
Author's personal copy

Biconnecting a network of mobile robots using virtual angular forcesq

Arnaud Casteigts a,⇑, Jérémie Albert b, Serge Chaumette b, Amiya Nayak a, Ivan Stojmenovic a,c

a SITE, University of Ottawa, Canada
b LaBRI, University of Bordeaux, France
cUniversity of Novi Sad, Serbia

a r t i c l e i n f o

Article history:

Available online 17 September 2011

Keywords:

Wireless mobile robots

Self-organization

Angular forces

Biconnectivity

a b s t r a c t

This paper proposes a new solution to the problem of self-deploying a network of wireless mobile robots

with simultaneous consideration to several criteria, that are, the fault-tolerance (biconnectivity) of the

resulting network, its coverage, its diameter, and the quantity of movement required to complete the

deployment. These criteria have already been addressed individually in previous works, but we propose

here an elegant solution to address all of them at once. Our approach is based on combining two comple-

mentary sets of virtual forces: spring forces, whose properties are well known to provide optimal cover-

age at reasonable movement cost, and angular forces, a new type of force proposed here whose effect is to

rotate two angularly consecutive neighbors of a node toward one another when the corresponding angle is

larger than 60� (even if these two nodes are not themselves neighbors). Angular forces have the global

effect of biconnecting the network and reducing its diameter, while not affecting the benefits obtained

by spring forces on coverage. In this paper we give a detailed description of both types of forces, whose

combination poses a number of technical challenges. We also provide an implementation that relies only

on position exchanges within two hops. Extensive simulations are finally presented to evaluate the solu-

tion against all criteria (coverage, biconnectivity, quantity of movements, and diameter), and show its

advantages over prior solutions.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction and related work

This paper addresses the problem of self-deploying a swarm of

wireless mobile robots in a biconnected fashion. The motivations

for deploying robotic sensor networks in general include accessing

places where human cannot go (e.g. remote planets, underwater

area, dangerous spots with chemical or radioactive leaks), or auto-

mating fastidious large scale deployment (e.g. spreading intrusion

or fire detectors over a large area). Once deployed, the robots are in-

tended to perform collective tasks related to monitoring, collecting,

or processing information sensed in the surrounding environment.

The efficiency and reliability of such a network depend on sev-

eral criteria. To be fault-tolerant (tolerate the failure of any single

robot), the resulting network must be biconnected. A network is

biconnected if it remains connected after any of the nodes is

removed. Besides fault-tolerance, it is important to maximize the

collective coverage of the network (that is, the overall area the

robots can sense or serve), while minimizing the network diameter

(longest shortest path between any pair of nodes) to ensure

efficient communications. Finally, these criteria should not be

satisfied at the expense of a too high energy consumption, and

must thus be achieved using as few movements as possible.

The problem of maximizing the coverage of a network of robots

was addressed in numerous works, using either virtual repulsion

forces (or a combination of repulsion and attraction forces, called

spring forces) [9,23,8,11,22,20] or geometrical approaches [2,11,

12,1] that equivalently regulate the inter-nodal distance and thus

locally arrange the topology as a (equilateral) triangle tessellation,

whose optimal properties with respect to coverage are well-

known.1 As a side effect, these approaches can establish biconnectiv-

ity at places where the density of robots is sufficiently high – but not

in the general case.

Biconnectivity has been explicitely addressed in other works.

In the most general context (targetting arbitrary, sparse, and even

possibly disconnected topologies), solutions based on a common

point of interest (POI) toward which all robots can converge and

biconnect were proposed (e.g. see [8,18,15,14,13]). Having a

common reference point known by all the robots simplifies the

0140-3664/$ - see front matter � 2011 Elsevier B.V. All rights reserved.

doi:10.1016/j.comcom.2011.09.008

q A preliminary version of this paper appeared in 72nd IEEE Vehicular Technology

Conference (VTC’10-Fall).
⇑ Corresponding author.

E-mail addresses: casteig@site.uottawa.ca (A. Casteigts), albert@labri.fr

(J. Albert), chaumett@labri.fr (S. Chaumette), anayak@site.uottawa.ca (A. Nayak),

ivan@site.uottawa.ca (I. Stojmenovic).

1 The idea of using virtual forces to move individual robots seems to have first

appeared in [3], then first used for a coordination problem in [17].

Computer Communications 35 (2012) 1038–1046

Contents lists available at SciVerse ScienceDirect

Computer Communications

journal homepage: www.elsevier .com/ locate/comcom

Author's personal copy

biconnectivity problem substantially (at least, without obstacles);

this assumption is however not realistic in several practical sce-

narios. Different approaches were proposed in [4,7] to biconnect

networks that are already connected based on movements of well

chosen robots called non-critical; these solutions do not consider

the coverage nor the diameter of the resulting network. In addi-

tion, the solutions in [4] are centralized, and the algorithm in

[7] fails to biconnect in numerous situations (which is explicitly

conceded by the authors). A similar approach by movement of

so-called removable nodes was considered in [19] and [21] with

the objective of minimizing movements by the nodes.

The solution we propose in this paper does not use a common

reference point, and therefore does not handle arbitrarily discon-

nected topologies. It addresses however any kind of initially con-

nected topology (regardless of whether released as a high density

conglomerate or as a randomly distributed set of robots), and also

deals with initially disconnected topologies in closed areas when

the number of robots is sufficient to allow repulsion forces to make

them inter-connect (this feature can be found in any repulsion-

based solution). Besides obtaining a much higher success rate than

[7] (in the order of 95% against 50%), the main novelty of our solu-

tion is to address all the criteria described above at once. Its prin-

ciple is based on combining spring forces with a new kind of force

called angular forces. Whereas spring forces determine the dis-

tances between nodes and naturally form equilateral triangles at

dense places, angular forces strive to reduce the angles formed

by pairs of angularly consecutive neighbors of a same node (see

Fig. 1). This is done regardless of whether these neighbors are al-

ready in range of each other, so equilateral triangles are also

formed at sparse places.

At a global scale, angular forces have the effects of biconnecting

the network and reducing its diameter at the same time. The intu-

ition of this behavior can be obtained by looking at Fig. 2.

The paper is organized as follows. The assumptions, notations,

and network model are given in Section 2. Section 3 presents our

solution and describe the technical challenges that had to be faced

to successfully mix angular forces with spring forces (without neg-

ative interference between them). A possible implementation is

then proposed in Section 4. Note that the principle of rotation

can be implemented using at least two possible approaches,

depending on which robot does what action (e.g. does a robot

ask its neighbors to rotate, or do these neighbors take such decision

alone). In the proposed implementation all robots acquire (a subset

of) the two-hop neighbors positions and then determine their

movements alone. We thus briefly discuss some of the simulation

results we obtained in Section 5, and eventually conclude with

some remarks.

2. Network model, notations, and assumptions

We consider a network of autonomous mobile robots enabled

with wireless communication and movement capabilities. We as-

sume that each robot is able to acquire frequently its absolute po-

sition (although we believe the proposed solution could be

transposed in a framework with relative positions only). Each robot

has communication and sensing ranges that are both distinct, but

uniform among the swarm. The communication range, CR, deter-

mines the distance up to which two robots can directly communi-

cate. The sensing range, SR, determines the circular area around a

robot from which it can acquire information about the monitored

environment. This is referred to as its coverage.

In the proposed implementation, robots are assumed to dis-

cover their neighborhood by means of periodic beacon exchanges

that comprise position information. We assume that beacons sup-

port piggybacking (insertion of extra data within the beacon) and

use this capability to share two-hops coordinate information

among neighbors (up to 6 nodes positions in a given beacon). No

additional communication is required. Finally, as the robots apply

the algorithm, they regulate their inter-distance around a thresh-

old dth, which may be chosen by policy depending on the type of

coverage desired (e.g. focuse or non-focused, see Fig. 3). The only

constraint is that dth 6� 0:851CR (for physical reasons that are pre-

cisely explained in Section 3.5), with the consequence that a

slightly higher communication range will be required compared

to solutions based on a common reference point (e.g., for focused

coverage, this leads CR P 2:035SR instead of the usual CR P
ffiffiffi
3
p

SR

ð’ 1:732SRÞ.

3. The proposed virtual force scheme

3.1. Representing individual forces

Individual forces are usually represented as two-dimensional

polar coordinate vectors ~F ¼ ðdirection;magnitudeÞ, with the

strength of the force being directly encoded in the magnitude

(e.g. as a linear, quadratic, or exponential expression of the quan-

tity to correct). The downside of this approach is that such force

vector, if mapped into a discrete movement of the considered node,

may lead this node to move further than the equilibrium location,

thereby generating oscillations. In general terms, these vectors

loose track of the exact target location.

For this reason – and also because it simplifies the combination

of different types of forces, we represent individual forces as three-

dimensional vector~F containing a direction, a magnitude, and a sep-

arate weight, respectively noted h~F ; j
~Fj, and x~F . This solution al-

lows us to disassociate the magnitude of a force from its real

strength, and keep track of the equilibrium point through direction

and magnitude. As for the effective strength of a force, it is deter-

mined by the product of magnitude by weight.
Fig. 1. Angular force principle. Here the angle formed by b and c relatively to a

makes them rotate toward one another (around a).

Fig. 2. Intuitive example of the effect of angular forces.

Fig. 3. Focused and non-focused coverages. Circles represent individual sensing

coverages, lines represent communication links.

A. Casteigts et al. / Computer Communications 35 (2012) 1038–1046 1039

Author's personal copy

3.2. Directions and magnitudes

We describe now the computation of directions and magnitudes

of individual force vectors, for both spring and angular forces. The

way these forces are weighted and combined with each other is

discussed later. Each spring forces involves a pair of node (whose

distance is to be regulated), whereas an angular force involves three

nodes: a center node and two of its angularly consecutive neigh-

bors (whose angle is to be regulated). The cases in which each type

of force apply, or not, is also discussed later.

Spring forces

Given two nodes i and j, and their inter-nodal distance dij, we

call spring correction (and abbreviate cor) the difference between

dij and the desired threshold dth. So cor ¼
jdij�dth j=2

dth
. (This quantity

is expressed as a ratio over dth for independence to the unit). The

definition of spring forces is then

~Fji ¼
ðh~ij;dth � cor;weightSðcorÞÞ; if dij > dth

ðh~ji;dth � cor;weightSðcorÞÞ; otherwise

(

where h~ij is the orientation of the segment linking i to j;weightSðÞ is a

function that will be defined later, and ~Fji can be read as the spring

force that j exerts on i. Note that the same weight function is consid-

ered for both attraction and repulsion.

Angular forces

For a given angle c ¼dabc, where a and c are two consecutive

neighbors of b in the clockwise direction (see Fig. 4 for an illustra-

tion), the magnitude of the force applying on a, noted j~Fbacj (~Fbac can

be read as the angular force that b exerts on a with respect to c), is 0 if

c 6 60�, and dth � tanðbÞ otherwise, where b, called the correction

angle, is half the difference between the current angle and 60�

(p=3 in radians). As for the direction, it simply corresponds to a

physical torque applied to the two nodes, i.e., �90� relative to the

angle of the segment from the node to the center, depending on

their relative position (hab þ 90� for a and hcb � 90� for c, in the

example of Fig. 4).

Remark 1. We described here angular forces irrespective of their

implementation. At least two approaches could be considered in

practice: either node b computes the forces it exerts on a and c and

sends them the corresponding vectors, or a and c compute these

vectors themselves thanks to a 2-hop position knowledge they

have on their neighborhood (this latter solution is the one we

propose in Section 4).

3.3. Cases where forces apply

Both spring and angular forces do not systematically apply

among all neighbors. We consider to types of restrictions: neighbor

selection (for both spring and angular forces), which causes a node

to interact only with a well-chosen subset of direct neighbors,

ignoring completely those neighbors that are said to be shielded

by others; and angle selection (for angular forces only), whose effect

is to ignore angular forces generated by the largest local angle

when less than 6 neighbors are selected.

Neighbors selection (both types of forces)

In order for the robots to stabilize as equilateral triangles, the

number of neighbors a robot can interact with should be limited

to 6 (since 60� � 6 ¼ 360�). The strategy proposed in [8] is to have

some neighbors shielding others (i.e., making them locally ignored).

For a given node i, a neighbor k shields another neighbor k
0
if k is

closer to i and the angle dkik
0
is smaller than a threshold of 60�. This

scheme is illustrated on Fig. 5.

We adopt the same principle but consider a threshold of 54� in-

stead of 60�. This precise value stems from the combination of two

observations and corresponds to the best tradeoff in their respects.

Let us first observe that a threshold of 60� does not allow to select

more than 5 neighbors in practice (unless the corresponding 6 an-

gles are exactly 60�). The right value to consider for a shielding an-

gle – as far as triangle tessellation is targeted – should instead be of

360=7þ � (i.e., ’ 51:43�), that is, the value that maximizes the

chance to select 6 neighbors, while still preventing the selection

of 7.

However, such a small value poses a different problem for the

application of spring forces: it causes attraction to maintain pen-

tagonal configurations as if they were stable structures, which is

not desirable. In a pentagonal configuration (see e.g. Fig. 6), each

sub-triangle has inner angle 360=5 and outer angles (180�

ð360=5ÞÞ=2 ¼ 54�). Raising the shielding angle to at least 54� has

the convenient effect that at least one sub-triangle of a pentagon

will be broken as a by-product of shielding (here, for exemple, b

shieds c at a and a at c, which allows the edge ac to be discarded).

Therefore, in order to maximize the selection of 6 neighbors,

while preventing the stabilization of pentagonal configurations,

we consider a shielding angle of 54� precisely. This is a crucial as-

pect of the solution.

Angle selection (for angular forces only)

Given a node and x angles formed by its x selected neighbors,

angular forces do not apply relatively to the largest angle if

x < 6. This restriction on angular forces is consistent with that of

Fig. 4. Rotation with respect to b.

Fig. 5. Example of neighbor selection. (Here nodes s1; s2; s3 , and s4 shield nodes

e1; e2; e3; e4 , and e5).

Fig. 6. Minimal shielding angle to prevent the maintenance of pentagonal

formations.

1040 A. Casteigts et al. / Computer Communications 35 (2012) 1038–1046

Author's personal copy

neighbor selection seen previously. Considering again the example

on Fig. 6, this will cause angular forces not to oppose the opening of

angle dabc to the satisfactory extent. Another example is angle dbad

in Fig. 2.

3.4. Averaging the sums and moving

In every iteration, a given node can be subject to a number of

spring forces and angular forces competing with each other. Deter-

mining how these vectors are combined to generate an effective

movement is thus a crucial step in the solution.

Virtual force schemes usually combine several vectors by

summing them. Keeping in mind that usual vectors are only

two-dimensional (direction, magnitude), the problem with this

approach is that if several vectors pull or push the node in a same

direction, the magnitude of the resulting vector is accordingly

increased, with the consequence that the node is asked to move

beyond the equilibrium position (then reverse its direction at the

next iteration, and so forth), which generates unwanted oscillation

movements. This motivates the choice of averaging the vectors

instead of summing them.

Hence, given the set F of all forces acting on a given node, each

having the form (direction h~F , magnitude j~Fj, and weight x~FÞ), we

combine them by means of a weighted average. This weighted

average reduces the set of all force vectors into a single two-

dimensional distance vector (in Cartesian coordinates of unit dth),

hereafter called the resulting vector, as follows

~Vres ¼

P
~F2F ðcosðh~FÞ � j

~Fj �x~FÞP
~F2Fx~F

;

P
~F2F ðsinðh~FÞ � j

~Fj �x~FÞP
~F2Fx~F

 !

:

The contribution of a given force vector to the resulting vector is

now directly proportional to the product of its magnitude by its

weight. Therefore, in order to set the weights function properly,

we have to consider their impact through this particular product,

hereafter referred to as strength.

3.5. Weights

At places with sufficient densities, spring forces alone suffice to

build equilateral triangles. Angular forces should preferably not

interfere with this. In fact, it would be convenient to consider

any equilateral triangle maintained by spring forces as an unbreak-

able compound, and limit the role of angular forces to form new

such structures or to rotate existing structures toward one another

in order to form larger compounds (as in the case of Fig. 2).

This strategy dictates a set of constraints. First, spring forces

must have priority over angular forces, that is, angular forces must

be neglected as long as spring forces are not close to their equilib-

rium, and then take over progressively (in physical terms, we could

call it an asymptotic freedom of angular forces with respect to

spring forces). We achieve this by weighting spring forces expo-

nentially (weightSðcorÞ ¼ expðcorÞ), while maintaining angular

forces below a given threshold (this priority relation is illustrated

on Fig. 7).

Before discussing more precisely the upper limit of angular

forces, let us first focus on their independent behavior with respect

to the correction angle. A specific requirement is that angular

forces get stronger as the correction angle decreases. The reason

for this counter-intuitive design choice is that local configurations

with several competing outcomes must not stabilize in an even

state. An example of such even configuration is given in Fig. 8.

Hence, the strength of the angular forces (that is, the product

magnitude�weight) must increase as the correction decreases, still

being equal to 0 when the correction is 0 (angle of 60�), and finally

be continuous over all its definition domain, from 0 to p=3 (the cor-
rection at 180� is p=3), which generates an apparent contradiction.

In fact, the angular strength does not need to be increased until

the correction angle is 0, since the two rotating nodes will select

each other for spring attraction before this happens. Looking at

Fig. 9, this mutual selection will occur as soon as a stops shielding

both nodes from one another, which corresponds to anglesdacb and
dbac being < 54� (the shielding angle). The angular strength exerted

by a on b and c (and more generally by the center node to its two

considered neighbors) can thus start decrease once the local angle

passes below 72�(see Fig. 9), which corresponds to a correction of

6�(p=30 radians). Note that guaranteeing that b and c will be with-

in range of each other when this happens is the reason why we re-

quire dth < 0:851CR.

As a conclusion, the strength of angular forces must increase as

the correction decreases from p=3 to p=30, then decrease to 0 as

the correction decreases from p=30 to 0, and still be continuous

(these constraints can be visualized by glancing at the plot of the

strength in Fig. 10). One possible way to obtain this behavior is

to define the angular weight as a negative exponential with the

correction b as variable and specific slope parameters. We pose

weightðbÞ ¼ e�abb

. The strength (magnitude�weight) is thus equal

to the product

Fig. 7. Priority between forces. Angular forces must prevail only when spring forces

are nearly satisfied. An additional constraint is to ensure that the angular strength is

always significantly lower than the spring strength at dth=0:851 (minimal CR), so

that angular forces cannot disconnect the network in case of conflicting

configuration.

Fig. 8. Example of competition between two configurations. If the angular strength

was designed to increase with the correction angle, this example configuration

would become a square and stabilize as such, which is not a desired outcome. Now,

if the strength decreases with the correction angle, the candidate outcome that has

the biggest advantage will increase its advantage over time (here, b and c will join

and form two new equilateral triangles).

A. Casteigts et al. / Computer Communications 35 (2012) 1038–1046 1041

Author's personal copy

strengthðbÞ ¼ dth � tanðbÞ � e�abb

ð1Þ

An infinity of pairs ða; bÞ satisfy the required constraints, each

one leading to a different decrease rate between p=30 and p=3.
For example using b ¼ 1, the decreasing rate is such that the ratio

between strengthðp=30Þ and strengthðp=3Þ is more than 8500.

Knowing that angular forces are already bounded by design with

respect to spring forces, such a slope will prevent the robots from

rotating efficiently at large angles. We arbitrarily set b to 0:5 (that

is, a square root), which offers a much slower decrease rate, and

then set a so as to shift the maximum of the strength at p=30. This
computation (of a knowing b) can be done using the derivative of

the strength, then finding what value of a leads to a zero in the

derivative at p=30. The derivative of the strength is

strength
0
ðbÞ ¼ ðtan0ðbÞ � e�abb

Þ þ ðtanðbÞ � e0
�abb

Þ

¼ e�a
ffiffi
b
p

tan2ðbÞ �
a� tanðbÞ

2
ffiffiffi
b
p þ 1

� �

: ð2Þ

Replacing b with p=30, this derivative comes to zero when

a ¼

ffiffiffiffiffiffiffiffiffi
30p
p

� ðtan2 p
30

� �
þ 1Þ

15� tan p
30

� � ’ 6:222 ð3Þ

which gives a (preliminary) weight of e�6:222
ffiffi
b
p

. The shape of this

weight is illustrated on Fig. 10. Note that the ratio between

strengthðp=30Þ and strengthðp=3Þ is now � 4:73.

After the shape of angular forces is determined, the last step

consists in raising it by a multiplicative factor, up to the highest

possible value at which they do not interfere negatively with

spring forces. In the same way as the shielding angle of neighbors

selection was limited in order to avoid stable pentagonal configu-

rations (see Section 3.3), we limit here the multiplicative factor so

as to prevent heptagonal (or higher order polygonal) configurations

(as explained in Fig. 11).

The analytical characterization of the multiplicative factor is left

open for future work. We determined it experimentally by forming

such an heptagon and multiplying angular forces by a high factor,

then lowering the factor progressively until the heptagon breaks

by itself, which happened at a factor �1:15. The final formula for

the weight of angular forces is thus

weightAðbÞ ¼ 1:15� e�6:222
ffiffi
b
p

ð4Þ

where b is the angular correction in radians. Finally, we can notice

that the resulting strength satisfies the constraint mentioned in

Fig. 7 (angular forces cannot prevail over spring attraction to dis-

connect the network). In fact, we precisely have strengthS

ðcorrectionðdth=0:851ÞÞ ’ 5:92� strengthAðp=30Þ.

3.6. Friction force

We consider a threshold on j~Vresj below which the robots do not

move. This threshold, noted epsilon, can be as small as desired and

essentially allows to regulate the priority between the quantity of

movements and the other metrics (biconnectivity, diameter, cover-

age), as discussed in Section 5.6.

4. Implementation

We propose an implementation based on the periodical ex-

change of beacon messages conveying two-hops position informa-

tion. More precisely, each beacon contains the (future) position of

its emitter, along with the (expected) position of its emitter’s se-

lected neighbors. Upon reception by a robot, the beacons are stored

in its local mailbox, which is then read offline at regular intervals

(rounds). We assume a common round duration trnd for all robots

(which can be for example inferred from the robots maximal

speed, or specified before deployment).

Informally, the algorithm is as follows. In each round, robots

starts by reading all the messages that arrived during the previous

round in their mailbox, deduce their new list of neighbors and up-

date (or create) local variables to store the corresponding positions

(the positions of these neighbors and the positions of these neigh-

bors’ selected neighbors). Based on this information, robots first

determine their own selection, then compute their next position

based on forces virtually exerted by the neighborhood (over 1-

hop for spring forces, 2-hops for angular forces). They then send

the next beacon including their next position and the (expected)

positions of their selected neighbors, and finally start to move

Fig. 9. Configuration of maximal strength.

Weight

Fig. 10. Strength of angular forces (the plot of the strength is increased 20 times for

visibility purpose).

Fig. 11. Breaking heptagonal configurations. Due to the neighbors selection

scheme, at least one node, b on the figure, will be discarded by c, and will therefore

not interact with it. The desirable behavior here would be that the spring repulsion

from a and d (~Fab and ~Fdb) push b away in the direction h~cb
. However, a and d also

exert an angular force on b that tends to maintain it in place (~Fabc and~Fdbc). Whether

b will be successfully ejected thus depends on the relative strength between spring

forces and angular forces.

1042 A. Casteigts et al. / Computer Communications 35 (2012) 1038–1046

Author's personal copy

toward the next position. The detailed process is given in Algo-

rithm 1.

Algorithm 1. Baseline algorithm (runs every t units of time)

1: neighbors½ � ;

2: messages½ � mailbox:getMessagesðÞ

3: forall msg 2 messages½ � do

4: neighbors½ � neighbors½ � [msg:sender

5: neighbors½msg:sender�:position msg:pos

6: neighbors½msg:sender�:selection½ � msg:selection½ �

7: endfor

8: me:selection½ � selectðme;neighbors½ �Þ

9: nextP computeNextPositionðmeÞ

10: sendðsender ¼ me; pos ¼ nextP; selection ¼ me:selection½ �Þ

11: if nextP – currentPos then

12: moveToðnextPÞ

13: endif

The function computeNextPosition is given by Algorithm 2,

where getSpringForceðng;meÞ returns the force ~Fng me, and

getAngularForceðng;meÞ returns an 2-elements array containing
~Fng me p and~Fng me s (where p and s are the predecessor and successor

of me in ng:selection, respectively).

Algorithm 2. computeNextPositionðmeÞ

1: List½ � ;

2: forallng 2 me:selection½ � do

3: if me 2 ng:selection½ � then

4: List½ � List½ � [getSpringForceðng;meÞ

5: List½ � List½ � [getAngularForceðng;meÞ

6: endif

7: endfor

8: ~Vres getWeightedAverageðListÞ

9: d ¼ minðj~Vresj � dth; dmaxÞ

10: if d 6 epsilon then

11: d 0

12: endif

13: ~Vres ðh~Vres
; dÞ // ~Vres is truncated to a magnitude of d

(polar notation)

14: return current positionþ ~Vres

In the context of our simulations, we assumed that robots can

move at some speed vmax with instantaneous acceleration, instan-

taneous direction change, and negligible computation time, that is,

up to a distance of dmax ¼ vmax � trnd per round. Note that the dis-

tance unit of ~Vres is still dth. In each round, the robots will thus

move j~Vresj � dth or dmax, whichever is the shortest. The value cho-

sen for dmax consequently have an impact on the number of rounds

used to deploy. However, simulations showed that it has virtually

no impact on the quantity of movements involved, nor on the out-

come of the algorithm, since robots do not substantially change

their direction from one iteration to the next (which we believe

is due to a better appreciation of their target by using two-hop

information and averaging instead of summing).

5. Experimentations

5.1. Summary of the results

The algorithm proposed in this paper can possibly target three

different contexts. These contexts are:

� All robots are released from a same place as a single high-den-

sity conglomerate (Case A);

� The robots are arbitrarily distributed in a closed area and do not

necessarily form a connected topology. However, they are

released in sufficient number to allow mutual repulsion to

eventually make them connected (Case B);

� The robots are arbitrarily distributed in an open area, but their

topology is already connected (Case C, see Fig. 12).

At first sight, the benefits of using angular forces is not evident

in the first two cases (A and B). We thus compared our solution to

the use of spring forces alone in these contexts. As for Case C, which

is the one that mainly motivated this work (and for which spring

forces alone are not adapted), we compared our solution to the dis-

tributed algorithm from [7], the only known distributed solution

addressing such scenarios. Finally, we evaluated our algorithm fur-

ther in Case C by studying the impact of epsilon (the threshold be-

low which robots do not move at all) on the four metrics. The

complete set of simulations results is given in the next section.

In anutshell, the combinationof bothkinds of force (our solution)

prove relevant in Case A (using slightly less movements than spring

forces alone, andmaintaining the biconnectivity of the whole group

whereas spring forces alone do not; however the combination in-

duced a cost of�25%more time to stabilize). In Case B, our solution

prove not relevant, and even detrimental due to its requirement of

having dth 6 0:851CR (this requirement can be released when using

spring forces only). In Case C, where the topologies were generated

by drawing the positions of nodes uniformly at random (with an

appropriate density [5]), then selecting only the connected ones

for simulations, our algorithm achieved biconnectivity inmore than

90%, against 50% for the algorithm in [7]. It also led to 60%more cov-

erage, and 8% less diameter (although this excellent coverage is spe-

cific to our solution and can be observed in any algorithm having a

repulsion-basedmechanism). Finally, by studying the impact of epsi-

lon, we clearly highlighted how this parameter can be used to lever-

age the priority among the metrics, in particular the tradeoff

between movements and biconnectivity. All simulations were per-

formed using the JBotSim platform [6].2

5.2. Details of the simulation results

In all simulations but one explicitly mentioned, we considered a

non-focused coverage with dth ¼ 2SR. As for CR, we used the small-

est value allowed by the solution (that is, dth

0:851
’ 2:35SR).

Fig. 12. Example of arbitrarily connected topology of 30 nodes (and corresponding

outcome with our algorithm).

2 An interactive demo. of the algorithm is available at: <http://jbotsim.sf.net/

examples/>

A. Casteigts et al. / Computer Communications 35 (2012) 1038–1046 1043

Author's personal copy

5.3. Case A

In Case A, nodes are released as a (random) high-density con-

glomerate. The purpose here is to determine whether the combina-

tion of angular forces and spring forces behave better than spring

forces alone in this context (where the initial topology is already

biconnected). Put differently, we answer the question of whether

the ‘angular component’ of our algorithm should be preferably en-

abled or disabled in this context. The test involved 40 robots ran-

domly distributed within a very small area (of size C2
R). For each

so-generated topology, we ran the algorithm with and without

angular forces, and measured the biconnectivity, coverage, diame-

ter, and quantity of movements made at the end of the execution.

The results, averaged over 200 simulations (a different topology for

each), are shown in Fig. 13. Note that the diameter and the cover-

age (Fig. 13) are expressed as a ratio over the optimum, that is, a

coverage of 1 corresponds to non-overlapping individual cover-

ages, and a diameter of 1 corresponds to the smallest diameter

supposedly achievable (by setting up a concentrically layered tri-

angular tessellation of inter-nodal distance dth).

Interpretation. A first observation is that the algorithm termi-

nates faster without angular forces (25% less rounds needed in

average), which makes sense knowing that angular forces start to

efficiently manifest after spring forces have approached the equi-

librium. Still, the final amount of movements remains lower when

angular forces are used, possibly due to a finer appreciation of the

moving trajectory by considering two-hops information. The main

result here is that using angular forces led to a biconnected topol-

ogy in every case, whereas spring forces alone did not. In fact, at

some point (after �100 rounds), both algorithms lost biconnectiv-

ity (due to the neighbor shielding mechanism which cancels some

attraction forces and allows border nodes to be pushed further

away). In the case of angular forces, the biconnectivity is subse-

quently restored. Regarding the coverage and diameter, both algo-

rithm perform rather comparably. Both eventually reach an

optimal coverage (although faster without angular forces), and

similar diameters (with a small advantage for angular forces).

The conclusion is that angular forces are relevant in Case A, and

particularly if biconnectivity is a important criterion.

5.4. Case B

In the case of a closed area, we mentioned that repulsion alone

could be used to inter-connect isolated arbitrarily distributed ro-

bots. For a given square area and a given communication range,

we are thus interested in studying how the density of nodes influ-

ences the way nodes connect to each other during the algorithm

execution. More precisely, we tried to evaluate the impact of our

assumption that dth 6 0:851CR, by comparing it to spring forces

for which we set dth ¼ 0:98CR (the 2% margin is to prevent nodes

from pushing each other out of range). The impact of walls was

implemented as follows: each node normally computes its result-

ing vector according to its neighbors. Then, if the resulting vector

points to a location closer to the wall than the desired value, it sim-

ply subtracts the difference as an orthogonal component from the

wall (as illustrated on Fig. 14), then move as per the so-obtained

vector. Note that this implementation requires that the node is

able to detect a wall from farther than the forbidden area.

We generally recommend to implement obstacles using similar

approaches, rather than using, e.g., a virtual repulsion force of infi-

nite weight – which would dilute the impact of neighboring nodes.

The experiment involved a square area roughly corresponding

to a capacity of 60 robots non-overlapping in coverage. The num-

ber of randomly deployed robots in this area was varied from 10

to 55 and we measured, for both algorithms, the number of con-

nected components obtained at the end of the execution. The re-

sults, whose average over 100 topologies for each number of

nodes is given Fig. 15, show that significantly more nodes are re-

quired to connect when angular forces are used (here, around

23% more). As a conclusion, we advise to dismiss the use of angular

forces in Case B.

5.5. Case C - Comparison with the algorithm from [7]

The Case C corresponds to initial topologies that are arbitrarily

distributed but connected. We know since [5] that the probability

of connectedness of a set of nodes distributed at random (uni-

formly) exhibits a sharp transition from 0 to 1 around a given den-

sity threshold. Randomly connected topologies can thus

correspond to practical situations in which robots are for example

thrown over a given area in a sufficient number. We compared here

our algorithm to the one from [7] (subsequently referred to as

DLNS), which is the only known competitor in Case C.

Fig. 13. Combination of spring and angular forces vs. spring forces alone.

Fig. 14. Implementation of the walls. The dashed line represents the minimal distance

from the wall.

1044 A. Casteigts et al. / Computer Communications 35 (2012) 1038–1046

Author's personal copy

We used the results from [5] to generate topologies that are

connected, but still far from being biconnected. This was done by

using the probability equation of the minimum degree given in

that paper (transcripted on Eq. 5 below), which converges asymp-

totically (as n grows) to the same probability as the k-connectivity

[16].

Pðdmin P kÞ ¼ 1�
Xk�1

i¼0

ðqpC2
RÞ

i

i!
� e�qpC2R

 !n

ð5Þ

In this equation, n is the number of nodes, and q is the density.

In order to generate connected topologies that are far from being

biconnected, we set empirically the density q so as to observe
PðdminP1Þ

PðdminP2Þ
’ 100, then among the topologies generated using this

density, we kept only those being indeed connected, and not

biconnected.

An example of such topology is depicted on Fig. 12. The behav-

ior of both algorithms was compared upon the four metrics. The

averaged results are given on Fig. 16 (for connectivity and bicon-

nectivity) and Fig. 17 (for coverage, diameter, and movements).

Interpretation. First of all, let us stress that our algorithm never

disconnects the network. Biconnectivity is successfully achieved

in more than 90% of the cases (more than 95% for less than 100

nodes). DLNS, on the other hand, biconnects in approximately

50% of the cases, and sometimes disconnects the network. The re-

sults concerning the connectivity and biconnectivity are thus clear-

cut in the advantage of angular forces.

Regarding the other metrics, DLNS has a neat advantage for

movements, and is more scalable in this respect, since the average

movements per robot with our algorithm grows regularly with the

number of nodes whereas is becomes asymptotically constant with

DNLS. The same trend was observed for the number of rounds be-

fore stabilization, which was about twice higher for 200 nodes (in

the order of 2000 rounds) than for 20 nodes (� 1000 rounds) in our

case, whereas the number of rounds used in average by DLNS re-

mained independent from the number of nodes (60 rounds in aver-

age). The very high number of round of our solution is a common

trait among virtual forces based algorithms, in which nodes per-

form small and incremental movements. This may be seen or not

as a problem, depending on whether the energy consumed by bea-

cons is neglected in comparison to physical movements – these as-

pects are beyond the scope of the paper.

Finally, the coverage offered by our solution is higher by 60% (as

already discussed, the coverage with virtual forces is in fact opti-

mum); and the resulting diameter is smaller by �8% for our

solution.

5.6. Case C - Independent benchmark

In this last set of experimentation, we study our virtual force

algorithm further in the Case C (arbitrarily connected topologies).

The purpose is to study the impact of the threshold epsilon on

the algorithm outcome. For each execution, we measured the four

metrics at the end of the execution. The results are shown on

Fig. 18, using a logarithmic scale for epsilon. Note that all the met-

rics are here given as a ratio over their optima, including for the

movement metric: we compared here the overall (that is, collective

sum of) movements performed to the smallest amount of move-

ments that could have generated the same topological outcome.

This is done as follows: for a given initial topology Ti and a final

topology Tf , we shift Tf so as to align its barycenter with that of

Ti, then compute the minimum weighted bipartite matching be-

tween both topologies, using the heuristic from [10] with edge

lengths as the weights. The so-obtained sum of weights is consid-

ered as the optimal amount of movements.

Interpretation. The parameter epsilon has a tremendous impact

on the outcome. A small value clearly benefits biconnectivity at

the expense of more movements, and reciprocally. Besides, cover-

age and diameters are both better for smaller values, although they

do not degrade rapidly with the growth of epsilon. The conclusion

is that epsilon can be used to leverage the trade-off between bicon-

nectivity and movements. A more detailed expression of this trade-

off, e.g. as a balance equation between the four metrics, is planned

for future work.

Fig. 15. Number of nodes required to connect in a closed area (Case B).

Fig. 16. Average connectivity and biconnectivity at the end of the execution (in

function of the number of nodes).

Fig. 17. Average coverage, diameter, and movements in function of the number of

nodes (when biconnectivity is successfully achieved).

A. Casteigts et al. / Computer Communications 35 (2012) 1038–1046 1045

Author's personal copy

6. Concluding remarks

The use of virtual forces in general, and spring forces in partic-

ular, to self-deploy swarms of autonomous robots has been advo-

cated the past few years for their elegance and good properties.

Beyond being purely localized, virtual forces allow to maximize

the coverage using repulsion, while maintaining the connectivity

using attraction. In this paper we investigated the joint use of such

forces with a new kind of forces called angular forces, which have

the effect of contracting large angles formed by two consecutive

neighbors at a same node. These forces have the global effect of

biconnecting the network, at the same time as reducing its diame-

ter. The paper presented a step by step thorough design of these

forces, which was mostly led by physical constraints that we iden-

tified and carefully discussed. Besides these contributions, we

introduced more general design aspects, such as the clear separa-

tion between the weight of a force and its magnitude, as well as

the technique of merging multiple forces by means of a weighted

average, rather than summing. These approaches eliminates two

systematic sources of oscillation in the nodes movements.

The benefits of adding angular forces to spring forceswere tested

in three different contexts, namely (i) robots released from the same

place, (ii) robots distributed at randomwithin a close area (possibly

disconnected), and (iii) robots distributed at random, but connected,

in an open area. Simulation results showed that the use of angular

forces was not pertinent in case (ii), whereas it was bringing sub-

stantial benefits in cases (i). A related question of interest iswhether

enabling or disabling angular forces could be decided adaptively by

the robots themselves, or if this shouldbe set a priori (by anticipating

the context of use). Regarding the case (iii), which was the main

motivation of this work, we compared the solution to the only

known distributed (i.e., non centralized) competitor. Where that

algorithm was able to achieve biconnectivity in approximately

50% of the cases, ours did it in more than 90% of the cases up to

200 nodes (and 95% for less than 100 nodes).

Another aspect that simulations revealed about the algorithm is

the fact that one specific parameter – epsilon, the threshold below

which a robot do not move at all – could be highly instrumental in

balancing the trade-off between the quantity of movements

performed, and the ratio of biconnectivity achieved (and at a lesser

extent the coverage and the diameter obtained). It would be inter-

esting to characterize this trade-off further in a future work, possi-

bly providing an equation that makes it possible to balance the

four metrics at once and thus allowing the algorithm to adapt

easily to several contexts and requirements.

Acknowledgments

This work was partially supported by NSERC CRDPJ 386874-09

(Reliable and secure QoS routing and transport protocols for mo-

bile ad hoc networks), NSERC STPSC 356913-2007 (Maintaining

fault-tolerant networks of robots for supporting wireless sensor

networks), by grant Innovative electronic components and systems

based on inorganic and organic technologies embedded in con-

sumer goods and products, TR32016, Serbian Ministry of Science

and Education, by the French DGCIS (Direction Générale de la

Compétitivité, de l’Industrie et des Services), and by the ITEA 2

Smart Urban Spaces project consortium.

References

[1] K. Akkaya, I. Guneydas, A. Bicak, Autonomous actor positioning in wireless

sensor and actor networks using stable-matching, Int. J. Parallel Emergent
Distrib. Syst. 25 (6) (2010) 439–464.

[2] K. Akkaya, M. Younis, C2AP: Coverage-aware and connectivity-constrained
actor positioning in wireless sensor and actor networks, in: IEEE International

Performance, Computing, and Communications Conference (IPCCC’07), New

Orleans, Louisiana, (2007) 281–288.
[3] Ronald C. Arkin, Motor schema–based mobile robot navigation, Int. J. Robot.

Res. 8 (4) (1989) 92–112.
[4] P. Basu, J. Redi, Movement control algorithms for realization of fault-tolerant

ad hoc robot networks, IEEE Network 18 (4) (2004) 36–44.
[5] C. Bettstetter, On the minimum node degree and connectivity of a wireless

multihop network, in: MobiHoc ’02: Proceedings of the 3rd ACM International

Symposium on Mobile AdHoc Networking and Computing, ACM, New York,
NY, USA, (2002) 80–91.

[6] A. Casteigts, The JBotSim Library, CoRR, abs/1001.1435, (2010).
[7] S. Das, H. Liu, A. Nayak, I. Stojmenovic, A localized algorithm for bi-

connectivity of connected mobile robots, Telecommun. Syst. 40 (2009) 129–

140.
[8] M. Garetto, M. Gribaudo, C.-F. Chiasserini, E. Leonardi, A distributed sensor

relocation scheme for environmental control, IEEE Intl. Conf. on Mobile Adhoc
and Sensor Systems (MASS’07), (2007) 1–10.

[9] A. Howard, M. Mataric, G. Sukhatme, Mobile sensor network deployment using

potential fields: a distributed, scalable solution to the area coverage problem,
in: 6th International Symposium on Distributed Autonomous Robotics

Systems (DARS’02), Fukuoka, Japan, June 2002.
[10] Harold W. Kuhn, The hungarian method for the assignment problem, Nav. Res.

Logist. Q. 2 (1955) 83–97.
[11] G. Lee, N.Y. Chong, A geometric approach to deploying robot swarms, Ann.

Math. Artif. Intell. 52 (2–4) (2008) 257–280.

[12] M. Li, J. Harris, M. Chen, S. Mao, Y. Xiao, W. Read, B. Prabhakaran, Architecture
and protocol design for a pervasive robot swarm communication networks,

Wireless Comm. and Mobile Comp. (2009).
[13] X. Li, R. Falcon, A. Nayak, I. Stojmenovic, Servicing Wireless Sensor Networks

by Mobile Robots, IEEE Commun. Mag. (2011), in press.

[14] X. Li, H. Frey, N. Santoro, I. Stojmenovic, Focused Coverage by Mobile Sensor
Networks, IEEE International Conference on Mobile Adhoc and Sensor Systems

(MASS’09), Oct. 2009.
[15] H. Liu, X. Chu, Y.-W. Leung, R. Du, Simple movement control algorithm for bi-

connectivity in robotic sensor networks, IEEE J. Sel. Area Commun. 28 (7)
(2010) 994–1005.

[16] M.D. Penrose, On k-connectivity for a geometric random graph, Random

Struct. Algorithms 15 (2) (1999) 145–164.
[17] F.E. Schneider, D. Wildermuth, H.L. Wolf, Motion coordination in formations of

multiple mobile robots using a potential field approach, Distrib. Auton. Robot.
Syst. 4 (2000) 305–314.

[18] G. Tan, S.A. Jarvis, A.-M. Kermarrec, Connectivity-guaranteed and obstacle-

adaptive deployment schemes for mobile sensor networks, in: 28th
International Conference on Distributed Computing Systems (ICDCS’08), June

2008, 429–437.
[19] Z. Yan, Y. Chang, H. Jiang, Z. Shen, Fault-tolerance in wireless ad hoc networks:

Bi-connectivity through movement of removable nodes, Wireless Commun.
Mobile Comp. in press.

[20] S. Yoon, O. Soysal, M. Demirbas, C. Qiao, Coordinated locomotion and

monitoring using autonomous mobile sensor nodes, IEEE Trans. Parallel
Distrib. Syst. 22 (10) (2011).

[21] S.G. Wang, X.F. Mao, S.J. Tang, X.Y. Li, J.Z. Zhao, G.J. Dai, On movement-assisted
connectivity restoration in wireless sensor and actor networks, IEEE Trans.

Parallel Distrib. Syst. 22 (4) (2011) 687–694.

[22] M. Xi, Y. Qi, K. Wu, J. Zhao, M. Li, Using potential to guide mobile nodes in
wireless sensor networks, Adhoc Sensor Wireless Networks 12 (3–4) (2011)

229–251.
[23] Y. Zou, K. Chakrabarty, Sensor deployment and target localization based on

virtual forces, in: IEEE 22nd Annual Joint Conference of the IEEE Computer and
Communications Societies (INFOCOM’03), March 2003, vol. 2, 1293–1303.

Fig. 18. Average biconnectivity, coverage, diameter, and movements over their

optima, in function of the threshold epsilon (for 50 nodes).

1046 A. Casteigts et al. / Computer Communications 35 (2012) 1038–1046

