strength was designed to in-
crease with the correction angle, this example
configuration would become a square and sta-
bilize as such, which is not a desired outcome.
Now, if the strength decreases with the correc-
tion angle, the candidate outcome that has the
biggest advantage will increase its advantage
over time (here, b and ¢ will join and form
two new equilateral triangles).

a d
wrong/ c \right

Fig. 4. Example of competition between two configurations.

In fact, the angular strength does not need to be increased
until the correction angle is 0, since the two rotating nodes
will select each other for spring attraction before this happens.
Looking at Figure 5(b), this mutual selection will occur as
soon as a stops shieldir/lg both Il(ldes from one another, which
corresponds to angles acb and bac being < 54° (the shielding
angle). The angular strength exerted by @ on b and ¢ (and more
generally by the center node to its two considered neighbors)
can thus start decrease once the local angle passes below 72°
(see Figure 5(b)), which corresponds to a correction of 6° (/30
radians). Note that guaranteeing that b and ¢ will be within range
of each other when this happens is the reason why we require
dip, < 0.851Chp.

Frac

(a) Rotation with respect to b
Fig. 5.

(b) Configuration of maximal strength

Ilustration pictures for angular forces.

As a conclusion, the strength of angular forces must increase
as the correction decreases from 7/3 to 7/30, then decrease
to 0 as the correction decreases from /30 to 0, and still be
continuous (these constraints can be visualized by glancing
at the plot of the strength in Figure 6). One possible way
to obtain this behavior is to define the angular weight as a
negative exponential with the correction 3 as variable and
specific slope parameters. We pose weight(3) = e=%" . The
strength (magnitude x weight) is thus equal to the product

strength(B) = d, X tan(B) x e=ab’ (1

An infinity of pairs (a,b) satisfy the required constraints,
each one leading to a different decrease rate between /30 and
7 /3. For example using b = 1, the decreasing rate is such that
the ratio between strength(m/30) and strength(m/3) is more
than 8500. Knowing that angular forces are already bounded by
design with respect to spring forces, such a slope will prevent
the robots from rotating efficiently at large angles. We arbitrarily
set b to 0.5 (that is, a square root), which offers a much slower

decrease rate, and then set a so as to shift the maximum of the
strength at 7/30. This computation (of a knowing b) can be
done using the derivative of the strength by finding what value
of a leads to a zero at w/30. This leads to

_ V30m x (tan?(35) + 1)
“= 15 x tan(z5)
which gives a (preliminary) weight of e~6-222V%_The shape

of this weight is illustrated on Figure 6. Note that the ratio
between strength(mw/30) and strength(m/3) is now ~4.73.

~ 6.222 2)

0.6

Magnitude
Weight

| B * | —— Strength (product)

0.4p 4

i)
0 7/30

Fig. 6. Strength of angular forces (the plot of the strength is increased 20
times for visibility purpose).

After the shape of angular forces is determined, the last
step consists in raising it by a multiplicative factor, up to the
highest possible value at which they do not interfere negatively
with spring forces. In the same way as the shielding angle
of neighbors selection was limited in order to avoid stable
pentagonal configurations (see Section III-C1), we limit here
the multiplicative factor so as to prevent heptagonal (or higher
order polygonal) configurations (as explained in Figure 7).

= Due to the neighbors selection scheme, at least
Fap d one node, b on the figure, will be discarded by
b ¢, and will therefore not interact with it. The

desirable behavior here would be that the spring
4 repulsion from a and d (Fj;, and Fgp) push b

away in the direction 9517' However, a and d also
Fig. 7.

ﬁdb

exert an angular force on b that tends to maintain
it in place (Fyup. and Fgp.). Whether b will be
successfully ejected thus depends on the relative
strength between spring forces and angular forces.

Breaking heptagonal configurations.

The analytical characterization of the multiplicative factor is
left open for future work. We determined it experimentally by
forming such an heptagon and multiplying angular forces by
a high factor, then lowering the factor progressively until the
heptagon breaks by itself, which occurred at a factor ~1.15.
The final formula for the weight of angular forces is thus

weight 4(8) = 1.15 x e~ 6222VF 3)

where [is the angular correction in radians. Finally, we
can notice that the resulting strength satisfies the constraint
mentioned in Figure 3 (angular forces cannot prevail over
spring attraction to disconnect the network). In fact, we pre-
cisely have strengthg(correction(dy,/0.851)) =~ 5.92 x
strength a(m/30).

E. Friction force

We consider a threshold on \‘7}65| below which the robots
do not move. This threshold, noted epsilon, can be as small as
desired and essentially allows to regulate the priority between
the quantity of movements consummed and the other metrics
(biconnectivity, diameter, coverage), as discussed in Section V.

IV. IMPLEMENTATION

We propose an implementation based on a periodical ex-
change of beacons conveying two-hops position information.
More precisely, each beacon contains the (future) position of
its emitter, along with the (expected) position of this emitter’s
selected neighbors. Upon reception, beacons are stored in a
mailbox, which is read offline at regular intervals ¢,.,4 (rounds).

Informally, the algorithm is as follows. In each round, robots
starts by reading the messages received during the previous
round, deduce their new list of neighbors and update local
variables to store the corresponding information (positions of the
neighbors and positions of the neighbors’ selected neighbors).
Based on this information, robots first determine their own
selection, then compute their next position based on forces
virtually exerted by the neighborhood (over 1-hop for spring
forces, 2-hops for angular forces). They then send the next
beacon including their next position and the (expected) positions
of their selected neighbors, and finally start to move toward the
next position. The detailed process is given in Algorithm 1.

Algorithm 1 Baseline algorithm (runs every ¢ units of time)

: neighbors[] <+ 0

1 messages|] < mailbox.popAllMessages() // clears the mailbox.

: for all msg € messages|| do
neighbors|] < neighbors|[] U msg.sender
neighbors[msg.sender].position < msg.pos
neighbors[msg.sender].selection|] < msg.selection|]

end for

. me.selection[] < select(me, neighbors|])

. nextP + computeNextPosition(me)

10: send(newM sg(sender=me, pos=nextP, selection=me.selection[]))

11: if nextP # currentPos then

12: moveTo(nextP)

13: end if

LONIUR LS

The function computeNextPosition is given by Algo-
rithm 2, where getSpringForce(ng, me) returns the force
ﬁng me» and get Angular Force(ng, me) returns an 2-elements
array containing ﬁng mep and ﬁng mes (Where p and s are the
predecessor and successor of me in ng.selection, respectively).

Algorithm 2 computeN extPosition(me)

: List[] < 0
: for all ng € me.selection[] do
if me € ng.selection[] then
List[] < List[] U getSpringForce(ng, me)
List[] + List|] U getAngular Force(ng, me)
end if
end for
: Vies < geéWeightedAverage(List)
9: d = min(|Vres| X din, dmaz)
10: if d < epsilon then
11: d<+0
12: end if B
13: Vies < (9‘7NS ,d) // Viyes is truncated to a magn. of d (polar notation)

PRINB R

14: return current_position + Vres

Our simulations assumed that robots can move at some speed
Umage With instantaneous acceleration and direction change, that
is, up to iimw = Umaz X trnd per round. Note that the distance
unit of Vies is still dyp,. In each round, the robots will thus
move |Vyes| X dip, OF dpnas, Whichever is the shortest. The value
chosen for d,,,, consequently have an impact on the number
of rounds used to deploy. However, simulations showed that it
has virtually no impact on the quantity of movements involved,
nor on the outcome of the algorithm.

(a) Initial topology

(b) Resulting topology

Fig. 8. Example of arbitrarily connected topology of 30 nodes (and corre-
sponding outcome with our algorithm).

V. EXPERIMENTATIONS

The algorithm proposed in this paper can possibly target three
different contexts. These contexts are:

« All robots are released from a same place as a single high-
density conglomerate (Case A);

« The robots are arbitrarily distributed in a closed area and do
not necessarily form a connected topology. However, they
are released in sufficient number to allow mutual repulsion
to eventually make them connected (Case B);

o The robots are arbitrarily distributed in an open area, but
their topology is already connected (Case C, see Figure 8).

At first sight, the benefits of using angular forces is not
evident in the first two cases (A and B). We thus compared
our solution to the use of spring forces alone in these contexts.
As for case C, which is the one that mainly motivated this
work (and for which spring forces alone are not adapted), we
compared our solution to that of [5], the only known distributed
solution addressing such scenarios.

Due to space limitation, only a brief summary of these
simulations is now presented. In a nutshell, the combination
of both kinds of force (our solution) prove relevant in Case
A (using slightly less movements than spring forces alone,
and maintaining the biconnectivity of the whole group whereas
spring forces alone do not; however the combination induced a
cost of ~25% more time to stabilize). In Case B, our solution
prove not relevant due to its requirement of having dy, <
0.851 Cr. In Case C, where the topologies were generated
by drawing the positions of nodes uniformly at random (with
an appropriate density [3]), then selecting only the connected
ones for simulations, our algorithm achieved biconnectivity in
more than 90%, against 50% for the algorithm in [5]. It also
led to 60% more coverage, and 8% less diameter (note that
the same coverage can be observed in any algorithm having a
repulsion-based mechanism). Finally, we observed that varying
the threshold epsilon can be used to leverage the priority
between movements and biconnectivity. All simulations were
performed using the JBotSim platform [4].!

V1. CONCLUDING REMARKS

In this paper we investigated the joint use of virtual spring
forces with a new kind of forces called angular forces, which
have the effect of contracting large angles formed by nodes
and pairs of neighbors. These forces have the global effect
of biconnecting the network, at the same time as reducing
its diameter. The paper presented a step by step thorough
design of these forces, which was mostly led by physical

'A demo. is available at: http://jbotsim.sf.net/examples/bico.html

constraints that we identified and carefully discussed. Besides
these contributions, we introduced more general design aspects,
such as the clear separation between the weight of a force and its
magnitude, as well as the technique of merging multiple forces
by means of a weighted average, rather than summing. These
approaches eliminates two systematic sources of oscillation.

The benefits of adding angular forces to spring forces were
tested in three different contexts, namely i) robots released
from the same place, ii) robots distributed at random within
a close area (possibly disconnected), and iii) robots distributed
at random, but connected, in an open area. Simulation results
showed that the use of angular forces was not pertinent in
case ii), whereas it was bringing substantial benefits in case i).
Regarding case iii), which was the main motivation of this work,
we compared the solution to the only known distributed (i.e.,
non centralized) competitor. Where that algorithm was able to
achieve biconnectivity in approximately 50% of the cases, ours
did it in more than 90% of the cases up to 200 nodes (and 95%
for less than 100 nodes).

Another aspect that simulations revealed about the algorithm
is the fact that one specific parameter (epsilon, the threshold
below which a robot do not move at all) could be highly
instrumental in balancing the trade-off between the quantity of
movements performed, and the ratio of biconnectivity achieved.

ACKNOWLEDGMENT

This work was partially supported by Canadian NSERC Strate-
gic Grant STPSC356913-2007B, French DGCIS (Dir. Gén. de la
Compétitivité, de 1'Industrie et des Services), and the ITEA 2 Smart
Urban Spaces project consortium.

REFERENCES

[1] K. Akkaya and M. Younis. C2AP: Coverage-aware and connectivity-
constrained actor positioning in wireless sensor and actor networks.
In IEEE International Performance, Computing, and Communications
Conference (IPCCC’07), pages 281-288, New Orleans, Louisiana, 2007.

[2] P. Basu and J. Redi. Movement control algorithms for realization of fault-
tolerant ad hoc robot networks. IEEE Network, 18(4):36—-44, 2004.

[3] C. Bettstetter. On the minimum node degree and connectivity of a
wireless multihop network. In MobiHoc '02: Proceedings of the 3rd
ACM international symposium on Mobile ad hoc networking & computing,
pages 80-91, New York, NY, USA, 2002. ACM.

[4] A. Casteigts. The JBotSim Library. e-Print (arXiv:1001.1435), Jan 2010.
http://arxiv.org/abs/1001.1435.

[5] S. Das, H. Liu, A. Nayak, and I. Stojmenovic. A localized algorithm for
bi-connectivity of connected mobile robots. Telecommunication Systems,
40:129-140, April 2009.

[6] M. Garetto, M. Gribaudo, C.-F. Chiasserini, and E. Leonardi. A distributed
sensor relocation scheme for environmental control. /[EEE Intl. Conf. on
Mobile Adhoc and Sensor Systems (MASS’07), pages 1-10, Oct. 2007.

[7] A. Howard, M. Mataric, and G. Sukhatme. Mobile sensor network
deployment using potential fields: A distributed, scalable solution to the
area coverage problem. In 6th International Symposium on Distributed
Autonomous Robotics Systems (DARS’02), Fukuoka, Japan, June 2002.

[8] G.Lee and N.Y. Chong. A geometric approach to deploying robot swarms.
Annals of Math. and Artif. Intelligence, 52(2-4):257-280, 2008.

[9]1 M. Li, J. Harris, M. Chen, S. Mao, Y. Xiao, W. Read, and B. Prabhakaran.
Architecture and protocol design for a pervasive robot swarm communi-
cation networks. Wireless Comm. and Mobile Comp., 2009.

[10] H. Liu, X. Chu, Y.-W. Leung, and R. Du. An efficient physical model
for movement control towards bi-connectivity in robotic sensor networks.
IEEE Journal on Selected Areas in Communications, 2010. to appear.

[11] G. Tan, S.A. Jarvis, and A.-M. Kermarrec. Connectivity-guaranteed and
obstacle-adaptive deployment schemes for mobile sensor networks. In 28th
International Conference on Distributed Computing Systems (ICDCS’08),
pages 429-437, June 2008.

[12] Y. Zou and K. Chakrabarty. Sensor deployment and target localization
based on virtual forces. In IEEE 22nd Annual Joint Conference of the IEEE
Computer and Communications Societies (INFOCOM’03), volume 2,
pages 1293-1303, March 2003.

