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el of abstraction

m Local interactions only.

m Abstraction of the communication model.
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Distributed Algorithmsr

Level of abstraction

m Local interactions only.

m Abstraction of the communication model.

Graph Relabellings [Litovsky, Métivier, Sopena 1999]

m State of vertices and edges represented by labels.

m Distributed operations are transition patterns (relabelling rules) on these
labels (preconditions, actions).

Example (spanning tree with pre-selected root)

s 1| |
m initial states: | (the root), N (all others), O (edges) ¢
. I o N I 1 g L L
m relabelling rule: ¢ —— o—mo
| 1] 1 |
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Characterization

Two approaches

m Characterizing what can be done in a given context

m e.g. what can be done in a complete (or arborescent) interaction

graphs . .
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m Characterizing in what context a given thing can be done

B what properties a given algorithm requires on the graph dynamics?
(i.e., on the topological evolution)
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Intuitive example
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m initial states: | for the initial emitter, N for all the other nodes

1 N | |
m relabelling rule : —eo ——— o—o

A.Casteigts, S.Chaumette, A.Ferreira

ological Assumptions of Dist. Algo. ic Networks



Introduction
0@

Intuitive example

Propagating an information

m initial states: | for the initial emitter, N for all the other nodes

) ! N I |
m relabelling rule : —eo ——— o—o
m example scenario:
b
e
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Intuitive example

Propagating an information

m initial states: | for the initial emitter, N for all the other nodes

1 N | |
m relabelling rule : —eo ——— o—o

m example scenario:

[t1, &2
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Formalism to represent dynamic topology

Evolving graphs [Ferreira 2004]

period to — t1
a e c o€
b d
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Evolving graphs [Ferreira 2004]

period to — t1 period t1 — b period th — t3 period t3 — 1ty
a e c e e a \/(_.-\ (<] a \ c 7 e ae (;-7 e
b d b d b d be d
Go G G Gs

S'JT = to, t1, b2, t3, t4
S¢ = Go, Gi, G2, G3

G= UG,-GSG =
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Evolving graphs [Ferreira 2004]
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Formalism to represent dynamic topology

Evolving graphs [Ferreira 2004]

period to — t1 period t1 — b period th — t3 period t3 — 1ty
a e c L) a \/(_.-\ ° e a \ c 7 e ae (;-7 e
b d b d b d be d
Go G G Gs
St = to, t1, b2, t3, ta
SeENGRGHEE } G = (G,586.51)
G= UG,-GSG = is the corresponding Evolving Graph.
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ST = t07 tla t27 t37 ts
F=bh G & } G =(6,56,51)
¢ =Ugesc = is the corresponding Evolving Graph.

| graphical representation |

— possibility to express topological properties, and to define related
concepts.

A.Casteigts, S.Chaumette, A.Ferreira

acterizing Topological Assumptions of Dist. Algo. ic Networks



Purpose Appli Conclusion
PYe)

Formalism to represent dynamic topology

Evolving graphs [Ferreira 2004]

ST = t07 tla t27 t37 ts
F=bh G & } G =(6,56,51)
¢ =Ugesc = is the corresponding Evolving Graph.

| graphical representation |

— possibility to express topological properties, and to define related
concepts.

e.g. Journey (path over time).

A.Casteigts, S.Chaumette, A.Ferreira




Purpose
PYe)

Formalism to represent dynamic topology

Evolving graphs [Ferreira 2004]

ST = t07 tla t27 t37 ts
F=bh G & } G =(6,56,51)
¢ =Ugesc = is the corresponding Evolving Graph.

| graphical representation |

Jae = {(a, b,1), (b, c,1),(c,d,1),(d, e, 2)}

is a journey from a to e.

— possibility to express topological properties, and to define related
concepts.

e.g. Journey (path over time).
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Formalism to represent dynamic topology

Evolving graphs [Ferreira 2004]

ST = t07 tla t27 t37 ts
F=bh G & } G =(6,56,51)
¢ =Ugesc = is the corresponding Evolving Graph.

| graphical representation |

Jae = {(a,b,1), (b, c,1),(c,d,1),(d, e, 2)}
is a journey from a to e.

Jaoe = {(a,¢,0),(c,e,2)} is a strict
journey from a to e.

— possibility to express topological properties, and to define related
concepts.

e.g. Journey (path over time).
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elabellings over Evolving Graphs

to Go t1 G t 000 tlast—1 t/ tiast
1 last —1
time | I
Rito,tal Ritg, o] Rttt -1 tiast|
start Evy Ewvi, e Evtpe_, end

An execution is an alternated sequence of relabellings and topological events:

X oEvent,  o.oEvent, oRa, . o..0Event, oRuy 41(Go)
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to G t1 G t cee tiast—1 t/ tiast
0 1 last —1
time | | I
Rito,ul Ritg, o] Rttt -1 tiast|
start Evy, Ewvi, e Eviy s end

An execution is an alternated sequence of relabellings and topological events:

X oEvent,  o.oEvent, oRa, . o.o0Event, oR4, . (Go)

TN A 1t Sl

We note X 4/g the set of all possible execution sequences of an algorithm A
over an evolving graph G
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Relabellings over Evolving Graphs

to G t1 G tr tiast—1 . tiast
0 1 last —1
time | | I
Rito,ul Rt o Rttt -1 tiast|
start Evy, Ewvi, e Eviy s end

An execution is an alternated sequence of relabellings and topological events:
X:R'A[tlast—l’tlast[ °© Eventflasr—l Dao® Eventfi °© RA[W—LI,'[ ©ao@ Eventtl °© RA[ (GO)

We note X 4/g the set of all possible execution sequences of an algorithm A
over an evolving graph G

to,ty [

Topology-related necessary condition: —Cn'(G) = X € X4 /g | success.
Topology-related sufficient condition: Cs(G) = VX in X4,g, success.
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Combination

Relabellings over Evolving Graphs

to G t1 G tr tiast—1 . tiast
0 1 last —1
time | | I
Rito,ul Rt o Rttt -1 tiast|
start Evy, Ewvi, e Eviy s end

An execution is an alternated sequence of relabellings and topological events:
X:R'A[tlast—l’tlast[ °© Eventflasr—l Dao® Eventfi °© RA[W—LI,'[ ©ao@ Eventtl °© RA[ (GO)

We note X 4/g the set of all possible execution sequences of an algorithm A
over an evolving graph G

to,11[

Topology-related necessary condition: —Cn'(G) = X € X4 /g | success.
Topology-related sufficient condition: Cs(G) = VX in X4,g, success.

— possibility to prove formally that a given property is necessary, or sufficient.
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Classes of evolving graphs

Propagation algorithm conditions

In order to inform all the nodes, it is:

m necessary that a journey exists from the emitter to every other
node (Cyr).
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Propagation algorithm conditions

In order to inform all the nodes, it is:

m necessary that a journey exists from the emitter to every other
node (Cyr).

m sufficient that a strict journey exists from the emitter to every
other node (Cs).

Resulting classes of evolving graphs (or dynamic networks)

— F1: graphs where Cys is verified for at least one node (1-7-%).

A.Casteigts, S.Chaumette, A.Ferreira

Characterizing Topological Assumptions of Dist. Algo. mic Networks



Classes of evolving graphs

Propagation algorithm conditions

In order to inform all the nodes, it is:

m necessary that a journey exists from the emitter to every other
node (Cyr).

m sufficient that a strict journey exists from the emitter to every
other node (Cs).

Resulting classes of evolving graphs (or dynamic networks)

— F1: graphs where Cys is verified for at least one node (1-7-%).
— JF3: same as Fi but with strict journeys (1-Tstrict-*)-
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Classes of evolving graphs

Propagation algorithm conditions

In order to inform all the nodes, it is:

m necessary that a journey exists from the emitter to every other
node (Cyr).

m sufficient that a strict journey exists from the emitter to every
other node (Cs).

Resulting classes of evolving graphs (or dynamic networks)

— F1: graphs where Cys is verified for at least one node (1-7-%).
— JF3: same as Fi but with strict journeys (1-Tstrict-*)-

— F»: graphs where Cs is verified for all nodes (*-7-x).
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Classes of evolving graphs

Propagation algorithm conditions

In order to inform all the nodes, it is:

m necessary that a journey exists from the emitter to every other
node (Cyr).

m sufficient that a strict journey exists from the emitter to every
other node (Cs).

Resulting classes of evolving graphs (or dynamic networks)

— F1: graphs where Cys is verified for at least one node (1-7-%).
— JF3: same as Fi but with strict journeys (1-Tstrict-*)-
— JFo: graphs where Cs is verified for all nodes (x-7-%).

— Fa: same as F, but with strict journeys (x-Tstrict-*)-
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Classes of evolving graphs (2

Enumeration algorithm with a p lected counter

m initial states: (C,1) for the counter, N for all other vertices.

. C,i N C,i+1 F
m relabelling rule: o—e —— o—o

m (N means non-counted, F means counted)
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Classes of evolving graphs (2

Enumeration algorithm with a pre-selected counter

m initial states: (C,1) for the counter, N for all other vertices.

. C,i N C,i+1 F
m relabelling rule: o—e —— o—o

m (N means non-counted, F means counted)

Cnr, Cs and resulting classes

m Cn = Cs: the counter will share an edge with every other
node (at possibly various times and durations).
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Enumeration algorithm with a pre-selected counter

m initial states: (C,1) for the counter, N for all other vertices.
. C,i N Ci+1 F
m relabelling rule: o—e —— o—o

m (N means non-counted, F means counted)

Cnr, Cs and resulting classes

m Cn = Cs: the counter will share an edge with every other
node (at possibly various times and durations).

— Fs: graphs where the condition holds for at least one vertex
(also, failure whatever the counter if outside of this class).
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Classes of evolving graphs (2

Enumeration algorithm with a pre-selected counter

m initial states: (C,1) for the counter, N for all other vertices.

. C,i N C,i+1 F
m relabelling rule: o—e —— o—o

m (N means non-counted, F means counted)

Cnr, Cs and resulting classes

m Cn = Cs: the counter will share an edge with every other
node (at possibly various times and durations).
— Fs: graphs where the condition holds for at least one vertex
(also, failure whatever the counter if outside of this class).
— Fe: graphs where the condition is verified for all nodes
(success guaranteed whatever the counter. Also, not being in
this class means that at least one node would fail as counter)
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Applications
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Classes of evolving graphs (3

Decentralized counting algorithm

m initial states: (C, 1) for all vertices.

. C,i C,j C.i+j F
m relabelling rule: o— —— o—o
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Applications
L ]

Classes of evolving graphs (3

Decentralized counting algorithm

m initial states: (C, 1) for all vertices.

. C,i C,j C.i+j F
m relabelling rule: o— —— o—o

Car and resulting class

m Cpr: at least one node can be reached by all the others by a
journey.
— F7: idem.
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Applications
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Classification of dynamic networks

1—x 1-Tstrict=*
Fs F3
Fe Fa Fo
* — ok #=Tstrict=* *=J =%

A.Casteigts, S.Chaumette, A.Ferreira

ological Assumptions of Dist. Algo. ic Networks

1-7-%
F1

*-7-1



Applications
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Classification of dynamic networks

1—x 1-Tstrict=* 1-J-x
Fs F3 Fi
vV = 3 vV = 3 VvV = 3
7s s ==
* — ok #=Tstrict=* *=J =% *=J-1
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Classification of dynamic networks

1 — % = Jsmct 1- jstr/ct' 1-J-x
Fi

s

B—
koK - Jsma *- jstnct' w= % *-J-1
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Classification of dynamic networks

1 o 1-\75t’,.Ct-* jStIV.Ct g j 1_ -*
Fs F3 Fi
Fo Fi 7 7

2
e
* — % *'jstrict'* Tstrict T O *-j-].
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Classification of dynamic networks

1—x 1-Tstrict=* 1-J-x

Fs Fs A

Fe Fa F2 F7
* — ok #=Tstrict=* *=J =% *=J-1
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Algorithms Comparison
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Applications

Algorithms Comparison

Fs F3 F1
Fe Fa F2 F7
TCN(countingvl) TCN(countingvz)
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Applications

Algorithms Comparison

Fs F3 F1
Fe Fa F2 F7
TCN(countingvl) TCN(countingvz)

m |t exists topologies where counting,1 necessarily fails, while counting,»
might have some chances of success.
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Algorithms Comparison
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T Cs(counting,1)

m |t exists topologies where counting,1 necessarily fails, while counting,»
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Applications

Algorithms Comparison

Fe Fa P Fr

TCS(Countingvl)
m |t exists topologies where counting,1 necessarily fails, while counting,»
might have some chances of success.

m But if we know that the condition of counting,: is matched, then better
using this one.
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Applications

Algorithms Comparison

Fe Fa P Fr

m |t exists topologies where counting,1 necessarily fails, while counting,»
might have some chances of success.

m But if we know that the condition of counting,: is matched, then better
using this one.

m The choice depends on the expected properties of the target context.
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Applications

Algorithms Comparison

Fe Fa P Fr

m |t exists topologies where counting,1 necessarily fails, while counting,»
might have some chances of success.

m But if we know that the condition of counting,: is matched, then better
using this one.

m The choice depends on the expected properties of the target context.

m It would be interesting to now what properties the target context is likely
to match.
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Automated Verification

Mobility Model Network Traces
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obility Mode Generation Network Traces ~ Evolving Graph
Real Network Network Traces " Instances
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Automated Verification

Algorithm Conditions ————

obility Mode Generation Network Traces ~ Evolving Graph
Real Network Network Traces " Instances
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Applications
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Automated Verification

Algorithm Conditions —— Evolving Graph

Classes
Mobility Model Network Traces ~ Evolving Graph
Real Network Network Traces " Instances
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Automated Verification

Algorithm Conditions ——— E\(OIVmg Graph \
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- Inclusion Checking
Mobility Model Network Traces ~~ Evolving Graph /’

Real Network Network Traces " Instances
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Applications
e0

Automated Verification

Algorithm Conditions ——— E\(OIVmg Graph \
asses
- Inclusion Checking
Mobility Model Network Traces ~~ Evolving Graph /’

Real Network Network Traces " Instances

Cnr (or Cs) is matched in a all/none/some cases? = decision.
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Applications
o] ]

Automated Verification

(Underlying graph) (Transitive closure of
journeys)
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o] ]

Automated Verification

Hstrict
(Underlying graph) (Transitive closure of  (Transitive closure of
journeys) strict journeys)
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Automated Verification

Applications
o] ]

G H Hstrict
G =(G,S¢,Sr) (Underlying graph) (Transitive closure of  (Transitive closure of
journeys) strict journeys)

GerR (1-T-x%)
GeFR (#-T-%)
g S ]:3 (1‘jstrict‘*)
GeFy (*‘jstrr'ct‘*)
GeFs (1 —%)
G € Fe (% — %)
G e Fr (%-T-1)

IRRRSNE
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H contains an out-dominating set of size 1.

H is a complete graph.

Hstrice contains an out-dominating set of size 1.
Hstrict is a complete graph.

G contains a dominating set of size 1.

G is a complete graph.

H contains an in-dominating set of size 1.
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Conclusion

m Undirected graphs, bandwidth limitations, latency.
(not restricted by the models)
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Conclusion

m Undirected graphs, bandwidth limitations, latency.
(not restricted by the models)

m Topology-related conditions.

Sufficient Condition

Necessary Condition
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(not restricted by the models)

m Topology-related conditions.

Necessary Condition
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Conclusion

m Undirected graphs, bandwidth limitations, latency.
(not restricted by the models)

m Topology-related conditions.

? Intermediate condition?

Necessary Condition
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Limitations

m Undirected graphs, bandwidth limitations, latency.
(not restricted by the models)

m Topology-related conditions.

m Scale to more complex algorithms?
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m Undirected graphs, bandwidth limitations, latency.
(not restricted by the models)

m Topology-related conditions.

m Scale to more complex algorithms?

m new algorithms to be characterized
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Conclusion

m Undirected graphs, bandwidth limitations, latency.
(not restricted by the models)

m Topology-related conditions.

m Scale to more complex algorithms?

m new algorithms to be characterized

m new resulting classes of evolving graphs
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Conclusion

m Undirected graphs, bandwidth limitations, latency.
(not restricted by the models)

m Topology-related conditions.

m Scale to more complex algorithms?

m new algorithms to be characterized

m new resulting classes of evolving graphs

m some insights about the networking impact of mobility
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Conclusion

Questions?
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