
Distributed Maintenance of Anytime Available
Spanning Trees in Dynamic Networks

A. Casteigts, S. Chaumette, F. Guinand, Y. Pigné
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Distributed Computing

Collaboration of distinct entities to perform a common task.

No centralization available. Direct interaction only.

(Think globally, act locally)
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Examples of distributed problems

Leader election Distinguishing exactly one node among all.

→

Spanning tree Selecting a cycle-free set of edges that interconnects all nodes.

→
Broadcast Propagating a piece of information from one node to all others.

→
Counting Determining how many participants there are.

→ 9

Consensus, naming, routing, exploration, ...
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Dynamic Networks
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Dynamic networks ?

In fact, highly dynamic networks.

Ex :

How changes are perceived ?

- Faults and Failures ?

- Nature of the system. Change is normal.

- Network is partitioned most of the time.

Example of scenario
(say, exploration by mobile robots)
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A. Casteigts, S. Chaumette, F. Guinand, Y. Pigné Distributed Maintenance of Spanning Trees in Dynamic Networks 5 / 12



Dynamic networks ?

In fact, highly dynamic networks.

Ex :

How changes are perceived ?

- Faults and Failures ?

- Nature of the system. Change is normal.

- Network is partitioned most of the time.

Example of scenario
(say, exploration by mobile robots)
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A. Casteigts, S. Chaumette, F. Guinand, Y. Pigné Distributed Maintenance of Spanning Trees in Dynamic Networks 5 / 12



Dynamic networks ?

In fact, highly dynamic networks.

Ex :

How changes are perceived ?

- Faults and Failures ?

- Nature of the system. Change is normal.

- Network is partitioned most of the time.

Example of scenario
(say, exploration by mobile robots)
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Distributed problems in highly dynamic networks ?

Ex : ELECTION, SPANNINGTREE

How to define them ?

→ Two options :

1. Global solution, which holds over time
(computed once)

2. Local solutions, which hold anytime
(constantly maintained)

→ Maintenance problem.

What assumptions ?

No stability period

No restriction on the rate of events

No unique identifiers (only local orientation)

This work : what can we still expect in such a setting ?

} No recomputation from scratch

} Decision should be purely local!
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A. Casteigts, S. Chaumette, F. Guinand, Y. Pigné Distributed Maintenance of Spanning Trees in Dynamic Networks 6 / 12



Distributed problems in highly dynamic networks ?

Ex : ELECTION, SPANNINGTREE

How to define them ?

→ Two options :

1. Global solution, which holds over time
(computed once)

2. Local solutions, which hold anytime
(constantly maintained)

→ Maintenance problem.

What assumptions ?

No stability period

No restriction on the rate of events

No unique identifiers (only local orientation)

This work : what can we still expect in such a setting ?

} No recomputation from scratch

} Decision should be purely local!
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Computational model

Coarse-grain model (Graph relabeling systems (Litovsky et al., 1999) ;

→ Pairwise atomic interaction Population protocols (Angluin et al., 2004))

Ex : Spanning tree algorithm in a static network, with a leader initially labeled T.

T N T T

Note : Scheduling is not part of the algorithm !

→ It is, e.g., probabilistic, adversarial, or even abstracted.

Scope of the models Relations between them (Chalopin, 2006)
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A. Casteigts, S. Chaumette, F. Guinand, Y. Pigné Distributed Maintenance of Spanning Trees in Dynamic Networks 7 / 12



Computational model

Coarse-grain model (Graph relabeling systems (Litovsky et al., 1999) ;

→ Pairwise atomic interaction Population protocols (Angluin et al., 2004))

Ex : Spanning tree algorithm in a static network, with a leader initially labeled T.

T N T T

T

T N

N

N

N

Note : Scheduling is not part of the algorithm !

→ It is, e.g., probabilistic, adversarial, or even abstracted.

Scope of the models Relations between them (Chalopin, 2006)
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A. Casteigts, S. Chaumette, F. Guinand, Y. Pigné Distributed Maintenance of Spanning Trees in Dynamic Networks 7 / 12



Computational model

Coarse-grain model (Graph relabeling systems (Litovsky et al., 1999) ;

→ Pairwise atomic interaction Population protocols (Angluin et al., 2004))

Ex : Spanning tree algorithm in a static network, with a leader initially labeled T.

T N T T

T

T T

T

T

T

Note : Scheduling is not part of the algorithm !

→ It is, e.g., probabilistic, adversarial, or even abstracted.

Scope of the models Relations between them (Chalopin, 2006)
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The spanning forest algorithm

×r1 :

→

N T

r2 :

→

T T N T

r3 :

→

N T T N

initial states :

T for every node,

meaning of the states :

T : a token is on this node

N : no token is on this node

→ : relation from child to parent
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A. Casteigts, S. Chaumette, F. Guinand, Y. Pigné Distributed Maintenance of Spanning Trees in Dynamic Networks 8 / 12



The spanning forest algorithm

×r1 :

→

N T

r2 :→ T T N T

r3 :→ N T T N

initial states :

T for every node,

meaning of the states :

T : a token is on this node

N : no token is on this node

→ : relation from child to parent

N

N

T

N

N

N

T
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Each node belongs to exactly one tree

There is exactly one token per tree

There are no cycles

How about performance ?
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A. Casteigts, S. Chaumette, F. Guinand, Y. Pigné Distributed Maintenance of Spanning Trees in Dynamic Networks 9 / 12



The spanning forest algorithm

×r1 :
N T

r2 :
T T N T

r3 :
N T T N

initial states :

T for every node,

meaning of the states :

T : a token is on this node

N : no token is on this node

→ : relation from child to parent

N

T

N

N

N

N

N

Properties that hold permanently :

Each node belongs to exactly one tree

There is exactly one token per tree

There are no cycles

How about performance ?

A. Casteigts, S. Chaumette, F. Guinand, Y. Pigné Distributed Maintenance of Spanning Trees in Dynamic Networks 9 / 12



Performance analysis (mostly open)

Metric of interest ?
1. Convergence rate

(though not expected to converge)

2. Average quality
e.g. 9/6 = 1.5 there →

(NbTrees/NbConnectedComponents)

Preliminary elements (merging time between two static trees)

T1 T2

(∑
(u,v)∈Bridges(T1,T2)

P(λ(u)=T ∧ λ(v)=T)
)−1
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Perspectives on ...

... performance evaluation

Analysis
(coalescing particles in evolving graphs)

Simulations
(some are in the 2009 technical report, much more needed)

... algorithmic aspects
Finer-grain adaptation of the principle

Synchronous message passing (OK)
Semi-synchronous message passing (under study)

Optimization strategies
(e.g. from simple Tabou search to full Propp machines)
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Thank you !
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