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Introduction Purpose Applications Conclusion

Distributed Algorithms

Level of abstraction

Local interactions only.

Abstraction of the communication model.

Graph Relabellings [Litovsky, Métivier, Sopena 1999]

State of vertices and edges represented by labels.

Distributed operations are transition patterns (relabelling rules) on these
labels (preconditions, actions).

Example (spanning tree with pre-selected root)

initial states: I (the root), N (all others), 0 (edges)

relabelling rule:
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Introduction Purpose Applications Conclusion

Characterization

Two approaches

Characterizing what can be done in a given context

e.g. what can be done in a complete (or arborescent) interaction
graphs

Characterizing in what context a given thing can be done

what properties a given algorithm requires on the graph dynamics?
(i.e., on the topological evolution)
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Intuitive example

Propagating an information

initial states: I for the initial emitter, N for all the other nodes

relabelling rule :
I N I I

example scenario:
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Intuitive example

Propagating an information

initial states: I for the initial emitter, N for all the other nodes

relabelling rule :
I N I I

example scenario:
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Formalism to represent dynamic topology

Evolving graphs [Ferreira 2004]

period t0 → t1

period t1 → t2 period t2 → t3 period t3 → t4
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ST = t0, t1, t2, t3, t4

SG = G0, G1, G2, G3

G =
S

Gi∈SG
=

} G = (G ,SG ,ST)

is the corresponding Evolving Graph.

↓ graphical representation ↓
a

b

c

d

e

1, 2

0

2,
3

0

0,
1

0, 1, 2

2, 3 Ja,e = {(a, b, 1), (b, c, 1), (c, d , 1), (d , e, 2)}
is a journey from a to e.

Ja,e = {(a, c, 0), (c, e, 2)} is a strict
journey from a to e.

→ possibility to express topological properties, and to define related
concepts.

e.g. Journey (path over time).
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e.g. Journey (path over time).
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Introduction Purpose Applications Conclusion

Combination

Relabellings over Evolving Graphs

time

start

t0z }| {

R[t0,t1[

G0

Evt1

t1z }| {

R[t1,t2[

G1

Evt2

t2

Evtlast−1

tlast−1z }| {

R[tlast−1,tlast [

Gtlast−1

end

tlast

. . .

. . .

An execution is an alternated sequence of relabellings and topological events:
X =RA[tlast−1,tlast [

◦Eventtlast−1
◦ ..◦Eventti

◦RA[ti−1,ti [
◦ ..◦Eventt1

◦RA[t0,t1[
(G0)

We note XA/G the set of all possible execution sequences of an algorithm A
over an evolving graph G

Topology-related necessary condition: ¬CN (G) =⇒ @X ∈ XA/G | success.
Topology-related sufficient condition: CS(G) =⇒ ∀X in XA/G , success.

→ possibility to prove formally that a given property is necessary, or sufficient.
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Introduction Purpose Applications Conclusion

Classes of evolving graphs

Propagation algorithm conditions

In order to inform all the nodes, it is:

necessary that a journey exists from the emitter to every other
node (CN ).

sufficient that a strict journey exists from the emitter to every
other node (CS).

Resulting classes of evolving graphs (or dynamic networks)

→ F1: graphs where CN is verified for at least one node (1-J -∗).

→ F3: same as F1 but with strict journeys (1-Jstrict-∗).

→ F2: graphs where CS is verified for all nodes (∗-J -∗).

→ F4: same as F2 but with strict journeys (∗-Jstrict-∗).
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Introduction Purpose Applications Conclusion

Classes of evolving graphs (2)

Enumeration algorithm with a pre-selected counter

initial states: (C , 1) for the counter, N for all other vertices.

relabelling rule:
C , i N C , i + 1 F

(N means non-counted, F means counted)

CN , CS and resulting classes

CN = CS : the counter will share an edge with every other
node (at possibly various times and durations).

→ F5: graphs where the condition holds for at least one vertex
(also, failure whatever the counter if outside of this class).

→ F6: graphs where the condition is verified for all nodes
(success guaranteed whatever the counter. Also, not being in
this class means that at least one node would fail as counter)
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Introduction Purpose Applications Conclusion

Classes of evolving graphs (3)

Decentralized counting algorithm

initial states: (C , 1) for all vertices.

relabelling rule:
C , i C , j C , i + j F

CN and resulting class

CN : at least one node can be reached by all the others by a
journey.

→ F7: idem.
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Introduction Purpose Applications Conclusion

Classification of dynamic networks

F6 F4

F5

F2

F3

F7

F1

∗ − ∗ ∗-Jstrict -∗

1− ∗ 1-Jstrict -∗

∗-J -∗ ∗-J -1

1-J -∗

∀ =⇒ ∃ ∀ =⇒ ∃

∀ =⇒ ∃

∀ =⇒ ∃

− =⇒ Jstrict

− =⇒ Jstrict

Jstrict =⇒ J

Jstrict =⇒ J
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Introduction Purpose Applications Conclusion

Algorithms Comparison

1-Jstrict-∗

F6 F4

F5

F2

F3

F7

F1

CN (countingv1) CN (countingv2)CS(countingv1)

It exists topologies where countingv1 necessarily fails, while countingv2

might have some chances of success.

But if we know that the condition of countingv1 is matched, then better
using this one.

The choice depends on the expected properties of the target context.

It would be interesting to now what properties the target context is likely
to match.
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Introduction Purpose Applications Conclusion

Automated Verification

Mobility Model Network Traces

Real Network Network Traces

Evolving Graph

Instances

Algorithm Conditions
Evolving Graph

Classes

Generation

Sensing

Analysis

Inclusion Checking

CN (or CS) is matched in a all/none/some cases? =⇒ decision.
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Thank you

Questions?
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