
  

 

 

 

 

 

Deterministic algorithms in dynamic 
networks 
 
Formal models and metrics 

 

Arnaud Casteigts and Paola Flocchini 
 
 
 

 

 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
The scientific or technical validity of this Contract Report is entirely the responsibility of the Contractor and 
the contents do not necessarily have the approval or endorsement of Defence R&D Canada. 

 
 
 

Defence R&D Canada – Ottawa 
 

Contract Report 
DRDC Ottawa CR 2013-020 

April 2013 





Deterministic algorithms in dynamic networks
Formal models and metrics

Arnaud Casteigts

Paola Flocchini

University of Ottawa

Prepared by:

University of Ottawa

School of Electrical Engineering and Computer Science

800 King Edward Avenue

Ottawa, Ontario

K1N 6N5

Contract Number: W7714-115111/001/SV

Contract Scientific Authority: Matthew Kellett 613-991-4362

The scientific or technical validity of this Contract Report is entirely the responsibility of the contractor and the contents

do not necessarily have the approval or endorsement of Defence R&D Canada.

Defence R&D Canada – Ottawa
Contract Report
DRDC Ottawa CR 2013-020
April 2013



Approved by

Original signed by Jean-François Rivest

Jean-François Rivest
Cyber Operations and Signals Warfare Section

Approved for release by

Original signed by Chris McMillan

Chris McMillan
Chief Scientist, DRDC Ottawa

c© Her Majesty the Queen in Right of Canada as represented by the Minister of National
Defence, 2013
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Abstract

The number of telecommunication networks deployed in a dynamic environment is quickly
growing. This trend exists both in everyday life (e.g., smartphones, vehicles, and commercial
satellites) and in a military context (e.g., dismounted soldiers or swarms of UAVs). Un-
fortunately, few theoretical tools to date have enabled the study of dynamic networks in
a formal and rigorous way. As a result, it is hard and sometimes impossible to guarantee,
mathematically, that a given algorithm will reach its objectives once deployed in real
conditions. In this report, we identify a collection of recent theoretical tools whose purpose
is to model, describe, and leverage dynamic networks in a formal way. These tools include a
dynamic graph formalism, various computational models, and communication models for
distributed networks. We extend many graph theoretical concepts towards a dynamic variant
and show how these new variants impact the solution of classical distributed problems. The
report also presents a hierarchy of dynamic networks based on dynamic graph properties,
thereby offering a combinatorial alternative to the well-known mobility models typically
used in simulations.

Résumé

Nous assistons à une augmentation rapide du nombre de réseaux de télécommunications
utilisés en environnement dynamique. Cette tendance se voit tant dans la vie civile (no-
tamment téléphones intelligents, véhicules et satellites commerciaux) que dans le contexte
militaire (comme les soldats débarqués ou les essaims d’UAV). Cependant, peu d’outils
théoriques peuvent actuellement aider à étudier les réseaux dynamiques de façon formelle
et rigoureuse. Il est donc difficile sinon impossible de démontrer mathématiquement qu’un
algorithme particulier atteindra ses objectifs une fois déployé en situation réelle. Le présent
rapport décrit plusieurs outils théoriques récemment créés servant à modéliser et décrire
formellement les réseaux dynamiques et ainsi d’en mieux tirer parti. Parmi ces outils, on
compte un modélisateur de graphes dynamiques, divers modèles informatiques et des modèles
de communication en réseau distribué. Nous adaptons ensuite aux réseaux dynamiques
plusieurs concepts en théorie des graphes, puis nous démontrons les répercussions de
ces concepts adaptés sur la solution de problèmes distribués connus. Le présent rapport
hiérarchise aussi les réseaux dynamiques en fonction de diverses propriétés des graphes
dynamiques, et propose ainsi une solution combinatoire pouvant remplacer les modèles de
mobilité connus le plus souvent utilisés dans les simulations.
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Executive summary

Deterministic algorithms in dynamic networks: Formal models and
metrics

Arnaud Casteigts, Paola Flocchini; DRDC Ottawa CR 2013-020; Defence R&D Canada –

Ottawa; April 2013.

Background: Telecommunication networks are evolving continuously and the number of
these networks deployed in a dynamic environment is quickly growing. In everyday life we
have networked smartphones and vehicles and in a military context there are dismounted
soldiers and swarms of UAVs. Unfortunately, few theoretical tools to date have enabled the
study of dynamic networks in a formal and rigorous way. The current trend in research is to
rely instead on simulations, which necessarily are not fully understood, in order to assess
the behaviour of a given solution in a given type of network.

Results: We identify a collection of recent theoretical tools whose purpose is to model,
describe, and leverage dynamic networks in a formal way. Doing so, we reveal the potential of
these tools to guarantee, mathematically, that a given algorithm will reach its objective with
certainty. These theoretical tools include a dynamic graph formalism, various computational
models, and communication models for distributed networks. We extend a range of graph
theoretical concepts toward a dynamic variant and show how these new variants impact the
solution of classical distributed problems. This report also presents a hierarchy of dynamic
networks based on dynamic graph properties, thereby offering a combinatorial alternative to
the well-known mobility models typically used in simulations.

Significance: Having these kinds of tools is instrumental in studying the behaviour of
algorithms in dynamic networks. This fact is all the more true when the objective is to
show, mathematically, that an algorithm will or will not solve a given problem in a given
context. This particular concern is very appealing in a military context, where reliability
can be a key attribute of military systems.

Future plans: This report focuses on models and formalisms representing networks,
algorithms and related concepts. An upcoming report (Casteigts and Flocchini 2013,
CR 2012-021) deals in detail with algorithmic and analytical tools that have been developed
on top of these models and formalisms.
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Sommaire

Deterministic algorithms in dynamic networks: Formal models and
metrics

Arnaud Casteigts, Paola Flocchini ; DRDC Ottawa CR 2013-020 ; R & D pour la défense

Canada – Ottawa ; avril 2013.

Contexte : Les réseaux de télécommunication évoluent continuellement, et nous assistons
à une augmentation rapide du nombre de réseaux de télécommunications utilisés en
environnement dynamique. Dans la vie courante, nous avons maintenant des téléphones
intelligents et mme des véhicules réseautés, et, dans le contexte militaire, des soldats
débarqués et des essaims d’UAV. Cependant, peu d’outils théoriques peuvent actuellement
aider à étudier les réseaux dynamiques de façon formelle et rigoureuse. En recherche, on
tend actuellement à utiliser des simulations, obligatoirement pas comprises parfaitement,
afin d’évaluer le comportement d’une solution donnée dans un type de réseau précis.

Résultats : Le présent rapport décrit plusieurs outils théoriques récemment créés servant à
modéliser et décrire formellement les réseaux dynamiques et ainsi d’en mieux tirer parti.
Nous dégageons ainsi le potentiel qu’ont ces outils de démontrer mathématiquement qu’un
algorithme donné va atteindre avec certitude son objectif. Parmi ces outils théoriques,
on compte un modélisateur de graphiques dynamiques, divers modèles informatiques et
des modèles de communication en réseau distribué. Nous adaptons ensuite aux réseaux
dynamiques plusieurs concepts en théorie des graphes, puis nous démontrons les répercussions
de ces concepts adaptés sur la solution de problèmes distribués connus. Le présent rapport
hiérarchise aussi les réseaux dynamiques en fonction de diverses propriétés des graphes
dynamiques, et propose ainsi une solution combinatoire pouvant remplacer les modèles de
mobilité connus le plus souvent utilisés dans les simulations.

Importance : Disposer de ce type d’outils est vital afin de pouvoir étudier le comportement
des algorithmes en réseaux dynamiques, ce qui vaut en double s’il s’agit de faire la
démonstration mathématique qu’un algorithme pourra ou ne pourra pas résoudre un problème
précis dans un contexte donné. Cette question se révèle particulièrement intéressante dans
un contexte militaire, car la fiabilité est souvent un attribut crucial des systèmes militaires.

Perspectives : Le présent rapport est axé sur des modèles formels qui représentent des
réseaux, des algorithmes et d’autres notions connexes. Un rapport subséquent (Casteigts
and Flocchini 2013, CR 2012-021) traite en détail des outils algorithmiques et d’analyse qui
auront été développés à l’aide de ces modèles formels.
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1 Introduction

A revolution is taking place in communication technologies due to the increasing availability
of wireless equipment and ever-shrinking computational devices. It is now possible to
embed computational and communicating features in many new application contexts such as
networks of vehicles, sensors, mobile robots, as well as on unmanned aerial vehicles (UAVs)
or dismounted soldiers.

In general, the applications and services that are deployed in a network rely on assumptions
about the network topology (e.g., What is the shape of the network? How is it organized?
Is the organization stable?). In most of the new contexts, the topology is ever changing.
For a majority of them, the dynamics are even unpredictable. In this seemingly chaotic
environment, early algorithmic efforts have mainly been devoted to designing probabilistic
solutions, whose outcome is certified with high probability. Unfortunately, military applica-
tions are often too critical to settle for the probable (or even highly probable) success of
a task, when a deterministic alternative exists. Though alternatives do not always exist,
when they do exist at comparable performance, they should be preferred. In some cases,
one might even be willing to trade some performance for a guarantee.

In this work, we explore the basic ingredients—models, concepts, metrics—to be used in
developing deterministic solutions whose correct behaviour or outcome can be mathematically
proven. Finding deterministic solutions is challenging because most dynamic environments
seem chaotic and unpredictable at first sight. However, even the most dynamic network
is in general constrained in some way. For example, movements of the nodes might follow
some trajectory (e.g., satellites), obey field constraints (e.g., road topology for vehicles), or
social properties (e.g., group of people moving but remaining a group). Thus, some forms of
regularity or semi-predictable properties can still be found and exploited. We are interested
in understanding what these properties are.

We focus on models and metrics that are able to represent and express the kind of topological
properties that could be exploited by a deterministic algorithm. It is generally admitted
to describe a network topology by means of a graph whose vertices (or nodes) represent
the communicating entities, and edges (or links) represent communication opportunities
between these entities. Graphs are powerful abstractions, but they may hide or over-simplify
important details about the real world. Therefore, in this document, we first review the
main approaches to abstract the physical world. Since most, if not all, networks we consider
are wireless, we focus on the ways graph topologies can be inferred from physical wireless
topologies. This approach covers a variety of models, ranging from analytically-friendly
but unrealistic ones like unit disk graphs (UDGs), to less trivial but more realistic models
like the signal-to-interference plus noise ratio (SINR), which is garnering more and more
attention lately.

After a brief overview of key results related to these physical abstraction models, we start
looking at the higher level view of the problem from the perspective of graphs, while keeping
in mind the implications a physical context can have on the network dynamics (e.g., in
SINR, the communication itself induces an additional layer of topological dynamics). The
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main purpose of our study is to identify, formulate, and correlate a set of properties that
relate to the dynamics of the network topology and have the potential to be exploited by
deterministic algorithms. One prerequisite is a graph formalism that is sufficiently expressive
to formulate complex temporal properties and yet offer intuitive and concise notations. We
describe such a formalism called time-varying graphs (TVGs).

Beyond the expression of connectivity properties on the topology, we rely on TVGs to
elaborate a collection of concepts and metrics appropriate to play a role in the specification
and analysis of algorithms. These include dynamic graphs concepts (e.g., temporal distance
and connectivity, dynamic expansion) as well as computational models to be considered on
top of such dynamic graphs. The way these elements are combined and used in an analytical
setting is the subject of a subsequent report (Casteigts and Flocchini 2013, CR 2013-021);
however, we provide high-level consideration to these concepts in this document.
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2 Abstracting wireless networks

All of the technological contexts we envision here rely on wireless communication. Even
though the wireless technology itself does vary among these contexts, e.g., WiFi, Zigbee,
Bluetooth, they all share essential features due to their wireless nature. From an algorithmic
standpoint, it seems extremely difficult (if not impossible) to deal with all the physical
aspects involved in wireless communication. A large number of parameters need to be
considered, including interference, obstacles, directionality, transmission power, weather
conditions, or perturbation of other kinds. It is therefore necessary, and common practice,
to make simplifying assumptions about the physical world so as to obtain a “combinatorial”
view of the network, namely, a graph. We review below the main abstraction models
considered by researchers in wireless networks. The reader is referred to the works of Dı́az
et al. (2011), Yick et al. (2008), and Avin et al. (2009) for further exploration of the problem.

2.1 Unit disk graph and its variants

The simplest and most widespread model is the unit disk graph (UDG), wherein two nodes
can reciprocally communicate if and only if the distance between them is below a given
threshold. This model received tremendous attention in early research. However, its over-
simplistic features led researchers to design a number of variants, and eventually more
sophisticated models like the signal-to-interference plus noise ratio (SINR) model. We review
here some of the main results around UDG and its variants, as well as recent investigations
on SINR.

2.1.1 Unit disk graphs

The unit disk graph model arose in the field of computational geometry, being defined as
the intersection graph of a set of unit disks on the Euclidean plane. Graphically speaking,
the original model stated that an edge exist between two points if the corresponding circles
intersect. However, due to the strong analogy with wireless communication, in which the
radius of the circle represent a communication range, it is now often considered that an
edge exist between two given points if they lie within each other’s surface (i.e., the circles
are twice as big as the original approach). Unless otherwise mentioned, we use the second
representation in this section.

The UDG model is a constraint on the more general disk graph model, in which the
communication radius can be different for each node. In physical terms, the disk graph
model accounts for nodes whose emission power are unequal. Both models are illustrated in
Figure 1.

Due to their overwhelming simplicity, UDGs have received tremendous attention in research.
In particular, their straight geometric properties enabled strong theoretical characterizations
(some of which are reviewed below in Section 2.1.3). On the other hand, their excessive
simplicity prevents them from capturing important aspects of the physical reality.
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(a) Disk graph (b) Unit disk graph

Figure 1: Two basic models: disk graph and unit disk graph (UDG).

2.1.2 Variants on UDGs

Several variants on UDGs were proposed to take into account crucial aspects of physical
reality that are not considered in the original model, such as uncertainty, interference, or
obstacles.

Quasi-UDGs

One of the main drawbacks of the UDG model is that the probability of having a link
between two nodes suddenly drops from 1 to 0 when the distance between them exceeds the
threshold, while in reality the signal is fades progressively (according to the square or the
cube of the distance) and with some unpredictable fluctuations at the transition zone where
the signal becomes difficult to distinguish from background noise. A more realistic model
in this respect is the one introduced by Barrière et al. (2001), today known as quasi-unit
disk graphs (Kuhn et al. 2003). In quasi-UDGs, two distinct thresholds are considered, one
below which communication is guaranteed, the other one above which it is impossible. In
between lies a zone of uncertainty, in which the communication link may or may not exist.
This model is illustrated in Figure 2.

?

+

Figure 2: Quasi-UDG.

Interference-aware UDGs

Another important aspect of wireless communication is interference, that is, the fact that
two different signals, if sent at a same time in a same area might collide and scramble each
other, thereby destroying the corresponding messages. Several strategies were considered
in the literature to determine which node is interferes with which other nodes. Of course,
the distance between nodes is a key parameter here. The simplest solution consists in
considering UDGs with the additional constraint that nodes cannot decode a message from
a given neighbour if another neighbour emits at the same time.

Unfortunately, interference is likely to occur over longer distances than the communication
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range represented by the unit disk. Based on this observation, a variant of UDG was proposed
in which nodes can interfere within two hops (Jain et al. 2005). This model is convenient
because the same graph is used for both communication and interference. However, it is not
geometrically sound, as illustrated in Figure 3, based on the fact that three-hops neighbours
might actually be closer than two-hops neighbours (and yet be considered as non-interfering
by the model).

a

b

c

(a) Nodes interfere up to
two hops apart.

a

b

c

d

(b) 3-hop neighbours could be
closer than 2-hop neighbours.

Figure 3: Hop-based interference. (For visibility, half-sized disks are used.)

Another approach used for example by Alicherry et al. (2005) was to consider two distinct
circles for each node (just as quasi-UDGs, but with a different meaning). Here, one of the
circle corresponds to the transmission range, while the other one represents the interference
range. The region between the outer circle and the inner circle represents the area where the
signal is not strong enough to be received successfully, but still strong enough to interfere
with other signals. Thus, two nodes are possibly interfering if they lie in the interference
circle of each other. This model is illustrated in Figure 4.

×

Figure 4: Transmission radius vs. interference radius.

Other variants on UDGs

Yet another variant of UDGs based on two different disks was used by Balasundaram and
Butenko (2008). In this variant the disks represent emission radius and reception radius,
respectively. Node u can communicate with node v if its emission disk intersects with v’s
reception disk (see Figure 5(a)).

The list of models based on UDGs could keep growing; however, most of the literature relies
on those presented above. More exotic models exist for specific applications or problems,
e.g., multiple directional antennas or physical obstacles, leading to a sector-based model like
K-sectored UDGs (Nolan 2004), in which the space around a node is divided in a number of
cones, each having distinct transmission properties (see Figure 5(b)).
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(a) Emission vs. Reception radii (b) K-sectored Disk

Figure 5: Two other variants of UDGs.

2.1.3 Main results on UDGs

The literature around UDGs is extensive and covers several disciplines (wireless networks,
computational geometry, percolation theory). Our purpose here is not to review it completely,
but rather give a flavour of what type of research has been done.

Connectivity

One of the first works around unit disk graphs appears to be Gilbert (1961). Following a line
of work on random graphs initiated by Erdős and Rényi (1960), he suggested that deciding
what links exist in a completely random way was not realistic in most practical scenarios. In
his model, points are distributed uniformly at random (i.e., their positions follow a Poisson
process of given density over the plane). Then two points are joined by a line if and only if
they are separated by a distance less than a given threshold. The function of main interest
in Gilbert’s work was the probability P (N) that a point belongs to a component containing
at least N points. The difficulty of this type of question became instantly apparent, and
although some bounds are characterized analytically, Gilbert eventually relied on simulations
to approximate real threshold values (this was in 1961!).

The kind of graphs studied by Gilbert are now called random geometric graphs. The plane
is often represented as a unit square (noted [0, 1]2) in which nodes are randomly distributed
and have communication range lower than 1. To avoid boundary effects (i.e., the fact that
points near the borders have different connectivity), it is sometimes considered to be toroidal
(and thus noted [0, 1)2).

Most efforts in this area have focused on studying the tradeoff between communication range
and connectivity. The main result, independently obtained by Penrose (1997) and by Gupta

and Kumar (1998), is the existence of a connectivity threshold at
√

lnn
πn , which corresponds to

the expected length of the longest edge of an minimum spanning tree (a connected subset of
the graph whose sum of edge lengths is minimum) on [0, 1]2; the threshold is asymptotically
the same for [0, 1)2. Note that this does not guarantee the network is connected at the
threshold value, but indicates the existence of a sharp transition from non-connectivity to
connectivity within some additive constant in the range. Using the property that a minimal
degree of k in a graph is asymptotically equivalent (i.e., it becomes equivalent as n tends to
infinity) to having a k-connected graph with high probability, Penrose generalized the above
threshold to the case of k-connectivity (Penrose 1999).
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A graph in which the communication range is substantially higher that the connectivity
threshold is called a dense graph. One in which the range is lower is called a sparse graph.
The terms superconnectivity and subconnectivity can also be used. Sparse graphs in which
nodes can move and “bridge” connectivity over time are of particular interest. One of the
first works to study the impact mobility has on connectivity was by Grossglauser and Tse
(2002).

Penrose again characterized another threshold called the thermodynamical threshold at c/
√
n

(where c is a constant) (Penrose 2003). This value corresponds to the range above which a
giant component (of size Θ(n)) exists with high probability. By symmetry, one can observe
that below this threshold, most nodes are isolated. The constant c was experimentally
determined at c � 2.0736. More recently, Dı́az et al. (2009) refined some of the above results
by characterizing the probability of having a component of size i when the range is precisely
at the connectivity threshold. They found the probability is O(1/ logi n), which illustrates
well the sharpness of the connectivity transition.

Other problems

Many problems related to wireless networks have received tremendous attention. One
may cite among others topology control, transmission scheduling, frequency allocation, fault-
tolerance, broadcasting, routing, data aggregation, or problems related to security. Our
purpose is not to review the algorithmic solutions to these problems, and we refer the
interested reader to the incredible amount of literature available on the Internet on these
topics. Of particular interest are problems that induced new understandings of the topological
properties of wireless networks. This is the case with topology control: the problem of
reducing the set of links that are used in a network so as to give this network some desired
properties. The precise goal may vary with the target context or application, for example:
reducing interference while maintaining connectivity (Von Rickenbach et al. 2005), assigning
distinct ranges to the nodes to minimize energy consumption (Kirousis et al. 2000), or
having any point of the plane covered by at least k nodes (K-coverage) (Meguerdichian et al.
2001, Wan and Yi 2006), as well as balancing communications, avoiding cycles, reducing the
maximum degree in the network, etc.

For each of the problems listed above, variations exist depending on what abstraction model
is considered for the network (UDG, quasi-UDG,...), which has an important impact on the
solutions. Some tasks become difficult or even impossible in quasi-UDGs while being feasible
in UDGs. A good example of this phenomenon is geographic routing, where guaranteed
delivery requires the nodes to decide locally which subset of their neighbours must be
considered as part of a planar subset of the graph (Bose et al. 1999). While feasible in
UDGs, such a selection cannot be guaranteed to work in quasi-UDGs, as illustrated by the
topological configuration shown in Figure 6. Here, the leftmost node discards the rightmost
one as “planar” neighbour (Gabriel neighbour), due to the fact that two other neighbours lie
within a half-circle whose diameter is the discarded edge (one for each side). However, due
to the uncertainty in quasi-UDG, the right-most node might not be able to communicate
with these two nodes, thereby leading to a disconnected planar subset of the graph. Based
of this observation, Barrière et al. (2001) suggested an alternative approach that works in
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Figure 6: Impossibility to decide planarity in quasi-UDGs (Barrière et al. 2001).

almost all quasi-UDGs, as long as the difference between both radii does not exceed a given
value (the outer radius must be no more than

√
2 times the inner radius).

More fundamental questions were also raised around UDGs, such as the problem of deciding
whether a graph, given without geometry, can be represented as a UDG. This problem was
shown to NP-hard1 in continuous space (i.e., in case of real-valued positions) by Breu and
Kirkpatrick (1998).

2.2 The SINR model

In the past few years, the need for more realistic models than UDGs and its variants became
apparent. The SINR model (for signal to interference plus noise ratio) is progressively being
adopted due to its more realistic features. Despite its apparent complexity, encouraging
results were obtained regarding the analytical properties of this model, which seems to make
it a good tradeoff between simplicity and physical realism. Surprisingly, some problems are
even shown to give better solutions with SINR than with UDGs.

2.2.1 Signal to interference plus noise ratio

In the literature, SINR is often referred to as a “physical model” (as opposed to UDG, which
is reffered to as a “graph-based model”). However, the SINR model’s purpose is similar
to UDG’s in determining whether a node can send a message to another node at a given
time based on the nodes’ respective configurations (e.g., position, transmission power). The
emphasis on the physical stems from the fact that interference and noise are directly built
into the model, rather than artificially plugged in on top of it.

The SINR model can be described through a unique equation that determines whether a
given node can be heard at a given point of the plane. Let p be that point, si (station i)
be the node that is transmitting, and α be the fading parameter (rate at which the signal
decreases with distance, usually between 2 and 3). We say that si is heard at p if and only if

Ei.dist(p, si)
−α

N +
∑

j /=iEj .dist(p, sj)−α
≤ β (1)

where Ek is the transmission power of node sk, N is a background noise, and β is the
reception threshold (minimal strength of signal to be heard). Observe that choosing β > 1

1Intuitively speaking, NP-hardness implies the execution of any solution to this problem requires an
amount of time at least exponential in the number of nodes—i.e., impractical—unless the famous P = NP is
proven true (something regarded as very unlikely by mathematicians and computer scientists).
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directly implies that no more than one node can be heard simultaneously at a given point
(i.e., the reception regions are disjoint). In that case, the reception regions partition the
plane into exactly n+ 1 surfaces: one for each emitter, plus one for the remaining surface.
As explained by Avin et al. (2009), these regions converge to a Voronoi diagram if α → ∞
and N = 0 (in which case, there are eventually only n regions). If N > 0, each region
consists of a Voronoi cell intersected with a UDG (a type of shape called “alpha shapes” in
computational topology), as illustrated in Figure 7.

Figure 7: Partition of the plane into n+ 1 regions. Example by Lotker and Peleg (2010).

On the other hand, using a value β ≤ 1 makes it possible for reception regions to overlap,
and thus allow several nodes to be heard at the same point. Clearly, the topology induced
by SINR is of a time-dependent nature, since the potential for links depends on which
nodes are communicating (assuming transmission power drops in between emissions). This
characteristic makes then SINR model an interesting object of study from the perspective
of communication scheduling. It also makes a terrific base for studying dynamic graph
algorithms, even in the context of static networks.

2.2.2 Main results on SINR

We describe here some early results obtained with the SINR model. Most of them are
mentioned in a recent survey (Lotker and Peleg 2010) to which the reader is referred for a
deeper exploration. Let us start with some results regarding the comparison between UDG
and SINR. Lebhar and Lotker (2009) showed that UDG could be emulated under SINR
at a cost of O(log3 n), assuming α > 2 and the nodes are deployed uniformly at random.
Informally speaking, this means that any UDG-based algorithm could also run in a SINR
setting, at the expense of a “reasonable” slowdown in execution (where reasonable means
here no more than a constant factor of log3 n slower, with n being the number of nodes).

The distribution of nodes seems to play an important role in the interplay between UDG
and SINR, as reinforced by the result of Moscibroda (2007), who showed that the capacity
of a SINR network could be exponentially higher (in the number of nodes) than that of
the corresponding UDG if specific distributions of nodes are considered. This capacity is
however of the same order under a uniform distribution (Gupta and Kumar 2000).

One of the most studied problem in SINR is communication scheduling: the problem of
planning when packets should be sent in the networks, based on a given set of communication
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requests. The fact that the network topology varies with communications makes this problem
all the more interesting. Scheduling in general was shown to be NP-hard both in UDG
and SINR. Even single step scheduling—assigning the best transmission powers to a set
of transmitters so as to maximize the number of simultaneous successful emitter/receiver
pairs—is NP-hard, although it approximates well (Andrews and Dinitz 2009). A specific
variant of topology control also makes particular sense in SINR, namely, that of determining
how and how fast a given topology could be realized on top of a given SINR network
(Moscibroda et al. 2006).

As with the UDG model a decade ago (see Section 2.1), researchers are now finding more
and more structural properties of the SINR model that have algorithmic implications. The
above results give some examples, another one is the concept of fatness of a SINR region,
introduced by Avin et al. (2009) and defined as the ratio between the radius of the enclosing
circle (smallest circle containing the whole region) and that of the enclosed circle (largest
circle included in the region). A region is said to be fat if enclosing radius

enclosed radius = O(1), that is, the
ratio is contained within a given constant. They show that having regions that are both
convex and fat is a nice property that can boost some topology-related computations, such
as deciding whether a given station is heard at a given point (i.e., point location queries).
Avin et al. (2009) show that if α = 2, β ≥ 1, and the network is uniform (i.e., all the nodes
have identical communication power) then every region is convex and fat.

Research in SINR is still in its infancy; however, these results show the domain is theoretically
fertile despite being physically realistic, which is often not the case in theoretical computer
science. Some of these results even imply that the SINR model allows better solutions than
UDG-based models.
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3 Dynamic graphs models

A vast majority of real-world networks are dynamic, and this is especially true for wireless
networks. In a majority of these networks, the dynamics are due to the movements of the
nodes, which move in and out of communications range of each other as their position
evolves over time. However, as observed above (see Paragraph 2.2.1), even static wireless
networks should be considered as dynamic under realistic abstraction models like SINR.
Sensor networks are another example of static networks in which the resulting topology may
be dynamic due to duty cycles (energy-saving sleeping schedule) or failure.

In this section, we review some recent developments on dynamic graph theory. We first give
a thorough literature review on the different attempts and motivations to model dynamic
networks, which emerged in various fields of research (Section 3.1). We then describe in
Section 3.2 a recently introduced framework, called time-varying graphs (TVGs), whose
purpose is to integrate the existing models, concepts, and results proposed in the literature so
far (Casteigts et al. 2012c). Using it, it is possible to express directly in the same formalism
not only the concepts common to all these different areas, but also those specific to each.
In particular, TVGs allow the identification and formal expression of those concepts and
properties related to the dynamics of the graph, which can play an important role on the
algorithmic side. The TVG formalism has already been used in a variety of contexts, e.g.
Greve et al. (2011), Floriano et al. (2011), Zhang et al. (2012).

The formalism is then used and extended in Section 3.3, where we present the most central
concepts and metrics that have been identified by the research so far (e.g., journey, temporal
subgraphs, distance and connectivity); we also address the different perspectives from
which a graph can be looked at, such as the graph-centric (or global) point of view or the
edge-centric (or interaction based) point of view.

3.1 Literature review on dynamic graphs

In the past few years, intensive research efforts have been devoted to some apparently
unrelated areas of dynamic systems, obtaining closely related insights. This is particularly
true for (a) the study of communication in wireless mobile ad hoc networks, e.g., broadcasting
and routing in delay-tolerant networks (DTNs); (b) the exploitation of passive mobility, e.g.,
the opportunistic use of transportation networks; and (c) the analysis of complex real-world
networks ranging from neuroscience or biology to transportation systems or social studies,
e.g., the characterization of the interaction patterns emerging in a social network.

As part of these efforts, many important concepts have been identified, and sometimes
formally defined. It is becoming apparent that these concepts are strongly related. In fact,
in several cases, differently named concepts identified by different researchers are actually
one and the same concept. For example, the concept of temporal distance, formalized by
Bui-Xuan et al. (2003), is the same as reachability time (Holme 2005), information latency
(Kossinets et al. 2008), and temporal proximity (Kostakos 2009). Similarly, the concept of
a journey (Bui-Xuan et al. 2003) is called a schedule-conforming path (Berman 1996), a
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time-respecting path (Holme 2005, Kempe et al. 2000), and a temporal path (Chaintreau
et al. 2008, Tang et al. 2010b). Hence, the notions discovered in these investigations can
be viewed as parts of the same conceptual universe, and the formalisms proposed so far to
express some specific concepts can be viewed as fragments of a larger formal description of
this universe. A common trait in all these areas is that the system structure—the network
topology—varies in time. Furthermore, the rate and/or degree of the changes is considered
too high to be reasonably modeled in terms of network faults: in these systems changes are
not anomalies but rather are a integral part of the nature of the system.

As the notion of (static) graph is the natural means for representing a static network, the
notion of dynamic (or time-varying, or evolving) graph is the natural means to represents
these highly dynamic networks. All the concepts and definitions advanced so far imply
such a notion, e.g., Kempe et al. (2000) talk of a temporal network (G, λ) where λ is a
time-labeling of the edges, that associates punctual dates to represent dated interactions;
Leskovec et al. (2007) talk of graphs over time; Ferreira (2004) views the dynamic of the
system in terms of a sequence of static graphs, called an evolving graph; Flocchini et al.
(2009b) employ the term time-varying graphs; (Kostakos 2009) uses the term temporal graph;
etc.

The need for dynamics-related concepts emerged from a range of very different works. We
mention below three research areas in which dynamical aspects have played a central role
recently. They include delay-tolerant networks, opportunistic-mobility networks, and real-
world complex networks. Interestingly, these areas have seen a number of similar concepts
emerge with distinct purposes, ranging from the design of solutions in delay-tolerant networks
to the analysis of phenomena in complex dynamic networks.

3.1.1 Delay-tolerant networks

Delay-tolerant networks (DTNs) are highly-dynamic, infrastructure-less networks whose
essential characteristic is a possible absence of an end-to-end communication route at
any instant. These networks, also called disruption-tolerant, challenged, or opportunistic,
include for instance satellite, pedestrian, and vehicular networks. Although the assumption
of connectivity does not necessarily hold at a given instant—the network could even be
disconnected at every time instant—communication routes are generally available over time
and space, enabling for example broadcast and routing by means of a store-carry-forward-like
mechanism.

An extensive amount of research has been recently devoted to these types of problems. See
among others the work of Burgess et al. (2006), Cardei et al. (2007), Jacquet et al. (2010),
Jain et al. (2004), Liu and Wu (2009), Mahéo et al. (2008), Ruiz et al. (2012), Spyropoulos
et al. (2005), Zhang (2006). A number of new routing and broadcast techniques were designed
to face such an extreme situation, based for example on pro-active knowledge on the network
schedule (Jain et al. 2004, Bui-Xuan et al. 2003), probabilistic strategies (Lindgren et al.
2003, Spyropoulos et al. 2005), delay-based optimization (Ros et al. 2012), or encounter-based
decisions (Grossglauser and Vetterli 2003, Jones et al. 2007). Other recent works considered
the broadcast problem from an analytical and probabilistic standpoint. For example Clementi

12 DRDC Ottawa CR 2013-020



et al. (2008) and Baumann et al. (2009) characterized the maximal propagation speed as
a function of the rate of topological changes in the network (these changes are themselves
regulated by Markovian processes on edges). In all these investigations, the time dimension
has had a strong impact on the research, and led the research community to extend most
usual graph concepts—e.g., paths and reachability (Berman 1996, Kempe et al. 2000),
distance (Bui-Xuan et al. 2003), diameter (Chaintreau et al. 2008), or connected components
(Bhadra and Ferreira 2003)—to a temporal version.

3.1.2 Opportunistic-mobility networks

As mobile carriers and devices become increasingly equipped with short-range radio capa-
bilities, it is possible to exploit the (delay-tolerant) networks created by their mobility for
uses that are possibly external and extraneous to the carriers. In fact, other entities (e.g.,
code, information, web pages) called agents can opportunistically “move” on the carriers’
network for their own purposes, by using the mobility of the carriers (sometimes called
ferries) as a transport mechanism. Such networks have been deployed e.g., in the context of
buses (Balasubramanian et al. 2007, Burgess et al. 2006) and pedestrians (Chaintreau et al.
2007). Examples of carrier networks and opportunistic mobility usages include: Cabernet,
deployed in 10 taxis running in the Boston area (Eriksson et al. 2008), which allows the
delivery of messages and files to users in cars; and UMass DieselNet, consisting of WiFi nodes
attached to 40 buses in Amherst, used for routing, information delivery, and connectivity
measurements (Burgess et al. 2006, Zhang et al. 2007).

Of particular interest is the class of carriers/ferries following a deterministic periodic
trajectory. This class naturally includes infrastructure-less networks where mobile entities
have fixed routes that they traverse regularly. Examples of such common settings are public
transports, low earth orbiting satellite systems, security guards’ tours, etc. These networks
have been investigated with respect to routing and to the design of carriers’ routes (Guo
and Keshav 2007, Liu and Wu 2009) and more specifically for buses (Balasubramanian et al.
2007, Zhang et al. 2007) and satellites (Wang et al. 2009). In addition to routing, more
analytical works around algorithmic problems have been done in the contexts of network
exploration (Flocchini et al. 2009b, Ilcinkas and Wade 2011, Flocchini et al. 2009a, 2012,
Kellett 2012) and the creation of broadcast structures (Casteigts et al. 2010, 2011, 2012b).
In the derivation of these results, the temporal component has played a crucial role, both in
terms of extending concepts and of developing new solution techniques.

3.1.3 Real-world complex networks

The research area of complex systems addresses the analysis of real complex dynamic
networks, ranging from neuroscience and biology to transportation networks and social
studies, with a particular interest in the understanding of self-organisation, emergence
properties, and their reification.

As stated by Leskovec et al. (2010), the central problem in this area is the definition of
mathematical models able to capture and to reproduce properties observed on the real
dynamics of the networks, e.g., shrinking diameter (Leskovec et al. 2007), the formation of
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communities (Börner et al. 2007, Blondel et al. 2008, Alvarez-Hamelin et al. 2008, Friggeri
et al. 2011), and the appearance of inequalities. A fundamental work on graphs where edges
are endowed with temporal properties is the one by Kempe and Kleinberg (2002), in which
the basic properties (both combinatorial and algorithmic) of graphs are addressed when the
connections among nodes are constrained by temporal conditions. The formalism introduced
therein to represent dynamic graphs has been used as framework for several other works in
complex systems (Backstrom et al. 2006, Eagle and Sandy, Kempe et al. 2003, Scherrer
et al. 2008).

Kostakos (2009) proposes a theoretical framework for temporal graphs to study a large
dataset of emails records. The author suggests to label graphs with temporal attributes by
allowing the representation of each node as a chain of all its temporal instances during time;
some interesting metrics aimed at capturing the interactions among nodes during time, e.g.,
temporal or geodesic proximity, are discussed. Tang et al. (2010b) propose an extension of
the model of Kempe and Kleinberg (2002) by looking at the smallest delay path in a generic
information spreading process. The authors try to overcome the limits of the previous
works (mainly concerned with local aspects) by defining a temporal graph as a sequence
of static graphs whose elements aggregate all interactions during given time-windows—we
call such construct a sequence of footprints. Kossinets et al. (2008) study the temporal
dynamics of communication over a dataset of on-line communications and emails over a two
years period. The main metric introduced to capture the interaction is again the temporal
distance, defined there as the minimum time needed for a piece of information to spread
from an individual to another by means of multihop sequences of emails.

As these investigations indicate, temporal concerns are an integral part of recent research
efforts in complex systems. It is also apparent that the emerging concepts are in essence
the same as those from the field of communication networks, involving again temporal
definitions of the notions of paths, distance, and connectivity, as well as higher concepts
that we identify further below.

3.2 The TVG formalism

Consider a set of entities V (or nodes), a set of relations E between these entities (edges),
and an alphabet L, which could describe any property such a relation could have (label);
that is, E ⊆ V × V × L. The definition of L depends on the domain, and therefore is left
open—a label could represent for example a type of carrier in a transportation network,
the intensity of relation in a social network, or a medium in a communication network; in
some contexts, L could be empty (and thus possibly omitted). In general, we assume L to
possibly contain multi-valued elements (e.g., 〈bandwidth of 4MHz; satellite link; encryption
available;...〉). The set E enables multiple relations between a pair of entities, as long as
these relations have a distinct label.

Since we address dynamical systems, the relations between entities are assumed to take
place over a time span T ⊆ T called the lifetime of the system. The temporal domain T

is generally assumed to be N for discrete-time systems or R+ for continuous-time systems.
The dynamics of the system can be described by a TVG, G = (V,E, T , ρ, ζ), where
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• ρ : E×T → {0, 1}, called presence function, indicates whether a given edge is available
at a given time.

• ζ : E × T → T, called latency function, indicates the time it takes to cross a given
edge if starting at a given date (the latency of an edge could vary in time).

The model can be naturally extended by adding a node presence function ψ : V × T →
{0, 1} (i.e., the presence of a node is conditional upon time) and a node latency function
ϕ : V × T → T (accounting e.g., for local processing times).

The TVG formalism can arguably describe a multitude of different scenarios, from trans-
portation networks to communication networks, complex systems to social networks. Two
intuitive examples are shown in Figure 8.

Ottawa

Montreal

Lisbon

λ1
λ2 λ3

λ4

(a) Transportation network

a

b

c dλ1

λ1

λ1

λ2

(b) Communication network

Figure 8: Two examples of TVGs, employed in different contexts. Picture from (Casteigts
et al. 2012c).

The meaning of what is an edge in these two examples varies drastically. In Figure 8(a),
an edge from a node u to another node v represents the possibility for some agent to move
from u to v. The edges in this example are assumed to be directed, and possibly multiple.
The meaning of the labels λ1 to λ4 could be, for instance, “bus”, “car”, “plane”, “boat”,
respectively. Except for the travel in car from Ottawa to Montreal—which could be started
anytime—typical edges in this scenario are available on a punctual basis, i.e., the presence
function ρ for these edges returns 1 only on a particular date or dates when the trip can
be started. The latency function ζ may also vary from one edge to another, as well as for
different availability dates of a same given edge (e.g., variable traffic on the road, depending
on the departure time).

The second example in Figure 8(b) represents a history of connectivity between a set of
moving nodes, where the possibilities of communication appear, e.g., as a function of their
respective distance. The two labels λ1 and λ2 may represent different types of communication
media, such as satellite and WiFi, having various properties in terms of range, bandwidth,
latency, or energy consumption. In this setting, the edges are assumed to be undirected and
there cannot be more than one edge between any two nodes. The meaning of an edge is
different from the previous scenario: an edge between two nodes means that either of them
(or both) can attempt to send a message to the other. A typical presence function for this
type of edge returns 1 for some intervals of time, because the nodes are typically in range
for a continuous interval of time. Note that the effective delivery of a message sent at time t
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on an edge e could be subjected to further constraints regarding the latency function, such
as the condition that ρ(e) returns 1 for the whole interval [t, t+ ζ(e, t)).

These two examples illustrate the spectrum of models over which the TVG formalism can
stretch. As mentioned, some contexts are intrinsically simpler than others and require
restrictions (e.g., between any two nodes in the second example, there is at most one
undirected edge). Further restrictions may be considered. For example, the latency function
could be constant over time (ζ : E → T); over the edges (ζ : T → T); over both (ζ ∈ T);
or simply ignored. In the last case, a TVG could have its relations fully described by a
graphical representation like that of Figure 9.

a

b

c d[1, 3)

[2, 5)

[0, 4)

[5, 6) ∪ [7, 8)

Figure 9: A simple TVG. The interval or intervals on each edge e represent the periods of
time when the edge is available, that is, ∪(t ∈ T : ρ(e, t) = 1). Example from (Casteigts
et al. 2012b).

Several analytical works on dynamic networks simply ignore ζ, or assume a discrete-time
scenario where every time step implicitly corresponds to a constant ζ. This value is also
usually neglected when the graph represents dated interactions over a social network (the
edges in this context are generally assumed to be punctual both in terms of instantaneous
presence and null latency). The definitions we give in this document address the general
case, where G = (V,E, T , ρ, ζ).

3.3 Temporal concepts and metrics

This section transposes and generalizes a number of dynamic network concepts into the
framework of TVGs. A majority of these concepts emerged independently in various areas of
the scientific literature; some appeared more specifically in the fields of telecommunication
networks or distributed computing.

3.3.1 The underlying graph G

Given a TVG G = (V,E, T , ρ, ζ), the graph G = (V,E) is called underlying graph of G. This
static graph should be seen as a sort of footprint of G, which flattens the time dimension
and indicates only the pairs of nodes that have a relation (an edge between them) at some
time in T . This is a central concept that is heavily used in the following.

In most studies and applications, G is assumed to be connected, but this is not imposed by
the formalism itself. Let us stress that the connectivity of G = (V,E) does not imply that
G is connected at a given time instant; in fact, G could even be disconnected at all times.
The lack of relationship, with regards to connectivity, between G and its footprint G is even
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stronger: the fact that G = (V,E) is connected does not even imply that G is “connected
over time”, as illustrated n Figure 10.

a
b c

d
[0, 1) [2, 3) [0, 1)

Figure 10: An example of TVG that is not “connected over time”, although its underlying
graph G is connected. Here, the nodes a and d have no mean to reach each other through a
chain of interaction. Picture from (Casteigts et al. 2012c).

3.3.2 Point of views

Depending on the problem under consideration, it may be convenient to look at the evolution
of the system from the point of view of a given relation (edge), or of a given entity (node),
or from that of the global system (entire graph). We respectively qualify these views as
edge-centric, vertex-centric, and graph-centric.

Edge-centric evolution

From an edge point of view, the notion of evolution comes down to a variation of availability
and latency over time. We define the available dates of an edge e, denoted as I(e), as
the union of all dates when the edge is available, that is, I(e) = {t ∈ T : ρ(e, t) = 1}.
When I(e) is expressed as a multi-interval of availability I(e) = {[t1, t2) ∪ [t3, t4)...}, where
ti < ti+1, we refer to the odd numbered dates t1, t3, ... as the appearance dates of e and
denote the sequence as App(e), and we refer to the even numbered dates t2, t4, ... as the
disappearance dates of e and denote the sequence as Dis(e). Finally, we refer to the dates
themselves t1, t2, t3, ... as the characteristic dates of e, and denote the sequence as ST (e). In
the following, we use the notation ρ[t,t′)(e) = 1 to indicate that ∀t′′ ∈ [t, t′), ρ(e, t′′) = 1.

Vertex-centric evolution

From a node standpoint, the evolution of the network consists of a succession of changes
among its neighbourhood. This point of view does not appear frequently in the literature.
It was used, for example, by O’Dell and Wattenhofer (2005) to express dynamic properties
in terms of local variations on the sequence of neighbourhoods Nt1(v), Nt2(v).. where Nt(v)
denotes the neighbours of v at time t and each ti corresponds to a date of local change (i.e.,
appearance/disappearance of an incident edge).

The degree of a node u can be defined both in punctual or integral terms, e.g., with
Degt(u) = |Et(u)|, or DegT (u) = | ∪ {Et(u) : t ∈ T }| where Et(u) indicates the set of edges
incident on u at time t.

Graph-centric evolution

The sequence ST (G) = sort(∪{ST (e) : e ∈ E}), called characteristic dates of G, corresponds
to the sequence of dates when topological events (appearance/disappearance of an edge)
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occur in the system. Each topological event can be viewed as the transformation from
one static graph to another. Hence, the evolution of the system can be described as a
sequence of static graphs. More precisely, from a global point of view, the evolution of G
can be described as the sequence of graphs SG = G1, G2, . . ., where Gi corresponds to the
static snapshot of G at time ti ∈ ST (G); i.e., e ∈ EGi ⇐⇒ ρ[ti,ti+1)(e) = 1. Note that, by
definition, Gi /= Gi+1.

In the case where time is discrete, another possible global representation of the evolution of
G is the sequence SG = G1, G2, . . ., where Gi corresponds to the static snapshot of G at time
t = i. In this case, it is possible that Gi = Gi+1.

Observe that in both continuous and discrete cases, the underlying graph G (defined in
Section 3.3.1) corresponds to the union of all Gi in SG .

The idea of representing a dynamic graph as a sequence of static graphs, mentioned in the
conclusion of a paper by Harary and Gupta (1997), was brought to life by Ferreira (2004) as
a combinatorial model called evolving graphs. An evolving graph usually refers to either
one of the two structures (G,SG ,ST ) or (G,SG ,N), the latter used only when discrete-time
is considered. Their initial version also included a latency function, which makes them a
valid—graph-centric—representation of TVGs.

3.3.3 Subgraphs of a time-varying graph

Subgraphs of a TVG G can be defined in a classical manner, by restricting the set of vertices
or edges of G. More interesting is the possibility to define a temporal subgraph by restricting
the lifetime T of G, leading to the graph G′ = (V,E′, T ′, ρ′, ζ ′) such that

• T ′ ⊆ T

• E′ = {e ∈ E : ∃t ∈ T ′ : ρ(e, t) = 1 ∧ t+ ζ(e, t) ∈ T ′}

• ρ′ : E′ × T ′ → {0, 1} where ρ′(e, t) = ρ(e, t)

• ζ ′ : E′ × T ′ → T where ζ ′(e, t) = ζ(e, t)

In practice, we allow G′ = G[ta,tb) to denote the temporal subgraph of G restricted to
T ′ = T ∩ [ta, tb), which includes the possible notations G[ta,+∞) or G(−∞,tb) to denote the
temporal subgraphs of G going from ta to the end of its lifetime, or from the beginning of
its lifetime to tb, regardless of whether T is open, semi-closed, or closed.

3.3.4 Journeys

A sequence of ordered pairs J = {(e1, t1), (e2, t2) . . . , (ek, tk)}, such that {e1, e2, ..., ek} is
a walk in G is a journey in G if and only if ρ(ei, ti) = 1 and ti+1 ≥ ti + ζ(ei, ti) for all
i < k. Additional constraints may be required in specific domains of application, such as
the condition ρ[ti,ti+ζ(ei,ti))(ei) = 1 in communication networks (the edge remains present
until the message is delivered).
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We denote by departure(J ), and arrival(J ), the starting date t1 and the last date tk +
ζ(ek, tk) of a journey J , respectively. Journeys can be described as paths over time from a
source to a destination and therefore they have a topological length as well as a temporal
length. The topological length of J is the number |J | = k of ordered pairs in J (i.e., the
number of hops); its temporal length is its end-to-end duration: arrival(J )− departure(J ).

Let us denote by J ∗G the set of all possible journeys in a TVG G, and by J ∗(u,v) ⊆ J ∗G the
journeys that start at node u and terminate at node v. If a journey exists from u to v, that
is, if J ∗(u,v) /= ∅, then we say that u can reach v, and allow the simplified notation u � v.
Clearly, the existence of journey is not a symmetrical concept: u� v � v � u; this holds
regardless of whether the edges are directed or not, because the time dimension creates its
own level of direction. Given a node u, the set {v ∈ V : u� v} is called the horizon of u.

We say that a journey is direct if the presence of consecutive edges of the journey overlap
in time and the use of the subsequent edge follows directly the use of the previous edge
(i.e., intermediate nodes do not wait to forward the message); otherwise, the journey is
indirect (i.e., at least one intermediate node needs to buffer the message for some time). An
example of a direct journey is J1 = {(ab, 2), (bc, 2 + ζ)} in the graph in Figure 9 . Examples
of indirect journeys include J2 = {(ac, 2), (cd, 5)}, and J3 = {(ab, 2), (bc, 2 + ζ), (cd, 5)} in
the same graph.

The distinction between direct and indirect journeys was suggested by Casteigts et al. (2011)
to facilitate the computation of temporal distances between nodes (described next). Its
implications have also been studied from the perspective of environment complexity, and
more precisely to quantify how the power of an adversary controlling the links is impacted by
the ability for nodes to buffer a message or not (Casteigts et al. 2012a). The set of languages
that can be generated by direct journeys (no waiting allowed) contains all computable
languages, whereas the set of language if waiting is allowed (indirect journeys are possible)
it is just the family of regular languages. In other words, when waiting is not forbidden,
the expressivity of the environment drops drastically from being as powerful as a Turing
machine, to becoming that of a Finite-State machine, which gives an idea of the importance
of buffering in dynamic networks.

3.3.5 Distance and related metrics

As observed, the length of a journey can be measured both in terms of hops or time. This
gives rise to two distinct definitions of distance in a TVG G:

• The topological distance from a node u to a node v at time t, denoted by du,t(v), is
defined as Min{|J | : J ∈ J ∗(u,v), departure(J ) ≥ t}. For a given date t, a journey

whose departure is t′ ≥ t and whose topological length is equal to du,t(v) is qualified
as shortest.

• The temporal distance from u to v at time t, denoted by d̂u,t(v) is defined as
Min{arrival(J ) : J ∈ J ∗(u,v), departure(J ) ≥ t} − t. Given a date t, a journey

whose departure is t′ ≥ t and arrival is t + d̂u,t(v) is qualified as foremost. Finally,
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for any given date t, a journey whose departure is ≥ t and temporal length is
Min{d̂u,t′(v) : t′ ∈ T ∩ [t,+∞)} is qualified as fastest.

These distance metrics are illustrated in Figure 11.

a

b
c

d

e

f g

[1, 2)

[3, 4)

[5, 6)

[4, 5) [9, 10)

[7, 8)

[7, 8)

[7, 8)

Optimal journeys between a and d (starting at time
0):

- the shortest: a-e-d (only two hops)

- the foremost: a-b-c-d (arriving at 5 + ε)

- the fastest: a-f-g-d (no intermediate waiting)

Figure 11: Different meanings for length and distance.

The problem of computing shortest, fastest, and foremost journeys in DTNs was introduced
by Bui-Xuan et al. (2003), and an algorithm for each of the three metrics was provided for the
centralized (combinatorial) version of the problem, assuming complete knowledge of G. The
distributed variant of this problem, namely shortest, fastest, and foremost broadcast (with
termination detection at the emitter) was addressed through a line of works by Casteigts
et al. (2010, 2011, 2012b).

It is important to keep in mind that the solutions to some of these problems are time-
dependent; that is, their optimality depends on when the broadcast is initiated. An example
is given in Figure 12, showing a set of solutions to the foremost broadcast problem in a
simple periodically-varying graph.

a

cb

[0, 30) [20, 60)

[10, 40) ∪ [70, 80)

(a) A simple periodic graph
with period 100.

[0, 20− ζ) [20− ζ, 30− ζ) [30− ζ, 60− ζ) [60− ζ, 100)
a

b

c

a

b c

a

c

b

a

b

c

(b) Foremost broadcast trees for all possible emission dates, considering node
a as the emitter. (The solution holds modulo 100.)

Figure 12: Example of foremost broadcast trees, which are time-dependent entities. Picture
from (Casteigts et al. 2012b).

A concept closely related to the one of temporal distance is that of temporal view, introduced
in a context of social network analysis (Kossinets et al. 2008). The temporal view2 that a
node v has of another node u at time t, denoted by φv,t(u), is defined as the latest (i.e.,
largest) t′ ≤ t when a message received by v at time t could have been emitted at u; that is,
in our formalism

φv,t(u) = Max{departure(J ) : J ∈ J ∗
(u,v), arrival(J ) ≤ t}.

2This concept was called “view”, but since the term has a very different meaning in distributed computing
(e.g., (Yamashita and Kameda 1996)) the adjective “temporal” has been added to avoid confusion.
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This definition can be seen as a generalization of the one from Kossinets et al. (2008) where
only punctual contacts were considered (i.e., contacts without duration). There is a clear
connection between temporal distances and temporal views. In fact both refer to the same
quantity seen from different perspectives: the temporal distance is a duration defined locally
at an emitter for a specific emission date, while the temporal view is a date defined locally
at a receiver for a specific reception date. In fact, we have

d̂u,te(v) = tr − φv,tr(u) (2)

where te is an emission date, and tr is the corresponding earliest reception date. As pointed
out in a recent paper (Casteigts et al. 2010), these notions are deeply impacted by the
co-existence of direct and indirect journeys. Indeed, the existence of arbitrarily long contacts
between nodes makes it possible for adjacent edges to overlap in time and thus produce more
complex patterns of time lags between nodes. Consider the plots in Figure 13, showing an
example of evolution of temporal distance (from a to c) and the corresponding temporal view
(that c has of a) in a very simple TVG. Contrary to the case with punctual contacts—where
evolution occurs only in discrete steps—there is here a mixture of discrete and continuous
evolution.

a b c
[0, 4) [1, 3)∪[5, 6)

(a) A simple TVG

0

2ζ

1+ζ

2+2ζ
3

1−ζ 3−2ζ 4−ζ

d̂a,t(c)

t

(b) Temporal distance from a to c

0

1−ζ

3−2ζ
4−ζ

1+ζ 3 5

φc,t(a)

t

(c) Temporal view that c has of a

Figure 13: Temporal distance and temporal views as a function of time (with ζ � 1).
Example from (Casteigts et al. 2012b).

The problem of measuring temporal views in a social network was considered in the case of
punctual contacts by Kossinets et al. (2008) based on the post-processing of email datasets.
The distributed version of this problem in the more general case of arbitrarily long contacts
(case depicted in Figure 13) was recently studied by Casteigts et al. (2011). The authors
asked whether each node in a network could track in real-time how “out-of-date” it is with
respect to every other node. Although relatively straight forward when punctual contacts
are considered, this problem becomes substantially more complex in the case of arbitrarily
long contacts due to the heterogeneous evolution of the views (continuous, based on direct
journeys, and discrete, based on indirect journeys). The problem was further complicated
(but also made more realistic) by considering continuous-time systems and non-nil message
latency ζ; however, this latency was assumed to be constant for all links and known to the
nodes. It was demonstrated that the problem remains solvable in this context by generalizing
a time-measurement vector clock construct to the case of “non-punctual causality”, resulting
in a tool called T-Clocks.
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The purpose of T-Clocks (of which one instance must run in each node) is to track two
kinds of variables: the level of the underlying node with respect to any other node (that
is, the topological length of the shortest direct journey currently arriving, if any, from any
remote node), and the largest date at which a message carried to the local node through
an indirect journey could have been emitted at any other node. T-Clocks can then serve
as an abstraction layer between the network and some higher algorithm (see Figure 14),
which uses temporal view information to solve more concrete problems. The initial examples
included learning foremost broadcast trees (Casteigts et al. 2011) and fastest broadcast trees
(Casteigts et al. 2012b) in periodically-varying graphs.

Network

T-Clocks

Higher-Level Algorithm

levelChanged()
global

dateImproved()

onEdgeAppearance()
local

onEdgeDisappearance()

Figure 14: T-Clocks as an abstraction to track temporal views. Picture from (Casteigts
et al. 2012b).

3.3.6 Further concepts

The number of definitions built on top of temporal concepts could grow endlessly, and our
aim is certainly not to enumerate all of them. Yet, here is a short list of additional concepts
that we believe are general enough to be useful in several analytical contexts.

Building on top of the concept of distance, that of eccentricity can be similarly mapped into
a topological and a temporal version. The temporal eccentricity of a node u at time t, ε̂t(u),
is thus defined as

ε̂t(u) = max{d̂u,t(v) : v ∈ V }; (3)

that is, the duration of the “longest” foremost journey from u to any other node. This
concept turned out to be very useful in solving the problem of learning fastest broadcast
trees in periodically-varying graphs (Casteigts et al. 2012b). Indeed, the best moment to
initiate a fastest broadcast is precisely the date of minimal temporal eccentricity for the
emitter, which can be determined using T-Clocks (see Section 3.3.5). Figure 15 shows
the evolution of the temporal eccentricity of node a in the example graph of Figure 12(a),
pictured as the maximum between the two corresponding distances (from a to b and from a
to c). Notice that unlike foremost broadcast, which has a different solution for each emission
date (the trees are time-dependent), a fastest broadcast tree in a periodic TVG remains
optimal regardless of the starting date, since the emitter can simply wait to send the message
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(a) d̂a,t(c) as a function of t
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(c) ε̂a(t)=max(d̂a,t(b), d̂a,t(c))

Figure 15: Evolution of the temporal eccentricity of node a in the triangle graph of
Figure 12(a) (modulo 100). Example from Casteigts et al. (2012b)
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Informed nodes Non-informed nodes

Figure 16: Small instant diameter vs. large temporal diameter.

at the time of minimal eccentricity (which holds modulo the period; in this example, any
chosen date between 20 and 29).

The concept of diameter can also be mapped into a topological and a temporal version.
The concept of temporal diameter is a time-dependent concept; it is defined at time t as
max{ε̂t(u) : u ∈ V }, or equivalently, as max{d̂t(u, v) : u, v ∈ V 2}. The first temporal
versions of eccentricity and diameter seem to have been proposed by Bui-Xuan et al. (2003).
Temporal diameter was further investigated from a stochastic point of view by Chaintreau
et al. (2008), and under the name “flooding time” by Clementi et al. (2008).

In a recent book chapter, Clementi and Pasquale (2011) it is asked whether it is possible to
define an adversarial strategy such that at every time step the snapshot of the graph has a
small diameter (say a constant one), and yet the temporal diameter is large (e.g., linear in
the number of nodes). This question is left unsolved, inviting the reader to think of it as a
little exercise. Figure 16 illustrates a possible configuration that allows us to answer in the
affirmative. The adversary only needs to reshuffle the nodes in between every snapshot so
as to create a clique of informed nodes and another clique of non-informed nodes, linked by
a single edge. This yields a diameter of 3 in every snapshot, while the temporal diameter is
n− 1.

In the same chapter, Clementi and Pasquale introduce a concept of dynamic expansion—the
dynamic counterpart of the concept of node expansion in static graphs—which accounts for
the maximal speed of information propagation. Given a subset of nodes V ′ ⊆ V , and two
dates t1, t2 ∈ T , the dynamic expansion of V ′ from time t1 to time t2 is the size of the set
{v ∈ V \ V ′ : ∃J(u,v) ∈ J ∗G[t1,t2) : u ∈ V ′}, that is, in a sense, the collective horizon of V ′ in
G[t1,t2).
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4 Communication and computational models

Distributed algorithms can be formulated in a variety of ways, and using a variety of
communication or computational assumptions. This section is a review of the main models
and their specifications. For simplicity, the following descriptions assume an undirected
graph. We first review low-level models, which into account the communication environment
in which the algorithm executes, and then focus on high-level abstraction models that have
proved useful in obtaining general results in distributed computation.

4.1 Communication by message passing

Message passing is by far the most common model in the literature. In this model, nodes
communicate by exchanging messages over communication channels that usually reflect
the graph structure of the network. The sender node drops a message to be sent in one
of its outgoing channels, while the receiver is notified in an event-based fashion when a
new message arrives. The model has several variants regarding synchronicity, faults, or the
type of medium considered. For example, synchronous message passing consists of rounded
communication whereby messages sent at the end of round r− 1 are delivered at destination
in the beginning of round r, while asynchronous message passing considers an unpredictable
(but in general finite) delivery time. Another important distinction is between a wired
communication medium, in which all pairs of neighbours have their own private channel, and
a wireless communication medium (more generally called a broadcast medium), in which
every message sent by a node is received by all its neighbours. Further variations include
cases with or without port numbering to distinguish between local neighbours relative to the
sending or receiving of a message. The message passing communications model is illustrated
in Figure 17(a).

4.2 Communication by registers

In this model, each communication link has two associated registers, one for each direction.
Each register can be accessed in read/write mode by one of the two nodes, and in read-
only mode by the other. To communicate with a neighbour, a node thus writes in the
corresponding register, while the neighbour reads it from time to time in an active way. By
reading an outgoing register, an emitter can learn whether the register was accessed (read)
by the corresponding neighbour, which allows some sort of synchronicity. The register-based
communications model is illustrated in Figure 17(b).

4.3 Communication by mailboxes

In this model, each node has a memory area in which neighbours can write data. A node
n1 wishing to communicate with a neighbour n2 writes in the memory area of n2 and, if
awaiting a reply, reads the reply in its memory area where n2 can write. In general, it is
assumed that the reading of data by the underlying node deletes it, which is called message
consumption. The mailbox-based communications model is illustrated in Figure 17(c).
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Figure 17: Communication models.

4.4 Communication by shared memory

In this model, the different nodes wishing to communicate share a common memory resource.
Access to this resource is generally exclusive for writes, but can be read concurrently. Work
in this model often faces strong constraints regarding the cost of a central communication
system, which constitutes a significant part of the algorithmic efforts and contributions. The
shared-memory communications model is illustrated in Figure 18(a).

4.5 Computation by mobile agents

Agents are computational entities that have the ability to migrate and change their execution
platform. As such, they can pause the execution of an algorithm, move from a node to
another node, then resume this execution. Variants include the possibility or not for the
agents to carry data with them. The model of mobile agents was proven computationally
equivalent to that of message passing (Chalopin et al. 2006a, Das et al. 2007). Yet, it
suggests a programming paradigm that is much different in essence and allows natural
thinking for some distributed problems, e.g., map construction (Flocchini et al. 2009a). The
mobile agent computational model is illustrated in Figure 18(b).

access access

(a) Shared memory (b) Mobile agents

Figure 18: Communication models (continued).

4.6 Abstracting communications

Although a vast majority of algorithms are designed in one of the above models—predominantly
the message passing model—the very fact that one of them is chosen implies that the obtained
results (e.g., positive or negative characterizations and associated proofs) are limited to the
scope of this model. This problem of diversity among formalisms and results, already stated
by Lynch (1989) more than twenty years ago, led researchers to consider higher abstractions
when studying fundamental properties of distributed systems, some of which we consider in
this section.
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4.6.1 Local computation by graph relabelling

Local computations by means of graph relabelling was proposed as an abstraction by Litovsky
et al. (1999). These theoretical tools allow one to represent a distributed algorithm as a set
of local interaction rules that are independent from the communications model.

This level of abstraction is achieved by representing the network as a labelled graph, where
the label of each vertex or edge encodes its algorithmic state. The algorithm is then defined
as a set of relabelling rules that modify these labels in an atomic way, according to some
local pattern.

Figure 19 shows a basic example of algorithm made up of a single rule, I N I I0 1 , which
builds a spanning tree over an arbitrary graph. Concretely, the effect of the rule is to extend
the existing tree by including a connected external node (label N) and the corresponding
edge. Initially, all the nodes are labelled N except one distinguished node, the root of the
tree, labelled I. All the edges are labelled 0 (they do not belong to the tree). Then, as the
rule is applied repeatedly, more nodes and edges are included, leading eventually to a valid
spanning tree.
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Figure 19: Spanning tree construction over a static graph, using graph relabelling. Adapted
from (Litovsky et al. 1999).

Several relabelling steps can occur simultaneously, as long as they involve disjoint sets of
nodes. The order in which the interactions take place is not specified by the algorithm; it
can be regarded as an implementation choice or even an external component (e.g., controlled
by an adversary). Thus, from the abstraction level of graph relabelling, several outcomes
are possible, e.g., there are several possible spanning trees in our example.

Slightly more formally, let the network topology be represented by a finite undirected
loopless graph G = (V,E), with V representing the set of nodes and E representing the set
of communication links between them. Let λ : V ∪ E → L∗ be a mapping that associates
every vertex and edge from G with one or several labels from an alphabet L (which denotes
all the possible states these elements can take). The state of a vertex v or edge e at time t
is denoted by λt(v) or λt(e), respectively. The whole labelled graph is represented by the
pair (G, λ).

According to Litovsky et al. (1999), a complete algorithm can be given by a triplet {L, I, P},
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Algorithm 1 A propagation algorithm coded by a single relabelling rule (r1).

initial states: {I,N} (I for the initial emitter, N for all the other vertices)
alphabet: {I,N}

preconditions(r1): λ(v0) = I ∧ λ(v1) = N

actions(r1): λ(v1) := I

graphical notation :

I N I I

where I is the set of initial states, and P is a set of relabelling rules (transition patterns)
representing the distributed interactions—these rules are considered uniform (i.e., same for
all nodes). Algorithm 1 shows another example of single-rule algorithm that represents a
general broadcasting scheme. We assume here that the label I stands for the state informed
and N for non-informed. Propagating the information thus consists of repeating this rule,
starting from the emitter vertex, until all vertices are labelled I. Detecting such a final
state is not part of the given algorithm, nor was it for the above spanning tree algorithm. A
treatment of termination detection, per se, in the context of relabelling algorithms can be
found in (Godard et al. 2002).

The scope of computation considered above involved only two neighbour nodes (pairwise
interaction); however, various scopes of computation can be considered, as depicted in
Figure 20.

(a) (b) (c) (d)

Figure 20: Different scopes of local computations; the scope of preconditions is depicted in
white (on the left side of each diagram), while the scope of actions is depicted in black (on
the right side). The dashed elements represent entities (vertices or edges) that are considered
by the preconditions but remain unchanged by the actions.

One may ask whether the various models in Figure 20 are in fact equivalent in power (e.g.,
could we simulate any of them by repeating another?). The answer is “no” due to different
levels of atomicity (e.g., models 20(a) vs. 20(c)) as well as different levels of symmetry
breaking (e.g., models 20(c) vs. 20(d)). The reader is referred the work of Chalopin et al.
(2006b) for a detailed hierarchy of these models. Note that equivalences between models
would have to be re-considered in a dynamic context, because dynamics may prevent the
possibility of applying several steps of a weaker model to simulate a stronger one.

Let us stress that an algorithm does not specify how the nodes synchronize, i.e., how they
select each other to perform a common computation step. Dedicated procedures have been
designed to fit the various models, e.g., local elections (Métivier et al. 2002) and local
rendezvous (Métivier et al. 2003) for star-wise and pairwise interactions, respectively. A
direct consequence is that the execution of an algorithm at this level may not be deterministic.
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The abstraction offered by local computations makes them powerful tools for studying
fundamental properties of distributed algorithms, because it allows to obtain very general
results. For example, a negative result (e.g., an impossibility proof or a necessary condition)
obtained at this level remains valid within the framework of any communication model
(except perhaps quantum ones). Positive results however (e.g., a correctness proof or
sufficient conditions) cannot always be transposed into all communication models.

4.6.2 Graph relabelling over dynamic graphs

The graph relabelling formalism was used in a context of dynamic networks by Casteigts
et al. (2009), with the aim to prove mathematically that given properties on the dynamics
of the network (properties on evolving graphs) are necessary or sufficient conditions to
given distributed problems. The formalism itself can be generalized to dynamic graphs by
considering new rules that associate dedicated operations to the appearance or disappearance
of an incident edge (Casteigts and Chaumette 2005). Figure 21 shows an example algorithm
that maintains a forest of spanning trees over a constantly changing delay-tolerant network,
trying to minimized the average number of trees per connected component (Casteigts 2006).

r1 :
N T
1
off

r2 :
Any Any

2
off

r3 :
T T T N
∅ ∅ 2 1

r4 :
T N N T
2 1 1 2

initial states:
• T for every vertex,

• ∅ for every edge extremity.
meaning of the states:

• T: a token is on this node,

• N: no token is on this node,

• 1: this tree edge leads to the token.

• 2: this tree edge does not.

Figure 21: A spanning forest algorithm based on coalescing and regenerating trees.

A number of dedicated analytical techniques were developed in the context of graph relabelling
systems over static or dynamic graphs; however, these are beyond the scope of the present
document.

4.6.3 Population protocols

Another approach that shares the objective of abstracting the communication model is that
of population protocols suggested by Angluin et al. (2006). Population protocols actually
bear a strong resemblance to the pairwise computational model of Figure 20(c). The brilliant
idea behind population protocols was to consider the underlying synchronization layer as
being representative of node movement (and thus graph dynamics), in such a way that the
model is appropriate for the study of certain dynamic networks.

In the original variant, every node is an anonymous finite state machine (FSM) that interacts
with other nodes at the same abstraction level as with local computations, i.e., assuming
an atomic modification of the state of two neighbouring nodes based on their current state.
Interaction takes place between pairs of nodes whenever they meet, which occurs infinitely
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often for every pair, according to the initial assumption that the graph of interaction is
complete (see Figure 22(a)). Weaker assumptions on the graph of interaction have since
been considered, such as being only connected, rather than completely connected, or having
a tree topology (see Figure 22(b)).

(a) Complete interaction graph (b) Tree-based interaction graph

Figure 22: Examples of graphs of interaction for population protocols. (An edge represents
an interaction that takes place infinitely often.)

Research around population protocols mainly focuses on examining variations of the initial
model and characterizing, for each variant, the type of predicates (formulas of logic related
to the nodes states) that could possibly be computed. For example, the initial model was
shown to compute the class of semilinear predicates, i.e., all predicates definable by first
order Presburger arithmetics (Ginsburg and Spanier 1966).

Variants that have been considered include models where nodes or edges are endowed with
stronger capabilities, such as

• Mediated population protocols (Chatzigiannakis et al. 2010), which consist of the
original setting plus a constant size memory available for each edge.

• Community protocols (Guerraoui and Ruppert 2009) in which nodes possess unique
identifiers and can store a constant number of other identifiers.

• Passively mobile machines (Chatzigiannakis et al. 2011) in which nodes are not FSMs
anymore, but rather Turing machines with unbounded memory.

Variants also include settings with other interaction schedulers (e.g. having different levels
of fairness), or infinite populations (Bournez et al. 2009, Chatzigiannakis and Spirakis 2008).
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5 TVG classes

The need to categorize and understand highly dynamic networks led the engineering
community to design a variety of mobility models for the broadcast/wireless model of
communications, where each model captures a particular context by means of movement
rules for the nodes. A well-known example is the random waypoint model (Guerin 1987),
while other specialized models exist for dedicated uses (e.g., for vehicular networks (Harri
et al. 2009)). The essential purpose of these models is to be able to reproduce experiments
and compare different solutions on a relatively fair basis, thereby providing a common ground
for the engineering community to solve practical challenges in highly dynamic networks,
e.g., routing and broadcasting (Burgess et al. 2006, Guo and Keshav 2007, Jacquet et al.
2010, Jain et al. 2004, Liu and Wu 2009, Zhang 2006, Zhao et al. 2004).

In the same way as mobility models enables practical investigations in highly dynamic
networks, logical properties on the graph dynamics, that is, classes of dynamic graphs, have
the potential to guide a more formal exploration of their analytical aspects. A number of
special classes were recently identified, including the following: graphs in which a given set of
nodes interact infinitely often (Angluin et al. 2006, 2007, Chatzigiannakis et al. 2009), graphs
whose dynamics is unrestricted but which are required to be connected at any instant (Kuhn
et al. 2010, O’Dell and Wattenhofer 2005), graphs whose edges appear or disappear with
given probabilities (Baumann et al. 2009, Clementi et al. 2008), which have a sufficiently
stable root component (Biely et al. 2012), whose schedule is periodic (Casteigts et al. 2011,
Flocchini et al. 2012, 2009b, Ilcinkas and Wade 2011), or that guarantee minimal reachability
properties (Casteigts et al. 2009).

In this section, we examine some central properties of time-varying graphs and briefly
discuss their impact in terms of feasibility and complexity of distributed problems. In
doing so, we review and interconnect a large body of literature. In particular, we identify
several classes of TVGs defined with respect to basic properties on the network dynamics.
Some of these classes have been extensively studied in different contexts; e.g., one of them
coincides with the family of dynamic graphs over which population protocols are defined (see
Section 4.6.3). We examine the (strict) inclusion hierarchy among the classes, organized
in an ascending order of assumptions—from more general to more specific. This hierarchy
was published in a recent paper (Casteigts et al. 2012c). Corresponding to several of the
class-defining properties considered here are necessary conditions and impossibility results for
basic computations. Thus, the inclusion relationship implies that we can transfer feasibility
results (e.g., protocols) to an included class, and impossibility results (e.g., lower bounds) to
an including class.

The classes presented in this section are of very different natures: some of them are based on
the existence of journeys, some require more classical forms of connectivity (i.e., path-based),
and some others are directly defined in terms of edge properties. Some classes allow the
network to have a finite lifetime, while others are defined over recurrent properties that
are assumed to hold infinitely. Finally, some classes are not uniform in the sense that they
require properties relative to a subset of nodes only, others are inspired by the fault-tolerance
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paradigm (e.g., awaiting for some classical property to be eventually verified). The reader is
referred to Table 1 to get a overview of the classes main properties, while going through
their definitions.

Class Journey-based Path-based Edge-based Finite Uniform Fault-tolerant

C1 � – – � – –
C2 � – – � – –
C3 � – – � � –
C4 � – – � � –
C5 � – – – � –
C6 – – � – � –
C7 – – � – � –
C8 – – � – � –
C9 – � – – � –
C10 – � – – � –
C11 – � – – � �
C12 – � – – � �
C13 – – � – � –

Table 1: Summary of key properties of the classes.

5.1 Classes of graphs based on finite properties

The most general class to make sense is perhaps the one wherein at least one node can reach
all the others by means of a journey, that is, in the TVG formalism:

Class 1 ∃u ∈ V : ∀v ∈ V, u� v.

This condition is necessary, for example, for broadcast to be feasible at least once from at
least one node. This condition is present in all the TVGs we have shown so far, except that
of Figure 10 on page 17.

The second class is somewhat uniform:

Class 2 ∃u ∈ V : ∀v ∈ V, v � u.

That is, at least one node can be reached by all the others. An example with this property
is node d in the graph of Figure 11 on page 20. This condition is necessary for a variety of
tasks, for example for computing a function whose input is distributed over all the nodes
(with at least one node generating the output). Any algorithm for which a terminal state
must be causally related to all the nodes initial states also falls in this category, including,
for example, most leader election or counting algorithms.
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Class 3 (Connectivity over time): ∀u, v ∈ V, u� v.

That is, every node can reach all the others; in other words, the TVG is connected over
time (or temporally connected). This class contains, for instance, the graph of Figure 9 on
page 16, but it does not contain that of Figure 11 on page 20. By the same reasoning as
for Class 1 and Class 2, this condition is necessary to enable broadcast from any node, to
compute a function whose output is known by all the nodes, or again to ensure that every
node has a chance to be elected in a leader election.

These three basic classes show how relations between TVGs properties and the feasibility of
algorithms can be formally established (Casteigts et al. 2009) based on a combination of
evolving graphs and graph relabelling (see also Section 4.6.1). Variants of these classes can
be found in recent literature, e.g., (Greve et al. 2011) where the assumption that temporal
connectivity is eventually achieved among a stable subset of the nodes is used to implement
failure detectors in dynamic networks.

Class 4 (Round connectivity): ∀u, v ∈ V, ∃J1 ∈ J ∗(u,v), ∃J2 ∈ J ∗(v,u) : arrival(J1) ≤
departure(J2).

That is, every node can reach all the others and be reached back afterwards. Most of the
graphs seen so far do not belong to this class. The graph of Figure 11 on page 20 does so
because it contains only two edges whose presence overlap in time. Round connectivity
may be required, e.g., for adding explicit termination to broadcast, election, or counting
algorithms.

5.2 Classes of graphs based on infinite properties

The classes defined so far are in general relevant in the case that the network lifetime is finite,
or at least a finite number of topological events are considered. When the lifetime is infinite,
connectivity over time is generally assumed by default, and more elaborate properties can
then be considered.

Class 5 (Recurrent connectivity): ∀u, v ∈ V, ∀t ∈ T , ∃J ∈ J ∗(u,v) : departure(J ) > t.

That is, at any point t in time, the temporal subgraph G[t,+∞) remains connected over
time. A graph like the one of Figure 12(a) on page 20 belongs to this class because its
schedule is periodic and its underlying graph is connected. Both graphs of Figure 22 on
page 30 also belong to this class. Recurrent connectivity is implicitly assumed in most
works related to delay-tolerant networks. It actually characterizes all those DTNs where
routing can always be achieved from any node to any other node, recurrently. This class was
referred to as eventually connected by Awerbuch and Even (1984), however the terminology
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“eventually connected” is also used with different meaning in recent DTNs literature (see
below Class 11).

As discussed in Section 3.3.1, the fact that the underlying graph G = (V,E) is connected
does not imply that G is connected over time—the ordering of topological events matters.
Such a condition is however necessary to allow connectivity over time and thus to perform
any type of global computation. For this reason, the following three classes additionally
assume that the underlying graph G is connected.

Class 6 (Recurrence of edges): ∀e ∈ E, ∀t ∈ T , ∃t′ > t : ρ(e, t′) = 1 and G is connected.

That is, if an edge appears once, it appears infinitely often (i.e., for any date, there exists a
future date when the edge appears again). Examples of graphs in this class include social
networks in which we assume two people that interact at some time will eventually interact
again. Observe that since the underlying graph G is connected, we have Class 6 ⊆ Class 5.
Indeed, if all the edges of a connected graph appear infinitely often, then there must exist,
by transitivity, a journey between any pairs of nodes infinitely often.

In a context where connectivity is recurrently achieved, it becomes interesting to look at
problems where more specific properties of the journeys are involved, e.g., the possibility to
broadcast a piece of information in a shortest, foremost, or fastest manner (see Section 3.3.5
for definitions). Interestingly, these three variants of the same problem have different
requirements in terms of TVG properties. It is for example possible to broadcast in a
foremost fashion in Class 6, whereas shortest and fastest broadcasts are not possible in this
class (Casteigts et al. 2010).

Shortest broadcast becomes possible if the recurrence of edges is bounded in time, and the
bound is known to the nodes, a property characterizing the next class:

Class 7 (Time-bounded recurrence of edges): ∀e ∈ E, ∀t ∈ T , ∃t′ ∈ [t, t+Δ), ρ(e, t′) = 1,
for some Δ ∈ T and G is connected.

Examples in this class include professional networks (e.g., in a small company) where persons
are supposed to interact with a number of colleagues at least once a week (Δ could here be
12 days, the worst case lag between two interactions). An interesting implication of this class
is that the temporal diameter becomes bounded by Δ times the topological diameter (see
definitions in Section 3.3.6). Nodes also have the possibility to learn their neighbourhood
in the underlying graph, through waiting a period of Δ (if Δ is known). The feasibility
of shortest broadcast follows naturally by using a Δ-rounded breadth-first strategy that
minimizes the topological length of journeys.

A particular case of bounded recurrence that is frequently encountered in literature is that
of periodic networks:
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Class 8 (Periodicity of edges): ∀e ∈ E, ∀t ∈ T , ∀k ∈ N, ρ(e, t) = ρ(e, t + kp), for some
p ∈ T and G is connected.

The graph in Figure 12(a) falls into this class. The periodic assumption holds in practice
in many cases, including networks whose entities are mobile with periodic movements
(satellites, guards tour, subways, or buses). The periodicity assumption within a DTN has
been considered in a number of contexts including network exploration (Flocchini et al.
2009b, Ilcinkas and Wade 2011, Flocchini et al. 2012) and routing (Keränen and Ott 2009,
Liu and Wu 2009). Periodicity also enables the construction of foremost broadcast trees
that can be re-used modulo p for subsequent broadcasts (Casteigts et al. 2011), whereas
the more general classes of recurrence requires the use of a different tree for every foremost
broadcast.

More generally, the point of exploiting TVG properties is to rely on invariants that are
generated by the dynamics (e.g., recurrent existence of journeys, periodic optimality of
a broadcast tree, etc.). In some works, particular assumptions on network dynamics are
made to obtain invariants of a more classical nature. Below are some examples of classes,
formulated using the graph-centric point of view of (discrete-time) evolving graphs, i.e.,
where G = (G,SG ,N).

Class 9 (Constant connectivity): ∀Gi ∈ SG , Gi is connected.

Here, the dynamics of the network are not constrained as long as the graph remains connected
in every time step. Examples of this class include sensor networks with sleeping schedules,
wherein different subsets of sensors are successively put to sleep to save energy, while a
connected subset of them remains awake to serve their purpose. Such a class was used
for example by O’Dell and Wattenhofer (2005) to enable progression hypotheses on the
broadcast problem. Indeed, if the network is always connected, then at every time step there
must exist an edge between an informed node and a non-informed node, which allows one
to bound the broadcast time (by n = |V | in the worst case). This class was also considered
by Kuhn et al. (2011) for the problem of consensus.

Class 10 (T-interval connectivity): ∀i ∈ N, T ∈ N, ∃G′ ⊆ G : VG′ = VG, G
′ is connected,

and ∀j ∈ [i, i+ T − 1), G′ ⊆ Gj.

This class is a particular instance of constant connectivity in which a specific spanning
connected subgraph of the underlying graph G is available for any period of T consecutive
time steps. It was introduced by Kuhn et al. (2010) to study problems such as counting,
token dissemination, and computation of functions whose input is spread over all the nodes
(considering an adversarial edge schedule). The authors show that computation could be
sped up a factor of T compared to the 1-interval connected graphs, that is, graphs of Class 9.

Other classes of TVGs were studied by Ramanathan et al. (2007), which rely on intermediate
properties between constant connectivity and connectivity over time. They include Class 11
and Class 12 below.
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Class 11 (Eventual instant-connectivity): ∀i ∈ N, ∃j ∈ N : j ≥ i, Gj is connected.

In other words, there is always a future time step in which the network will be instantly
connected. This class was simply referred to as eventual connectivity in their paper, but
since the meaning is different from that used by Awerbuch and Even (1984) (see above,
Class 5), we have renamed it to avoid confusion. This class could represent partially DTN
networks where the absence of connectivity is only occasional and transient.

Class 12 (Eventual instant-routability): ∀u, v ∈ V, ∀i ∈ N, ∃j ∈ N : j ≥ i and a path from
u to v exists in Gj.

That is, for any two nodes, there is always a future time step in which a instant path exists
between them. The difference with Class 11 is that these paths may occur at different times
for different pairs of nodes. Ramanathan et al. (2007) used Classes 11 and 12 to represent
networks where routing protocols for (connected) mobile ad hoc networks eventually succeed
if they tolerate transient topological faults.

Most of the works listed above strove to characterize the impact of various temporal properties
on problems or algorithms. A reverse approach was considered by Angluin et al. in the field
of population protocols (Angluin et al. 2006, 2007), where for a given assumption (that any
pair of node interacts infinitely often), they characterized all the problems that could be
solved in this context. The corresponding class is generally referred to as that of (complete
or otherwise) graph of interaction.

Class 13 (Complete graph of interaction): The underlying graph G=(V,E) is complete,
and ∀e ∈ E, ∀t ∈ T , ∃t′ > t : ρ(e, t′)=1.

From a TVG perspective, this class is the specific subset of Class 6, in which the underlying
graph G is complete. Various types of schedulers and assumptions were subsequently
considered in the field of population protocols, adding further constraints to Class 13 (e.g.,
weak fairness, strong fairness, bounded, or k-bounded schedulers) as well as interaction
graphs which could be less than complete (see also Section 4.6.3).

5.3 Connecting classes into a hierarchy

An interesting aspect of unifying these properties within the same formalism is the possibility
to see how they relate to each another, and to compare the various solutions and algorithms
that were introduced within. An insight for example can be gained by looking at the short
classification shown in Figure 23, where basic relations of inclusion between the above classes
are reported. These inclusions are strict: for each relation, the parent class contains some
TVGs that are not in the child class.
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Figure 23: Relations of inclusion between classes (from specific to general). Picture from
(Casteigts et al. 2012c).

Clearly, one should try to solve a problem in the most general context possible. The right-
most classes are so general that they offer few properties to be exploited by an algorithm,
but some intermediate classes, such as Class 5, appear quite central in the hierarchy. This
class indeed contains all the classes where significant work was done. A problem solved in
this class would therefore apply to virtually all the contexts considered heretofore in the
literature.

Such a classification may also be also used to categorize problems themselves. As mentioned
above, shortest broadcast is not generally achievable in Class 6, whereas foremost broadcast
is. Similarly, it was shown (Casteigts et al. 2010) that fastest broadcast is not feasible in
Class 7, whereas shortest broadcast can be achieved with some knowledge. Since Class 7 ⊂
Class 6, we have

foremostBcast � shortestBcast � fastestBcast

where � is a partial order on these problems’ topological requirements.

This particular area of research is relatively recent and has started gaining importance.
As a result, new and more sophisticated classes are now appearing. This is the case, for
example, of the class induced by vertex-stable root components in directed graphs (Biely
et al. 2012), in which the condition is that a subset of nodes (root component) remains
strongly connected during a sufficiently long period of time to reach, collectively, all the
other nodes in the network. The internal topology of the root component might change as
long as they remain strongly connected during the considered period, whose duration is 4
times the temporal diameter of the network. This class is illustrated in Figure 24.
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Vertex-stable
root component

Rest of the network

Figure 24: Vertex-stable root component in directed TVGs (Biely et al. 2012)
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6 Offline analysis

This section is concerned with the a posteriori analysis of network traces. We discuss three
particular aspects of this general question, which are i) how network traces could be checked
for inclusion in some of the classes from Section 5, ii) how temporal concepts can be leveraged
to express new phenomenon or properties in complex systems, and iii) how TVGs could be
used to study a coarser-grain evolution of network properties, whether these properties are
of a classical or a temporal nature (both of which imply different approaches).

6.1 Recognizing TVGs

Let us start with recognition of properties that relate to connectivity. Bhadra and Ferreira
(2003) consider the problem of computing connected-component in a given evolving graph
G. A (time-)connected component in G is therein defined as a set of nodes V ′ ⊆ V such
that ∀u, v ∈ V ′, u� v. The authors observe that, in general, some of the journeys’ edges
that contribute to a component may involve nodes outside the component, as illustrated
in Figure 25. Variations around the concept of connected component include for example
strongly-connected components (Bhadra and Ferreira 2003), as well as in- and out-components
(Tang et al. 2010a).

a b

c

d

a b

c

d

a b

c

d

at date t1 at date t2 > t1 at date t3 > t2

Figure 25: Example of a connected component (here, {a, b} using external edges).

The problem of determining the largest connected component in a given TVG G was shown
NP-hard by Bhadra and Ferreira (2003), through reduction from the maximum clique
problem. Yet, checking whether a given set of nodes is a connected component in G can
be done easily, provided a few transformations are made, as described in the same paper.
Consider the transitive closure of all journeys of a graph G, given as the graph H = (V,AH),
where AH = {(u, v) : u � v}. The transitive closure is a static and directed graph, as
illustrated in Figure 26, since journeys are by nature directed entities. The computation of
transitive closures can be done efficiently by building a tree of shortest journeys for each
node, using any of the algorithms from the paper of Bui-Xuan et al. (2003).

Checking whether a set of nodes is a connected component in G now becomes the checking
of whether it is a clique in H (which is easy). The concept of transitive closure actually
allows us to check a graph G for inclusion in several classes (Casteigts et al. 2009). For
instance, the graph is in Class 1 iff H possesses an out-dominating set of size 1; it is in
Class 2 iff H possesses an in-dominating set of size 1; and it is in Class 3 iff H is a complete
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Figure 26: Transitive closure of journeys. Example from (Casteigts et al. 2009).

graph. The reader is referred to the above paper for more examples of inclusion checking
based on other classes and transformations.

6.2 Transposing the definition of phenomena

We discuss here the possible use of TVGs to express the redefinition (or translation) of usual
concepts in complex system analysis into a dynamic version. We provide two examples:
the small world effect, and the fairness of a network. Further examples could obviously be
found.

6.2.1 Small world

A small-world network is one where the distance between two randomly chosen nodes (in
terms of hops) grows logarithmically with the number of nodes in the network. TVG
concepts, such as those of journeys, connectivity over time, and temporal distance have been
used (Tang et al. 2010b) to characterize the small world behaviour of real-world networks in
temporal terms, that is, the fact that there is always a journey of short duration between
any two nodes. Among the concepts introduced by Tang et al. (2010b) is the characteristic
temporal path length, defined as

∑
u,v∈V d̂t0(u,v)

|V 2|

where t0 is the first date in the network lifetime T . In other words, this value is the average
of temporal distances between all pairs of nodes at starting time. Note that an average of
this value over the network lifetime would certainly be meaningful as well.

As per the topological meaning (i.e., in terms of hops) of the small world property in a
dynamic context, e.g., the fact that “mobile networks have a diameter of 7” (Papadopouli
and Schulzrinne 2000), it could be formalized as follows:

∀u, v ∈ V, ∀t ∈ T , ∃J ∈ J ∗(u,v) : departure(J ) ≥ t, |J | ≤ 7.
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6.2.2 Fairness and balance

Other properties of interest can take the form of quantities or statistical information.
Consider the caricatural example of Figure 27, where nodes a to f represent individuals,
each of which meets some other individuals every week (on a periodic basis).

a b c d e f
Monday Tuesday Wednesday Thursday Friday

Figure 27: Weekly interactions between six people.

A glance at the structure of this network does not reveal any strong anomaly: a) the
graph is a line, b) its diameter is 5, c) nodes c and d are more central than the other
nodes, etc. However, if we consider the temporal dimension of this graph, it appears that
(the interaction described by) the graph is highly unfair and asymmetric: any information
originating from a can reach f within 5 to 11 days (depending on what day it is originated),
whereas information from f needs about one month to reach a. Node a also appears more
central than c and d from a temporal point of view.

We could define here a concept of fairness as being the standard deviation among the nodes
temporal eccentricities (see Section 3.3.6). This indicator provides an outline on how well
the interactions are balanced among nodes. For instance, the TVG of Figure 27 is highly
unfair, while the one shown in Figure 28 is fairer (although fairness remains structurally
constrained by G, the underlying graph).

a b c d e f
Monday Thursday Monday Thursday Monday

Figure 28: Weekly interactions between six people—Fairer version.

A related measure could reflect how balanced the graph is with respect to the time dimension,
since the metrics of interest are time-dependent (e.g., the temporal diameter of the TVG in
Figure 28 is much lower on Mondays than on Tuesdays). Recent efforts in similar directions
include measuring the temporal distance between individuals based on inter-meeting times or
e-mail datasets (Kossinets et al. 2008, Kostakos 2009), or the redefinition of further concepts
built on top of temporal distance, such as temporal betweenness and temporal closeness.

6.3 Capturing the coarse-grain evolution

On many occasions in this document, we have focused on the question of how static concepts
translate into a dynamic context, e.g., through the redefinition of more basic notions like
those of paths (into journeys), distance (into temporal distance) or connectivity (into
connectivity over time). From a complex system perspective, these temporal indicators, as
well as those built on top of them, are completing the set of atemporal indicators usually
considered, such as (the normal versions of) distance and diameter, density, clustering
coefficient, or modularity, to name a few. It is important to keep in mind that all these
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indicators, whether temporal or atemporal, essentially account for network properties at a
reasonably short time-scale (fine-grain dynamics). They do not, however, necessarily reflect
how the network evolves over longer periods of time (coarse-grain dynamics).

We present below a general approach to looking at the evolution of both atemporal and
temporal indicators (Santoro et al. 2011). Looking at the evolution of atemporal indicators
can be done by representing the evolution of the network as a sequence of static graphs,
each of which represents the aggregated interactions over a given time-window. The usual
indicators can then be normally measured on these graphs and their evolution studied over
time. The case of temporal indicators is more complex because the corresponding evaluation
cannot be done on static graphs. The proposed solution is therefore to look at the evolution
of temporal indicators through a sequence of shorter (and non-aggregated) TVGs, i.e., a
sequence of temporal subgraphs of the original TVG that cover successive time-windows.

6.3.1 Evolution of atemporal indicators

Atemporal indicators are those whose definition can be stated upon a static graph. They
represent structural properties a network has at a given moment of its history.

TVGs as a sequence of static graphs

Given a TVG G = (V,E, T , ρ, ζ), one can define the footprint of this graph from t1 to t2 as the
static graph G[t1,t2) = (V,E[t1,t2)) such that ∀e ∈ E, e ∈ E[t1,t2) ⇐⇒ ∃t ∈ [t1, t2), ρ(e, t) = 1.
In other words, the footprint aggregates all interactions of given time windows into static
graphs. Let the lifetime T of the TVG be partitioned into consecutive sub-intervals
τ = [t0, t1), [t1, t2) . . . [ti, ti+1), . . ., where each [tk, tk+1) can be denoted τk. We denote the
sequence of footprints of G according to τ as the sequence SF (τ) = Gτ0 , Gτ1 , . . ..

Considering the sequence SF (τ) with a sufficient interval size allows us to overcome the
strong fluctuations of the fine-grain interactions and focus instead on the more general
trends in the evolution of the network’s structure. Note that the same approach could be
considered with a sequence of intervals that are overlapping (i.e., a sliding time-window)
instead of disjoint ones. Another variation may be considered based on whether the set of
nodes in each Gτi is also allowed to vary.

Since every graph in the sequence is static, any classical network parameter can be directly
measured on it. Depending on the parameter and on the application, different choices of
granularity are more appropriate to capture meaningful behaviour. At one extreme, each
interval could correspond to the smallest time unit (in discrete-time systems), or to the time
between any two consecutive modification of the graph; in these cases, the whole sequence
becomes equivalent to the model of evolving graph (Ferreira 2004). At the other end of the
spectrum, i.e., taking τ = T , the sequence would consist of a single footprint aggregating all
interactions over the network lifetime, that is, be equal to G, the underlying graph of G.

Looking at the evolution of atemporal parameters allows to understand how some emerging
phenomena occur on the network structure, for instance, the densification of transportation
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networks (through diameter or average distance indicators), or the formation of communities
in social networks, through modularity (Blondel et al. 2008), cohesion (Friggeri et al. 2011)
or other indicators, e.g., (Alvarez-Hamelin et al. 2008, Börner et al. 2007).

6.3.2 Evolution of temporal indicators

Most temporal concepts—including those mentioned in Section 3.3—are based on replacing
the notion of a path with that of a journey. As a result, they can be decomposed into three
versions depending on the type of metric considered (i.e., shortest, foremost, fastest). Since
journeys are paths over time, the evolution of parameters based on journeys cannot be
studied using a sequence of aggregated static graphs. For example, there might be a path
between x and y in all footprints, and yet possibly no journey between them depending on
the precise chronology of interaction. Analyzing the evolution of such parameters requires
more than a sequence of static graphs.

TVGs as a sequence of (shorter) TVGs

Temporal subgraphs have been defined in Section 3.3. Roughly speaking, they are themselves
TVGs that reproduce all the interactions present in the original TVG for a given time
window—without aggregating them. In the same way as for the sequence of footprints, we can
now look at the evolution of a TVG through a sequence of shorter TVGs SF (τ) = Gτ0 ,Gτ1 , . . .,
in which the intervals are either disjoint or overlapping. Looking at the coarse-grain evolution
of temporal indicators could allow to answer questions like: how does the temporal distance
between nodes evolve over time? Or more generally, how does a network self-organize,
optimize, or deteriorate, in terms of temporal efficiency. Using concepts like fairness, defined
above, this approach may also help capture the emergence of non-apparent inequalities in a
social network.
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7 TVGs and formal languages

In this section, we review some recent work that explored the connections between dynamic
networks (by means of TVGs), and computability and formal languages. We show how the
manipulation of TVGs as automata allowed for a clean characterization of the power of
buffering in dynamic networks (that is, the ability for a node to store and carry an information
for some time before forwarding it). It was shown, in particular, that the expressivity of
TVGs drops from that of a Turing machine to that of a finite state machine (FSM) when
unrestricted buffering is allowed for the nodes. We then show how a TVG (in the first case)
can be used to simulate a Turing machine, which complements these results in constructive
way.

7.1 TVGs seen as automata

Given a dynamic network modelled as a TVG G, a journey in G can be viewed as a word
in the alphabet of the edge labels. In this light, the class of feasible journeys defines the
language Lf (G) expressed by G, where f ∈ {wait, nowait} indicates whether or not indirect
journeys are considered feasible by the environment. Hence, a TVG G whose edges are
labelled over Σ, can be viewed as a TVG-automaton A(G) = (Σ, S, I, E , F ) where Σ is the
input alphabet; S = V is the set of states; I ⊆ S is the set of initial states; F ⊆ S is the
set of accepting states; and E ⊆ S × T × Σ × S × T is the set of transitions such that
(s, t, a, s′, t′) ∈ E iff ∃e = (s, s′, a) ∈ E : ρ(e, t) = 1, ζ(e, t) = t′ − t.

Figure 29 shows an example of a deterministic TVG-automaton A(G) that recognizes the
context-free language anbn for n ≥ 1 (using only direct journeys). The presence and latency
of the edges of G are specified in Table 2, where p and q are two distinct prime numbers
greater than 1, v0 is the initial state, v2 is the accepting state, and reading starts at time
t = 1.

v0start v1

v2

e0

a

e1

b

e2

b

e4
b

e3
b

Figure 29: A TVG-automaton A(G) such that Lnowait(G) = {anbn : n ≥ 1}. Picture from
(Casteigts et al. 2012a).

The reader may have noticed the basic principle employed here (and in the other examples
from the same work) consist in using latencies as a means to encode words into time, and
presences as a means to select through opening the appropriate edges at the appropriate
time.

In (Casteigts et al. 2012a) this model was used to study the difference of expressivity
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e Presence ρ(e, t) = 1 iff Latency ζ(e, t) =

e0 always true (p− 1)t

e1 t > p (q − 1)t

e2 t /= piqi−1,i > 1 (q − 1)t

e3 t = p any

e4 t = piqi−1, i > 1 any
Table 2: Presence and latency functions for the edges of G.

between TVGs in which direct journeys are the only type of journey feasible, and TVGs
where indirect journeys are also allowed, i.e., nodes can buffer .

The authors focused on the sets of languages Lnowait = {Lnowait(G) : G ∈ U} and Lwait =
{Lwait(G) : G ∈ U}, where U is the set of all TVGs; that is, the languages expressed when
waiting is or is not allowed. For each of these two sets, the complexity of recognizing any
language in the set (that is, the computational power needed by the accepting automaton)
defines the level of difficulty of the environment. The authors first study the expressivity of
TVGs when waiting is not allowed—that is, the only feasible journeys are direct ones—and
prove that the set Lnowait contains all computable languages. The proof is constructive.

The authors next examine the expressivity of TVGs if indirect journeys are allowed—that
is, entities have the choice to wait for future opportunities of interaction rather than seizing
only those that are directly available. In striking contrast with the non-waiting case, the
languages Lwait recognized by TVG-automata are precisely the set of regular languages. In
other words, when waiting is no longer forbidden, the power of the accepting automaton
(i.e., the difficulty of the environment, the power of the adversary), drops drastically from
being at least as powerful as a Turing machine, to becoming that of a finite state machine.
This large gap gives a measure of the computational power of waiting. The gap is indeed
large; informally speaking, Turing machines (TMs) capture the computational power of
today’s computers, without considering performance or memory capacity, whereas the
amount of things a FSMs can do is very limited (e.g., it cannot check whether a given word
“aa . . . aabb . . . bb” has the same number of as and bs).

To better understand the power of waiting, the authors then turn their attention to bounded
waiting—that is, when indirect journeys are considered feasible if the pause between
consecutive edges in the journeys have a bounded duration d > 0. In other words, at
each step of the journey, waiting is allowed only for at most d time units. They examine the
set Lwait[d] of the languages expressed by TVGs in this case and prove the negative result
that the complexity of the environment is not affected by allowing waiting for a limited
amount of time, that is, for any fixed d ≥ 0, Lwait[d] = Lnowait. As a result, the power of
the adversary is decreased only if it has no control over the length of waiting, i.e., if the
waiting is unpredictable.
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7.2 Simulation of a Turing machine

If the nodes have no ability to wait, it is then possible to encode the behavior of a Turing
machine (TM) into the direct journeys of a TVG. The general principle is similar to the
construction of TVG-automata (see Section 7.1) in the sense that the nodes of the TVG
corresponds to the states of the TM and edges correspond to the TM internal transitions.
The difficulty here is to represent (encode) the state of the TM tape (i.e., its working
memory), which is done by means of time itself.

The basic idea is to encode the state of the tape as the decimal part of the current time
by means of a base 3 number that includes the binary content of the tape, plus three “2”s
representing respectively the beginning of the tape, the current position of the tape head,
and the end of the tape. For example, tape 010011010 with head on the next-to-last 0 would
be encoded as 0.201001120102, which gives 0.375122 in base 10. The latency and presence
functions of the TVG can then be tuned to simulate the reading or writing of this state,
respectively, by enabling the presence function at this particular time (reading), or setting
the transition latency to the corresponding duration (writing), these dates holding modulo
1. This is illustrated in Figure 30.

time| | | || | | |
1 2 3 4d1 d2 d3 d4

d1–1

E.g. d1 − n1 = 0.37512210 = 0.2010011201023

=⇒ . . . 0 1 0 0 1 1 0 1 0 . . .

Figure 30: Simulation of a Turing machine by a time-varying graph
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8 Random TVGs

In this report, we are mainly concerned with deterministic aspects of dynamic networks
and related algorithms. As such, we are not considering the role of randomness as central.
However, important results related to randomness have been obtained the past few years
that would be unfair ignore here. Furthermore, some of these results shed light on general
aspects of dynamic networks that hold besides the stochastic context (e.g., transition phases
in temporal diameter).

Randomness in TVGs can be introduced at several different levels. The most direct one is
clearly that provided by probabilistic TVGs, where the presence function ρ : E × T → [0, 1]
indicates the probability that a given edge is available at a given time. In a context of
mobility, the probability distribution of ρ is intrinsically related to the expected mobility of
the nodes. Popular examples of random mobility models include the random waypoint and
random direction models (Camp et al. 2002), where waypoints of consecutive movements
are chosen uniformly at random. Mobility models from social networks include the time-
variant community model (Hsu et al. 2007), and the more recent home-cell community-based
mobility model (Boldrini and Passarella 2010).

Definitions of random TVG differ depending on whether time is discrete or continuous. A
(discrete-time) random TVG is a TVG whose lifetime is an interval of N and whose sequence
of characteristic graphs SG = G1, G2, . . . is such that every Gi is an Erdös and Rényi random
graph, that is, ∀e ∈ V 2,P[e ∈ EGi ] = p for some p; this definition was introduced by
Chaintreau et al. (2008).

One peculiarity of discrete-time random TVGs is that the Gis are independent with respect
to each other. While this definition allows purely random graphs, it does not capture some
properties of real world networks, such as the fact that an edge may be more likely to be
present in Gi+1 if it is already present in Gi. This question is addressed by Clementi et al.
(2008) by introducing edge-Markovian evolving graphs. These are discrete-time evolving
graphs in which the presence of every edge follows an individual Markovian process. More
precisely, the sequence of characteristic graph SG = G1, G2, .. is such that

{
P[e ∈ EGi+1 |e /∈ EGi ] = p

P[e /∈ EGi+1 |e ∈ EGi ] = q

for some p and q called birth rate and death rate, respectively. The probability that a given
edge remains absent or present from Gi to Gi+1 is obtained by the complement of p and q.
The very idea of considering a Markovian evolving graph seems to come from Avin et al.
(2008), in which the authors consider a particular case that is substantially equivalent to
the discrete-time random TVG (Chaintreau et al. 2008). Variations around the model of
edge-markovian evolving graphs include cases where Gi+1 depends not only on Gi, but
also on older graphs Gi−1, Gi−2, . . . (the edges follow a higher order Markovian process)
(Grindrod and Parsons 2010). Edge-Markovian evolving graphs were used by Clementi et al.
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(2008), along with the concept of dynamic expansion (see Section 3.3.6) to address stochastic
questions such as Does dynamics necessarily slow down a broadcast? or Can random node
mobility be exploited to speed-up information spreading? Baumann et al. (2009) extended
this work in by establishing tight bounds on the propagation time for any birth and death
rates.

A continuous-time random TVG is a TVG in which the appearance of every edge obeys
a Poisson process, that is, ∀e ∈ V 2, ∀ti ∈ App(e),P[ti+1 − ti < d] = λeλx for some λ; this
definition is introduced by Chaintreau et al. (2008). (It is interesting to note that in their
definition of random TVG, the authors rely on a graph-centric point of view in discrete time
and on an edge-centric point of view in continuous time. The same trend can actually be
observed in most of the work we reviewed here.)

Random TVGs, both discrete-time and continuous-time, were used to characterize phase
transitions between no-connectivity and connectivity over time as a function of the number of
nodes, a given time-window duration, and constraints on both the topological and temporal
lengths of journeys (Chaintreau et al. 2008).
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9 Conclusion

In this report, we reviewed a collection of models and formalisms that are helpful in designing
and analyzing deterministic algorithms in dynamic networks. At the centre lies the formalism
of time-varying graphs (or evolving graphs), based on which a range of temporal concepts
can be elegantly formulated. We showed how these tools can be leveraged to unify previous
efforts and identify properties of dynamic networks that impact the feasibility or complexity
of algorithms. Such properties could be, for instance, that a temporal path (or journey)
exist between some nodes over the lifetime of the network, or that every snapshot of the
dynamic network, taken individually, remains connected in a classical way.

Based on the new concepts and graph properties, we presented a hierarchy of thirteen classes
of dynamic networks that are related to each other by means of inclusion relations. Each of
the classes was shown, in the recent literature, to bear a relation to a specific problem, such
as election, spanning trees, broadcast, routing, or consensus. These relations are intrinsically
related to the concern of finding deterministic solutions. Indeed, a class is typically defined
by temporal properties that can be proven necessary or sufficient for the successful execution
of a given algorithm.

Given a class of dynamic graph, a central question is to know what real-world mobility
context this class represents, or put differently, what mobility context would generate network
traces that belong to this class. The relevance of this question goes both ways: given a
real-world mobility context, what class (or classes) of dynamic graph contain all the network
instances such a context yield. We discussed some elements of answer for these questions.
In particular, we provided automated ways to check for the inclusion of a dynamic graph
into some of the classes.

Finding connections between real-world mobility and dynamic graph properties is appealing
in several respects. As stated in the introduction, most dynamic networks exhibit chaotic
features and might even look random at first sight, but in the vast majority of the cases
there actually exists some form of structure underlying the dynamics. Finding the relations
between real-world mobility and graph properties has the potential to reveal such structure,
and as a result, to indicate what deterministic algorithms could run, or not, in a given
mobility context.

Even though dynamics generally result from the movement of nodes, we have seen that it
could also result from interference, or even communications scheduling among static nodes.
While discussing the main physical abstraction models, we pointed out, in particular, how the
SINR model is likely to induce dynamic topologies regardless of the nodes movements, due
to the variations in the communication regions that are based on interference. It is, however,
likely that such dynamics are very specific, and therefore exploitable from an algorithmic
standpoint. On a similar note, the pairwise interaction caused by most computational
models (such as population protocols or graph relabelling) could be seen as yet another
level of dynamics. This level should be characterized, again, in terms of dynamic graph
properties that have implications on the feasibility or complexity of deterministic solutions.
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The concepts, models, and formalisms presented in this report are intended to serve as a basis
for more elaborate theoretical tools, directed towards the design and analysis of distributed
algorithms in dynamic networks. An upcoming report (Casteigts and Flocchini 2013, CR
2013-021), which is part of the contract, reviews some of these tools, together with concrete
examples of algorithms and analyses around most classical distributed problems. Another
important topic to be discussed in how new temporal concepts in graph theory impact the
very definition of network tasks, yielding several variants for each original problem.
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Dı́az, J., Mitsche, D., and Pérez, X. (2009), On the probability of the existence of fixed-size
components in random geometric graphs, Advances in Applied Probability, 41(2), 344–357.

Dı́az, J., Mitsche, D., and Santi, P. (2011), Theoretical aspects of graph models for
MANETs, Theoretical aspects of distributed computing in sensor networks, pp. 161–190.

Eagle, N. and (Sandy) Pentland, A. (2006), Reality mining: sensing complex social systems,
Personal Ubiquitous Comput., 10(4), 255–268.
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