Brief Announcement: Waiting in Dynamic Networks:

Arnaud Casteigts
University of Ottawa

Paola Flocchini
University ot Ottawa

Emmanuel Godard
Université Aix-Marseille

casteig@eecs.uottawa.ca flocchin@eecs.uottawa.ca egodard@cmi.univ-mrs.fr

Nicola Santoro
Carleton University

Masafumi Yamashita
Kyushu University

santoro@scs.carleton.ca mak@csce.kyushu-u.ac.jp

We consider infrastructure-less highly dynamic networks, where
connectivity does not necessarily hold, and the network may ac-
tually be disconnected at every time instant. These networks are
naturally modeled as time-varying graphs. Clearly the task of de-
signing protocols for these networks is less difficult if the environ-
ment allows waiting (i.e., it provides the nodes with store-carry-
forward-like mechanisms such as local buffering) than if waiting is
not feasible. We provide a quantitative corroboration of this fact in
terms of the expressivity of the corresponding time-varying graph;
that is in terms of the language generated by the feasible journeys
in the graph. We prove that the set of languages £,owaqit When no
waiting is allowed contains all computable languages. On the other
end, we prove that L4 is just the family of regular languages.
This gap is a measure of the computational power of waiting. We
also study bounded waiting; that is when waiting is allowed at a
node only for at most d time units. We prove the negative result
that Lwait[d] = Lnowait-

Keywords

Time-varying graphs, dynamic networks, buffering, expressivity of
TVGs

Categories and Subject Descriptors

F.1.1 [Models of Computation]: Networks of machines; F.4.3
[Formal Languages]: Classes defined by automata; D.4.4
[Communications Management]: Buffering

1. INTRODUCTION

In infrastructure-less highly dynamic networks, computing and
performing even basic tasks (such as routing and broadcasting) is a
very challenging activity due to the fact that connectivity does not
necessarily hold, and the network may actually be disconnected at
every time instant. Such highly dynamic systems do exist, are actu-
ally widespread, and becoming more ubiquitous; the most obvious
class is that of wireless ad hoc mobile networks.

From a formal point of view, the highly dynamic features of
these networks and their temporal nature are captured by the model
of time-varying (or evolving) graphs, where edges between nodes

*The results announced in this paper can be found in: A. Casteigts,
P. Flocchini, E. Godard, N. Santoro, and M. Yamashita. “Expres-
sivity of time-varying graphs and the power of waiting in dynamic
networks”, CoRR, abs/1205.1975, 2012.

Copyright is held by the author/owner(s).
PODC’12, July 16-18, 2012, Madeira, Portugal.
ACM 978-1-4503-1450-3/12/07.

exist only at some times, a priori unknown to the algorithm de-
signer. Formally [1], a time-varying graph G is a quintuple G =
(V,E, T,p,¢), where V is a finite set of entities or nodes; E C
V' x V x ¥ is a finite set of relations between these entities (edges),
possibly labeled by symbols in an alphabet 3. The system is stud-
ied over a given time span 7 C T called lifetime, where T is the
temporal domain (typically, N or R™ for discrete and continuous-
time systems, respectively); p : E x T — {0, 1} is the presence
function, which indicates whether a given edge is available at a
given time; ¢ : E x T — T, is the latency function, which indi-
cates the time it takes to cross a given edge if starting at a given
date (the latency of an edge could vary in time).

A crucial aspect of dynamic networks is that a path from a node
to another might still exist over time, even though at no time the
path exists in its entirety. It is this fact that renders routing, broad-
casting, and thus computing possible in spite of the otherwise un-
surmountable difficulties imposed by the nature of those networks.
Hence, the notion of “path over time", called journey, is a fun-
damental concepts and plays a central role in the definition of al-
most all concepts related to connectivity in time-varying graphs.
Informally a journey is a walk <eq, e2, ..., e > and a sequence of
time instants <ti,t2, ..., tx> where edge e; exists at time ¢; and
the latency ((e;, ¢;) of this edge at that time is such that ;41 >
ti + §(ei, ti).

While the concept of journey captures the notion of “path over
time" so crucial in dynamical systems, it does not yet capture ad-
ditional limitations that the environment can impose during a com-
putation. More specifically, there are systems that provide the en-
tities with store-carry-forward-like mechanisms (e.g., local buffer-
ing); thus an entity wanting to communicate with a specific other
entity at time %o, can wait until the opportunity of communication
presents itself. There are however environments where such a pro-
vision is not available and thus waiting is not allowed. In time-
varying graphs, this distinction is the one between a direct journey
(where Vi,t;+1 = t; + ((ei, t;)), and an indirect journey (where
Fi, i1 > ti + C(es, t1)).

Clearly the task of designing protocols for these networks is less
difficult if the environment allows waiting than if waiting is not
feasible. No quantitative corroborations of this fact exist; in fact,
up to now, there are no answers to these questions: “if waiting
is allowed, how much easier is to solve problems?", “what is the
computational power of waiting?"

A first difficulty in addressing these important questions is that
most of the terms are qualitative, and currently there are no mea-
sures that allow to quantify even the main concepts.

We consider these qualitative questions, and examine the com-
plexity of the environment in terms of the expressivity of the corre-
sponding time-varying graph; that is in terms of the language gen-

erated by the feasible journeys in the graph. We establish results
showing the (surprisingly dramatic) difference that the possibility
of waiting creates.

We find that the set of languages Lyowait When no waiting is
allowed contains all computable languages. On the other end, using
algebraic properties of quasi-orders, we prove that L.,q;; is just the
family of regular languages. In other words, when waiting is no
longer forbidden, the power of the accepting automaton (difficulty
of the environment) drops drastically from being as powerful as a
Turing machine, to becoming that of a Finite-State machine. This
(perhaps surprisingly large) gap is a measure of the computational
power of waiting. We also study bounded waiting; that is when
waiting is allowed at a node only for at most d time units. We prove
the negative result that £,qi¢[q] = Lnowait; that is, the expressivity
decreases only if the waiting is finite but unpredictable (i.e., under
the control of the protocol designer and not of the environment).

2. OVERVIEW OF THE RESULTS

Given a dynamic network modeled as a time-varying graph G,
a journey in G can be viewed as a word on the alphabet of the
edge labels; in this light, the class of feasible journeys defines
the language Ly (G) expressed by G, where f € {wait, nowait}
indicates whether or not indirect journeys are considered feasible
by the environment. Hence, a time-varying graph G whose edges
are labeled over X, can be viewed as a TVG-automaton A(G) =
(3, S,1,E, F) where X is the input alphabet; S = V is the set of
states; I C S is the set of initial states; F' C S is the set of accept-
ing states; and £ C S x T x 3 x S x T is the set of transitions
such that (s,t,a,s’,t') € £iff e = (s,5",a) € E : p(e,t) =
1,¢(e t) =t —t.

Figure 1 shows an example of a deterministic TVG-automaton
A(G) that recognizes the context-free language a”b™ forn > 1
(using only direct journeys). The presence and latency of the edges
of G are specified in Table 1, where p and ¢ are two distinct prime
numbers greater than 1, vo is the initial state, vo is the accepting
state, and reading starts at time ¢t = 1.

Figure 1: A TVG-automaton A(G) such that L,owaeit(G) =

{a"b" :n > 1}.
e Presence p(e, t) = 1 iff Latency ((e, t) =
€o always true (p—1)t
el t>p (g—1)t
e t#£pqgi>1 (g—1)t
es t=p any
e4 t=p'¢"ti>1 any

Table 1: Presence and latency functions for the edges of G.

We focus on the sets of languages Lnowait = {Lnowait(G) :
G € U} and Lyait = {Lwait(G) : G € U}, where U is the set of
all time-varying graphs; that is, we look at the languages expressed

when waiting is, or is not allowed. For each of these two sets,
the complexity of recognizing any language in the set (that is, the
computational power needed by the accepting automaton) defines
the level of difficulty of the environment.

We first study the expressivity of time-varying graphs when wait-
ing is not allowed, that is the only feasible journeys are direct ones.
We prove that the set L,,0wai+ contains all computable languages.

THEOREM 2.1. For any computable language L, there exists a
time-varying graph G such that L = Lpowait(G)

The proof is constructive.

We next examine the expressivity of time-varying graphs if in-
direct journeys are allowed, that is entities have the choice to wait
for future opportunities of interaction rather than seizing only those
that are directly available. In striking contrast with the non-waiting
case, we show that the languages £.,q4i: recognized by TVG-automata
is precisely the set of regular languages.

THEOREM 2.2. Lyqit is the set of regular languages.

We introduce a quasi-order on words based upon the possibility
of inclusion for corresponding journeys. The fact that it is a well
quasi-order cannot be derived by a simple application of classical
results of the domain (eg. from [3]) but can be proved using a
specific technique. The proof is algebraic and relies on a theorem
by Harju and Ilie (Theorem 4.16 in [2]) that enables to characterize
regularity from the closure of the sets for a well quasi-order.

In other words, we prove that, when waiting is no longer forbid-
den, the power of the accepting automaton (i.e., the difficulty of the
environment, the power of the adversary), drops drastically from
being at least as powerful as a Turing machine, to becoming that of
a Finite-State Machine. This (perhaps surprisingly large) gap is a
measure of the computational power of waiting.

To better understand the power of waiting, we then turn our at-
tention to bounded waiting; that is when indirect journeys are con-
sidered feasible if the pause between consecutive edges in the jour-
neys have a bounded duration d > 0. In other words, at each step
of the journey, waiting is allowed only for at most d time units.
We examine the set L,,4i:[q) of the languages expressed by time-
varying graphs in this case and prove the negative result that the
complexity of the environment is not affected by allowing waiting
for a limited amount of time.

THEOREM 2.3. For any fixed d > 0, Lwait[d] = Lonowaits

The basic idea of the proof is to reuse the same technique as
for the nowait case, but with a dilatation of time, i.e., given the
bound d, the edge schedule is time-expanded by a factor d (and thus
no new choice of transition is created compared to the no-waiting
case). As a result, the power of the adversary is decreased only if
it has no control over the length of waiting, i.e., if the waiting is
unpredictable.

3. REFERENCES

[1] A. Casteigts, P. Flocchini, W. Quattrociocchi, and N. Santoro.
Time-varying graphs and dynamic networks. In Proc. 10th Int.
Conf. on Ad Hoc Networks and Wireless (ADHOC-NOW),
pages 346-359, 2011.

[2] T. Harju and L. Ilie. On quasi orders of words and the
confluence property. Theoretical Computer Science,
200(1-2):205-224, 1998.

[3] G. Higman. Ordering by divisibility in abstract algebras.

Proceedings of the London Mathematical Society,
$3-2:326-336, 1952.

