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Abstract—Delay-tolerant networks (DTNs) are characterized
by a possible absence of end-to-end communication routes at
any instant. In most cases, however, a form of connectivity can
be established over time and space. This particularity leads to
consider the relevance of a given route not only in terms of
hops (topological length), but also in terms of time (temporal
length). The problem of measuring temporal distances between
individuals in a social network was recently addressed, based on
a posteriori analysis of interaction traces. This paper focuses on
the distributed version of this problem, asking whether every node
in a network can know precisely and in real time how out-of-
date it is with respect to every other. Answering affirmatively is
simple when contacts between the nodes are punctual, using the
temporal adaptation of vector clocks provided in [23]. It becomes
more difficult when contacts have a duration and can overlap in
time with each other. We demonstrate that the problem remains
solvable with arbitrarily long contacts and non-instantaneous
(though invariant and known) propagation delays on edges. This
is done constructively by extending the temporal adaptation of
vector clocks to non-punctual causality. The second part of the
paper discusses how the knowledge of temporal lags could be used
as a building block to solve more concrete problems, such as the
construction of foremost broadcast trees or network backbones
in periodically-varying DTNs.

I. INTRODUCTION

Highly-dynamic networks, and in particular delay-tolerant
networks, are characterized by a possible absence of end-to-
end communication routes – direct journeys – at any instant. In
most cases, however, communication can still be achieved over
time through disconnected routes – indirect journeys – using
store-carry-forward-like mechanisms. This particularity led re-
searchers to develop a number of routing techniques based for
example on pro-active knowledge on the network schedule [3],
[17], probabilistic [25] or encounter-based strategies [8], [14],
[18], and new metrics derivated from contact statistics [22]. A
good taxonomy of approaches is presented in [30].

On the analytical side, the time-dimension has had a strong
impact on the research, which has mainly focused on ex-
tending most of the usual connectivity concepts – e.g, paths
and reachability [1], [19], distance [3], [16], diameter [7],
connected components [2], or necessary conditions [4], [21] –
to a temporal version. In particular, the fact that connectivity
takes place over arbitrary long periods of time implies that the
latency of a given route no more depends on the sole number of
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hops separating the nodes. Questions that immediately follow
are how far apart in time the nodes can be? can this be
measured precisely for every node?

This type of question has been recently regarded in a
number of works from the field of social network analysis [15],
[24], [23], [28]. Indeed, social networks are in essence very
similar to delay-tolerant networks, and contrarily to these lat-
ter, generate large datasets available for a posteriori analysis.
In [23] in particular, Kossinets et al. ask the question of how
out-of-date each node could be with respect to every other
node. They provide a centralized algorithm – intended to
process a known sequence of contact history – to measure
these distances based on a temporal adaptation of vector
clocks.

Besides looking at the question from a centralized point of
view, these studies assume that the contacts between nodes
are punctual in time – and generally given as triplets (u, v, t)
where u and v are two entities and t a date of contact between
them. This assumption is certainly due to the fact that most
of the datasets available are traces of punctual interactions,
such as email exchanges or message posts on community
websites. The situation in DTNs is different, because the
contact between nodes can have arbitrarily durations and
possibly overlap in time with one another. This aspect renders
the computation of exact temporal distances more complex
because it implies the possible co-existence of indirect routes
on the one hand, and continuums of direct routes on the
other hand. Typical DTNs exhibit a mixture of both in various
proportions.

In such a context, we look at the distributed version of the
problem and ask: is it possible for a node to know precisely,
and in real time, how out-of-date it is with respect to every
other node in the network? We answer positively to this
question for the case of contacts with arbitrary durations and
non-instantaneous (though invariant and known) propagation
delay on edges. The feasibility is demonstrated through an
algorithm that further extends and generalizes the temporal
adaptation of vector clocks done in [23].

The second part of our work is concerned with how the
knowledge of temporal lags could serve as a building block for
more concrete network problems, such as the distributed con-
struction of foremost broadcast trees in periodically-varying
networks (following a line of work initiated in [5]). The
solution we provide builds a set of time-dependent broadcast
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trees that guarantee the earliest possible delivery for any
potential emitter and emission date. Interestingly, the union
of these trees for a given emission date is precisely what the
authors of [23] refer to as network backbones. Our algorithm
therefore computes all the backbones as a by-product.

In both parts of the paper, we use the time-varying graph
formalism proposed in [6] to describe the environment and
interaction between entities, as well as to analyze the protocol
correctness. This formalism, which is semantically equiva-
lent to that of evolving graphs [9], offers in comparison an
interaction-centric perspective that proves more convenient to
express and manipulate temporal aspects that this work re-
quires, e.g. focusing on the evolution of an edge independently
from that of the entire graph.

The paper is organized as follows: in Section II, we de-
scribe the model and terminology that are used throughout
the paper. Section III discusses the problem of measuring
temporal lags in the general case of overlapping contacts
and non-instantaneous progapation delays, and Section IV
shows how this information can be leveraged to build foremost
broadcast trees (and network backbones) in the particular case
of periodically-varying DTNs.

II. MODEL AND TERMINOLOGY

Consider a set V of nodes, possibly making contacts with
each other over a (possibly infinite) time interval T ⊆ T,
called lifetime of the system; the temporal domain T corre-
sponds here to R (continuous-time system). Let the contacts
between nodes define a set of intermittently available undi-
rected edges E ⊆ V ×V such that ∀x, y ∈ V, (x, y) ∈ E ⇔ x
and y have at least one contact in T .

Using the time-varying graph formalism from [6], we
represent the network as a structure G = (V,E, T , ρ, ζ),
where ρ : E × T → {0, 1}, called presence function,
indicates whether a given edge is available at a given time, and
ζ : E × T → T, called latency function, indicates the time it
takes to propagate a message over a given edge at a given date.
In this work, we assume the latency function to be constant for
all edges and presence times, and thus denote it as a constant
value ζ called propagation delay. If a message is sent less
than ζ time before the disappearance of an edge, it is lost.
The intervals of presence of an edge, on the other hand, can be
arbitrarily long and can vary among several appearances of the
edge. Given an edge e, we allow the notation ρ[t1,t2)(e) = 1
to signify that ∀t ∈ [t1, t2), ρ(e, t) = 1.

A sequence of couples J = {(e1, t1), (e2, t2) . . . , (ek, tk)},
where {e1, e2, ..., ek} is a walk in G and ti + ζ ≤ ti+1

for 1 ≤ i < k, is a journey in G iff ρ[ti,ti+ζ)(ei) = 1.
We will denote by departure(J ), and arrival(J ), the start-
ing date t1 and the last date tk + ζ of the journey J ,
respectively. Journeys can be thought of as paths over time
from a source to a destination and therefore have both a
topological length and a temporal length1. The topological

1The concept of temporal distance in a delay-tolerant network seems to have
been first formalized in [3]. Interestingly, this concept has been used under
various terminologies, e.g. reachability time [15], information latency [23],
or temporal proximity [24]. The concept of journey (term used in [3]), has
been variously called schedule-conforming path [1], time-respecting path [15],
[19], or temporal path [7].

length of J is the number |J |h = k of couples in J
(i.e., the number of hops), and its temporal length is its
duration |J |t = arrival(J )− departure(J ) = tk − t1 + ζ.
For example the journey {(ac, 2), (cd, 5)} in Figure 1 has a
topological length of 2, and a temporal length of 3 + ζ units
of time.

Let us denote by J ∗G the set of all journeys in time-varying
graph G, and by J ∗(u,v) ⊆ J

∗
G those journeys starting at node

u and ending at node v. Clearly, the concept of journey is
not symmetrical: the existence of a journey from u to v in
G does not imply the existence of a journey from v to u;
this holds regardless of whether the edges are directed or not,
because the time dimension creates its own level of direction.
For example, in the time-varying graph of Figure 1, there are
several journeys from a to d whereas J ∗(d,a) = ∅.

a

b

c d[1, 3)

[2, 5)

[0, 4)

[5, 6)

Figure 1. A time-varying graph G; the labels on the edges indicate the time
intervals in which those edges are present. The propagation delay is ζ ≤ 1.

We say that a journey is direct if the presence of every
two successive edges overlap in time and their use follow on
directly; it is said indirect otherwise. An example of direct
journey in the graph of Figure 1 is J1 = {(ab, 2), (bc, 2+ζ)}.
Examples of indirect ones include J2 = {(ac, 2), (cd, 5)}, and
J3 = {(ab, 2), (bc, 2 + ζ), (cd, 5)}.

Entities can detect the appearance or disappearance of an
incident edge, and associate dedicated operations in reaction
to both events. Since the presence intervals are by convention
right-open, we assume that the disappearance of an edge at
time t is always handled before the appearance of an edge
at date t, which is consistent with looking at journeys whose
presence intervals strictly follow each other as indirect ones
(e.g. J(a,d) = {(ac, 5−ζ), (cd, 5)} in the above example).

Processing times are considered negligible. We assume that
the message propagation time ζ is known to the nodes. The
entities do not necessarily share the same global time, but local
clocks advance at the same rate. The schedule of the network ρ
is not known to the nodes. Finally, because the objective is to
collect information with respect to remote nodes, we assume
unique identifiers; this assumption is not strictly necessary (e.g.
could be replaced by an adaptation of sense of direction [12]
to dynamic networks).

III. MEASURING TEMPORAL LAGS

This section is concerned with the general problem of
making the nodes aware, at any time, of how out-of-date
they are with respect to every other node. An appropriate
abstraction for this problem is certainly that of temporal view,
introduced in [23] in the context of social network analysis2.

2This concept was called simply “view” in [23]; since the term view has
a very different meaning in distributed computing (e.g., [29]), the adjective
“temporal” has been added to avoid confusion.
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The temporal view that a node v has of another node u at time
t, denoted φv,t(u), is the latest (i.e., largest) t′ ≤ t at which
a message received by time t at v could have been emitted at
u; that is, in our formalism,

φv,t(u) = Max{departure(J ) : J ∈ J ∗(u,v) ∧ arrival(J ) ≤ t}.

By convention, φv,t(v) = t for any node v and time t, and
φv,t(u) = −∞ if no journey from u to v exists before t.
The question under investigation is: can the nodes know their
temporal views in real time? That is, can a node v know the
exact value of φv,t(u) at any time t for any node u?

A. Instantaneous contacts

This question has a simple answer if contacts between
nodes and propagation delays are both instantaneous, the
situation examined by Kossinets, Kleinberg, and Watts [23].
Their solution consists of using a “temporal” adaptation of
the vector clock mechanism. Vector clocks were introduced
independently by Fidge [10] and Mattern [27] to track causal-
ity relations between events that processes generate in a
distributed system, when no assumption are made with respect
to the processes clocks; they establish a type of logical time
that ensures a complete causal ordering of the events in the
system. As shown in [23], the same mechanism can be used
to measure temporal distances between nodes.

The decentralized solution, easily adapted from the central-
ized algorithm of [23], is described in details in Algorithm 1.
Assume for simplicity that all the local clocks share the
same global time; this assumption can be easily removed,
as explained at the end of the section. Informally, every
node v stores and maintains a vector of all its temporal
views φv,t = (φv,t(u) : u ∈ V ) refered to as its vector
clock. Initially the vector contains only its own reflexive
temporal view. Whenever a contact occurs between two nodes,
they exchange their vectors; each will then locally operate a
nodewise maximum between their temporal views (new views
are inserted by copy); the resulting vector is considered as the
new local vector on both sides.

Algorithm 1 Measuring temporal lags with instantaneous
contacts.

1: V ectorClock vec← ∅

2: onContact with a neighbor ng:
3: vec[myself ]← now()
4: send(vec) to ng

5: onReception of a vector clock vecng:
6: for all n ∈ vecng.nodes() do
7: if n /∈ vec.nodes() or vecng[n] > vec[n] then
8: vec[n]← vecng[n]

9: getView(Node n):
10: return vec[n]

In this code, now() returns the current local time; nodes() called
on a given vector clock returns the list of nodes within (without the
associated views); myself stands for the underlying node.

It can be easily proven that the value of the function
getV iew() called with parameter u at node v and time t
returns φv,t(u).

B. Impact of lasting contacts on the temporal views

Algorithm 1 assumes that the duration of an edge appear-
ance (and communication) is instantaneous. The general case
of contacts with arbitrary durations and non-instantaneous
propagation delays (ζ > 0) is clearly more complex and, until
now, no solution exists. In particular, a significant complica-
tion, due to the fact that contacts are not instantaneous, is that
several edges can overlap in time at a same node. Consider for
example the graph shown in Figure 2(a); the temporal view
that node c has of node a is depicted as a function of time
in Figure 2(b). Contrary to the case of instantaneous contacts
– where temporal views can only increase by discrete steps –
there is here a mixture of discrete increases (e.g. at time 1+ ζ
or 5) and continuous increases (from time 1 + ζ to 3).

a b c
[0, 4) [1, 3) ∪ [5, 6)

(a) A simple time-varying graph; ζ ≤ 1.

0

1−ζ

3−2ζ

4−ζ

1+ζ 3 5

φc,t(a)

t

(b) View that node c should have of node a.

Figure 2. Nature of the temporal view in presence of overlapping contacts.

This continuous artefact is due to the existence of direct
journeys – or more precisely, a continuum of direct journeys –
taking place between a and c. Interestingly, the temporal view
that c has of a during this period only depends on the journeys
topological lengths, here 2, which is why node c could
progressively receive between times 1+ ζ and 3 any message
emitted by a between times 1− ζ and 3− 2ζ. It is important
to note that direct journeys are in fact not systematically faster
than indirect ones (imagine a very long direct journey, versus a
short indirect one whose edges presences closely follow each
other). This implies that the temporal view can possibly be
determined by an indirect journey even when a direct one is
available.

In the next sections we denote the temporal views that are
due to direct journeys and indirect journeys by the terms direct
view and indirect view, respectively.

C. The algorithm

Keeping track of direct and indirect views is done in
different ways. Measuring indirect views can be done using the
same mechanism as in Algorithm 1 for instantaneous contacts.
The case with direct views is different, because the nodes
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cannot exchange an infinity of message to track the continuous
increase of a view. As mentioned above, the duration of a
direct journey only depends on its topological length. So if
the nodes know exactly what are the lengths of the (shortest)
direct journey currently arriving to them from the other nodes,
then they can deduce their direct view in real time. Let us call
this length the level of a node with respect to another. Formally

levelv,t(u) =
Min{|J |h : J ∈ J ∗(u,v) ∧ isDirect(J ) ∧ arrival(J ) = t},

where isDirect(J ) is true iff J is a direct journey. By
convention, levelv,t(u) is considered to be −∞ if no direct
journey from u is arriving to v at time t. Observe that the
definition of level is relative to the reception only, and is not
concerned for example with the fact that some edges of the
journey may have disappeared by the reception time. The only
thing that matters is to know locally that messages could still
be currently arriving from a given emitter through a given
number of hops. Adopting this particular definition of the level
is the key point, because it allows us to consider that the direct
view that v has of u at time t is always equal to now() −
levelv,t(u)× ζ.

Now that the appropriate concepts of views and level are
considered, the intuition behind the algorithm follows quite
naturally. Reusing the idea of vector clocks, we adapt the
mechanism of Algorithm 1 to maintain up-to-date information
about two kinds of variables: the level (of the local node with
respect to every other node), and the largest date that could
have been carried until the local node from every other node
(these dates account for the indirect views). The corresponding
vector clock structure now associates to a given node both a
level and a date. Assume again for simplicity that all the
local clocks share the same global time; this assumption can
be easily removed, as explained at the end of the section. The
detailed description of the algorithm is in Algorithm 2.

D. Correctness.

In the following, levelv,t(u) and datev,t(u) denote the
values of variables vec[u].level and vec[u].date, respectively,
read at node v at time t. The notation getV iewv,t(u) similarly
stands for the result of the function getV iew() called on v at
time t with parameter u. Let us start with a few observations:

Property 1: Whenever an edge appears, the local vector is
immediately sent on it (see onAppearance()).

Property 2: Whenever the local vector is modified, it is
immediately sent to all the current neighbors.
This is true at the initialization; after that, the vector can only
be modified in the function updateV ector(), at the beginning
of which a copy is made and at end of which the vector is
sent, if different from the copy.

Lemma 3: For any two nodes u, v and time t, if the edge
(v1, v2) is always present during a period [t, t + ζ), then
levelv2,t+ζ(u) ≤ levelv1,t(u) + 1 for any u.

Proof: Two possibilities must be considered, depend-
ing on whether the edge (v1, v2) appeared before or after
levelv1(u) took the value that it has at time t. If it appeared
before, Property 1 guarantees that v2 has received it by time
t+ ζ; otherwise Property 2 guarantees the same. Every time a

vector is received, the function updateV ector() is executed.
This function goes through all entries of the received vector
(among others) and guarantees the property by line 22.

Lemma 4: For any two nodes v1, v2 and time t, if the edge
(v1, v2) is always present during a period [t, t + ζ), then
datev2,t+ζ(u) ≤ datev1,t(u) + 1 for any u.

Proof: Same ideas as for Lemma 3, but considering
line 24 instead of line 22.

The proof of the correctness of the algorithm will be
carried out through a sequence of lemmas. Lemmas 5 and 6
are intermediate properties that are used for the proof of
Lemma 7. Lemma 8 is similarly used for Lemma 9. The
final theorem concludes based on Lemmas 7 and 9. Note
that, in the following, the term “communication message” (or
simply “message”) does not refer to the messages generated
by Algorithm 2; it denotes instead any message that could be
exchanged by an application running in the network.

Lemma 5: No communication messages could be received
by a node v at time t through a direct journey J ∈ J ∗(u,v)
unless levelv,t(u) ≤ |J |h.

Proof: Let J = {(e1, t1), (e2, t2) . . . , (ek, tk)} ∈ J ∗(u,v)
where ei = (vi, vi+1), 1 ≤ i ≤ k, with v1 = u and
vk+1 = v. By Lemma 3, levelvi+1,ti+ζ(u) ≤ levelvi,ti(u)+1
(1 ≤ i ≤ k); since the journey is direct, ti + ζ = ti+1. Thus
levelv,tk+1

(u) = levelvk+1,tk+1
(u) ≤ levelv1,t(u) + k. Since

v1 = u and levelu,t1(u) = 0 by definition, the Lemma holds.

Lemma 6: No communication message could be received
by a node v at time t through an indirect journey J ∈ J ∗(u,v)
unless datev,t(u) ≥ departure(J ).

Proof: Let J = {(e1, t1), (e2, t2) . . . , (ek, tk)} ∈ J ∗(u,v)
where ei = (vi, vi+1), 1 ≤ i ≤ k + 1, with v1 = u and
vk+1 = v. The proof follows a similar inspiration as that
of Lemma 5, but requires an additional intermediate step
because in general, dateu,departure(J )(u) 6= departure(J ).
The intermediate step is as follows. Because J is indirect,
then there exists at least one intermediate node vj that has
lost the edge from vj−1 before the appearance of the edge to
vj+1 (that is, vj is the last node such that J(u,vj) ⊆ J is a
direct journey). This has caused the function updateV ector()
to execute on vj , and thus vj to convert its level w.r.t.
u into a date (line 15), which by Lemma 5 is necessar-
ily ≥ departure(J ). Now, from Lemma 4 we have that
datevi+1,ti+ζ(u) ≥ datevi,ti(u). By applying this inequality
on the remaining edges (sequentially from vj to vk+1), we can
conclude that datev,t(u) ≥ departure(J ).

Lemma 7: For any pair of nodes u, v and time t,
getV iewv,t(u) ≥ φv,t(u).

Proof: By contradiction, let there exist a pair u, v and
a time t such that getV iewv,t(u) < φv,t(u). This means,
by definition, that a message emitted at u at some time
t′ ≤ t could have arrived at v at some time t′′ whereas
getV iewv,t′′(u) < t′. From the way getV iew() is computed,
this implies that both t′′ − levelv,t′′(u) × ζ < t′ and that
datev,t′′(u) < t′. Consider now the journey described by such
a message. If the journey is direct, then the first inequality is
contradicted by Lemma 5; if the journey is indirect, the second
inequality is contradicted by Lemma 6.
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Algorithm 2 Measuring temporal lags with lasting contacts.

1: V ectorClock vec← ∅
2: Map<Node, V ectorClock> neighborsV Cs← ∅ B the vector clocks of all neighbors are locally memorized.

3: initialization:
4: vec[myself ].level← 0
5: send(vec) to Nnow() B sends the vector to all the current neighbors

6: onAppearance of a common edge with neighbor ng:
7: send(vec) to ng

8: onDisappearance of an edge to neighbor ng:
9: neighborsV Cs[ng]← ∅

10: updateV ector()

11: onReception of a vector clock vecng from a neighbor ng:
12: neighborsV Cs[ng]← vecng

13: updateV ector()

14: updateVector():
15: updateDatesBasedOnLevels()
16: V ectorClock vec′ ← vec B copies the vector for subsequent change detection.
17: for all v ∈ vec.nodes() do
18: vec[v].level← +∞ B resets all levels.
19: for all vecng ∈ neighborsV Cs do
20: B go across all entries of all neighbors vectors, and for each source node,20: for all v ∈ vecng.nodes() do
21: if vecng[v].level < vec[v].level − 1 then
22: vec[v].level← vecng[v].level + 1 B update the underlying level whenever a smaller level is detected.
23: if vecng[v].date > vec[v].date then
24: vec[v].date← vecng[v].date B update the underlying date whenever a larger date is detected.
25: if vec 6= vec′ then
26: send(vec) to Nnow() B if the vector has changed, send it to the current neighbors.

27: updateDatesBasedOnLevels():
28: for all v ∈ vec.nodes() do
29: if now()− vec[v].level × ζ > vec[v].date then
30: vec[v].date← now()− vec[v].level × ζ

31: getView(Node v):
32: return max(vec[v].date, now()− vec[v].level × ζ)

Lemma 8: For any pair of nodes u, v and time t,
φv,t(u) ≥ now()− levelv,t(u)× ζ.

Proof: Let us examine separately the cases where
levelv,t(u) is +∞, 0, or an integer n > 0.

1) If levelv,t(u) = +∞, then now() − levelv,t(u) × ζ =
−∞, which is either equal to φv,t(u) when the latter is
undefined (by convention), or less than it otherwise.

2) If levelv,t(u) = 0, then v is necessarily the same node
as u (because levels w.r.t. other nodes can only be
modified through incrementing the value of a neighbor).
Consequently, t − levelv,t(v) × ζ = t, which is, by
definition, the value of φv,t(v).

3) Let levelv,t(u) = k for some integer k > 0. Let us first
observe that this implies the existence of another node v′

such that levelv′,t−ζ(u) = k − 1 and ρ[t−ζ,t](v, v′) = 1
(otherwise the local level would have been decreased by
the function updateV ector() after the loss of the neigh-
bor causing level to be k). Knowing that levelu,t(u) = 0
implies, by simple induction, that there exists a direct
journey J ∈ J ∗(u,v) such that arrival(J ) = t and
|J |h = levelv,t(u), which in turn implies that a message
emitted at u at time t−levelv,t(u)×ζ would be received

at v at time t.

Lemma 9: For any pair of nodes u, v and time t,
getV iewv,t(u) ≤ φv,t(u).

Proof: By contradiction, assume there exist a pair u, v
and a time t such that getV iewv,t(u) > φv,t(u). From the
way function getV iew() is defined, getV iewv,t(u) > φv,t(u)
implies that either now() − levelv,t(u) × ζ > φv,t(u) or
datev,t(u) > φv,t(u). The first inequality is contradicted by
Lemma 8. As for the second, according to the algorithm,
a date variable can only be increased by means of two
actions: copying the date variable from a neighbors’ vector, or
converting the current level into a date. The first action cannot
generate an unappropriate increase of the value because if two
nodes are able to exchange their vectors, it also means that they
could exchange the messages they have received so far (such
a copy is necessarily consistent). The second action cannot
generate a larger date than φv,t(u), otherwise this would again
contradict Lemma 8.

The correctness of the algorithm now follows from Lem-
mas 7 and 9:

Theorem 10: For any pair of nodes u, v and time t,
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getV iewv,t(u) = φv,t(u).
Finally, let us remark that the simplifying assumption that

all clocks share the same global value is not necessary for the
correctness of the algorithm. Indeed, if the nodes keep track
of when each date was locally received, they can easily add
information about how long the date was locally stored when
they transmit it further. Combining this information with the
propagation delay ζ allows to convert any received date into
the local referential.

IV. BUILDING FOREMOST BROADCAST TREES AND
NETWORK BACKBONES

This section illustrates how temporal lags measurements
can be leveraged to solve concrete problems in delay-tolerant
networks, such as the construction of foremost broadcast trees
and network backbones in networks whose schedule (presence
function ρ) is periodic.

A. Definitions and Background

As discussed above, the length of a journey can be measured
both in terms of hops or time. This gives rise to distinct
definitions of distance in a graph G:
• The topological distance from a node u to a node v at

time t, noted du,t(v), is defined as Min{|J |h : J ∈
J ∗(u,v)∧departure(J ) ≥ t}. For a given date t, a journey
whose departure is t′ ≥ t and topological length is equal
to du,t(v) is qualified as shortest ;

• The temporal distance from u to v at time t, noted
d̂u,t(v) is defined as Min{arrival(J ) : J ∈ J ∗(u,v) ∧
departure(J ) ≥ t} − t. Given a date t, a journey
whose departure is after t and arrival is t + d̂u,t(v)
is qualified as foremost; one whose temporal length is
Min{d̂u,t′(v) : t′ ∈ T[t,+∞)} is qualified as fastest.

The problem of computing shortest, fastest, and foremost
journeys in delay-tolerant networks was introduced in [3], and
an algorithm for each of the three metrics was provided for
the centralized version of the problem (assuming complete
knowledge of G). Computing optimal journeys is useful for
many usages, the most obvious of which are routing and broad-
casting. Consider the graph in Figure 3, with a propagation
delay of ζ = 1.

a

cb

[0, 30) [20, 60)

[10, 40) ∪ [70, 80)

Figure 3. Another example of time-varying graph, with propagation delay
ζ = 1.

We may ask for example what are the foremost journeys
that a message emitted at a should follow to reach every
node as soon as possible. Clearly, this choice depends on
the initial emission date (or initiation date), and even then,
several possibilities could be available. A nice property of

the “foremost” metric is that among all the possible journeys,
there is always (at least) one whose prefixes are also foremost
journeys.3 This allows us to consider, for a given initiation
date, a tree of foremost journeys that we refer to as a foremost
broadcast tree (foremost BT, for short) for that date. The
foremost BTs corresponding to the example of Figure 3 with
emitter a are shown in Figure 4 as a function of the initiation
date. Each tree indicates the route that a message should take
to arrive at its destination the earliest.

[0, 19) [19, 29) [29, 59)

a

b

c

a

b c

a

c

b

Figure 4. Foremost broadcast trees corresponding to the graph of Figure 3,
for emitter a and initiation dates in [0, 59).

The problems of designing distributed algorithms for build-
ing shortest, fastest, and foremost trees have recently been
investigated in [5]. In the paper the authors study the feasibility
of broadcast (with termination detection) with respect to the
three different metrics depending on the assumptions on G
or on the knowledge that the nodes have of G. Three cases
are considered: i) no assumptions are made on the schedule
of edge appearances, ii) the edges are recurrent, that is, if
they appear once, they appear infinitely often, and iii) this
recurrence is bounded by a known duration. The feasibility
and complexity with respect to the three metrics varies among
these cases, but in none of them the computation of reusable
foremost BTs can be achieved.

B. Periodically-varying graphs

We consider here the (distributed) problem of building
foremost broadcast trees in periodically-varying graphs, that
is, graphs whose schedule ρ is such that ∀e ∈ E and
∀t ∈ T , ρ(e, t) = ρ(e, t + kp) for all integer k and a
known duration p. The periodic assumption holds for example
in networks whose entities have periodic movements (e.g.,
satellites, subways, guards tour, or buses). Previous works in
periodic DTNs include exploration by mobile agents [11], [13]
and scalable routing [20], [26]. This assumption is also made
in part of the work in [23].

The problem of building foremost BTs in periodic networks
is made possible because the optimality of any given journey
holds modulo p. Consider again the graph of Figure 3, and
assume it to be periodic with period 100; in this case the first
tree in Figure 4 is optimal for any initiation date in [0, 19),
as well as in [100, 119), and [900, 919), etc. (Note that the
optimal tree for initiation dates in [59, 100) would here be the
same as the first one.) It is therefore possible to build foremost
broadcast trees relatively to a complete period, and use them
unchanged afterwards.

3This property may seem obvious, but it is not the case for the “fastest”
metric (see related proofs in [3]).
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Let us recall that the knowledge of a foremost BT can be
used by the nodes to make optimal forwarding choices. For
example, if node a wants to initiates a broadcast at time 25, it
knows that it must forward the message to b and c, whereas if
the initiation date is 80, it must only forward the message to b
(as soon as the corresponding edge appears). It is important to
keep in mind that the forwarding choices a node must make do
not depend on the current date, but only on the date when the
broadcast was initiated. Besides, a node does not have to know
the entire set of trees to make the correct forwarding choices.
It only needs to know what neighbors it should forward a
message to, depending on the initial emitter and initiation date.
The corresponding information in the case of our example
relatively to emitter a is shown in table I.

on a Initiation date [0, 19) [19, 29) [29, 59) [59, 100)
Children {b} {b, c} {c} {b}

on b Initiation date [0, 19) [19, 59) [59, 100)
Children {c} ∅ {c}

on c Initiation date [0, 29) [29, 59) [59, 100)
Children ∅ {b} ∅

Table I
SET OF CHILDREN FOR THE EXAMPLE OF FIGURE 3 (RELATIVELY TO

EMITTER a ONLY).

The algorithm we describe below generates such a table at
every node, for any potential emitter.

C. The algorithm

1) High-level strategy: Tables of children like that of
Table I are actually produced in two steps. Every node first
determines its set of optimal parents in the trees, relatively to
one complete period of initiation dates and all emitters (also
called sources). This is done based on information on temporal
lags provided by (an adaptation of) Algorithm 2. The resulting
information is stored in a structure equivalent to Table II.

on b Initiation date [0, 29) [29, 59) [59, 100)
Parent a c a

on c Initiation date [0, 19) [19, 59) [59, 100)
Parent b a b

Table II
SET OF PARENTS FOR THE EXAMPLE OF FIGURE 3 (RELATIVELY TO

EMITTER a ONLY).

Once a node has determined its set of parents with respect
to all sources and initiation dates, it notifies them by sending
them the corresponding intervals. Since the network is peri-
odic, these notifications cannot, locally to a notifying node,
last more than one period. On the parent side, the intervals
are processed upon reception to fill in their children table. The
way the intervals are sent by the children and processed by
the parents is straightforward, and is therefore not described
here. We focus instead on describing how the table of parents
is built.

2) Using the concept of temporal view: There is a clear
connexion between the problem of determining what parent is
best to obtain a message in a foremost fashion, and the concept
of temporal view discussed in Section III. In fact, the relation
is direct: for a given source s and initiation date t, the parent
that a node should select is precisely the first of its neighbors
that can provide a temporal view φ(s) ≥ t. Interestingly,
the algorithm introduced in Section III allows precisely to
keep track of this type of information. The Foremost BT
algorithm can then use Algorithm 2 as its main building block,
by watching evolutions of the direct and indirect views, and
memorizing the corresponding neighbors appropriately. This
requires a few adaptations of Algorithm 2 discussed below.

3) Adaptation of the temporal lags measurement algorithm:
The current version of Algorithm 2 does not identify the
neighbors that are responsible of a current temporal view.
Instead, only the value of the best “levels” and “dates”
are determined in the loop of the routine updateV ector(),
reproduced below for convenience.

14: updateVector():
15: updateDatesBasedOnLevels()
16: V ectorClock vec′ ← vec
17: for all v ∈ vec.nodes() do
18: vec[v].level← +∞
19: for all vecng ∈ neighborsV Cs do
20: for all v ∈ vecng.nodes() do
21: if vecng[v].level < vec[v].level − 1 then
22: vec[v].level← vecng[v].level + 1
23: if vecng[v].date > vec[v].date then
24: vec[v].date← vecng[v].date
25: if vec 6= vec′ then
26: send(vec) to Nnow()

Identifying these particular neighbors, or proxies, can how-
ever be done simply by adding and maintaining two additional
variables in the vector clocks, that account respectively for the
best “level proxy”, and the best “date proxy”. These variables
can be updated by overwriting their value whenever lines 22
or 24 are executed, respectively.

The relation between both algorithms then follows an
observer-observable pattern as shown on Figure 5. Initially,
the Foremost BT algorithm makes itself known as an observer
through calling a register() function on Algo 2. This latter no-
tifies in turn the Foremost BT algorithm whenever a change in
level or an improvement in date are detected (to which events
the FBT algorithm can associate operations to memorize the
corresponding neighbors).

Algo 2 FBT algorithm

register()

levelChanged()

dateImproved()

Figure 5. Interactions between Algorithm 2 and the Foremost BT algorithm.
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These notifications are raised by Algo 2 after the loop in
updateV ector(), if the vector has changed (e.g., next to the
send operation of line 26), as follows:
• levelChanged(Node src, Integer level, Node proxy),

called for each source whose level value or level proxy
has changed during the loop.

• dateImproved(Node src, Integer date, Node proxy),
called for each source whose date value has increased
during the loop, if this date is larger than the direct
view (that is, larger than now() − level × ζ for the
corresponding level).

In order to allow the Foremost BT algorithm to “plug”
on top of an already running instance of Algorithm 2, we
additionally assume that:

Property 11: The call to register() causes Algo 2 to call
immediately levelChanged() on the Foremost BT algorithm
for every source with respect to which the current level is not
+∞.

4) The Foremost BT algorithm: The detailed process of
determining the parents is described in Algorithm 3. Its basic
principle consists in monitoring the evolution of the temporal
views based either on direct or indirect journeys, and record
the corresponding neighbors as parents as follows. Whenever
the temporal view is improved by means of an indirect journey
(dateImproved()), the corresponding neighbor is associated
with the provided date. More precisely, it is stored in a table
that associates it with this date, which date corresponds in fact
to the end of the interval this parent covers (the beginning of
the interval being the end of the previous one, circularly).
This strategy relies on the fact that if a node can provide a
message initiated at t, then it can also provide any message
initiated before t. As for the improvement of the temporal
view by means of direct journeys, the algorithm maintains
a dedicated variable to memorize the current levels (table
level) and the corresponding neighbors (table directProxy).
Whenever a notification occurs, whether related to a change
in date or level, this variable can be used in updateRecord()
to determine what largest initiation date t could have already
been covered by these direct journeys. If the date constitute
an improvement, it is stored in the parent table together with
the corresponding neighbor.

A few additional remarks:
• In some cases, the algorithm may lead to record consec-

utively the same parent; in such case, the intervals can
simply be merged.

• Last but not least, the process can be started indepen-
dently on each node, as long as Algorithm 2 is assumed
to have already run on all the nodes for at least a duration
of max(|J |t : J ∈ J ∗G ) – the temporal diameter of the
network. This is to ensure that all the nodes know their
respective temporal views.

5) Correctness: The correctness of Algorithm 3 essentially
follows from periodicity and the correctness of Algorithm 2.

Theorem 12: The execution of Algorithm 3 in a
periodically-varying graph G with known period p results in
all nodes selecting the correct set of parents with respect to
all Foremost BTs in O(p) time.

Algorithm 3 Building Foremost BTs (determining the parents)

1: Map <Node,<Date,Node>> parents← ∅
2: Map <Node,Node> directProxy ← nil
3: Map <Node, Integer> level← nil
4: Date startD ← nil

5: init():
6: startD ← now()
7: register to Algorithm 2

8: dateImproved(Node src, Integer date, Node proxy):
9: updateRecord(src)

10: parents[src].add(date, proxy)

11: levelChanged(Node src, Integer level, Node proxy):
12: updateRecord(src)
13: if level 6= +∞ then
14: directProxy[src]← proxy
15: level[src]← level B keeps a local copy of the levels.

16: currentDirectView(Node src):
17: return now()− level[src]× ζ B based on the local copy.

18: updateRecord(Node src):
19: if directProxy[src] 6= nil then
20: if currentDirectV iew() > parents[src].lastDate() then
21: parents[src].add(currentDirectV iew(),

directProxy[src])

22: when now() == startD + p:
23: terminate.

Sketch of the proof: The idea is to prove that the recorded
parent for any initiation date t and source s is indeed (any
of) the first neighbor to provide a temporal view of s that
is greater or equal to t. For any t, this view is either direct
or indirect. The information relative to the direct view –
level and corresponding neighbor – is locally stored through
lines 14 and 15 whenever it changes (as per Algorithm 2).
This allows currentDirectV iew() to indicate, at any time
instant (thanks to Property 11), the corresponding direct view.
As for the indirect view, the desired property follows from the
way parents are recorded in the parents table: when an higher
indirect view is provided (dateImproved()), first the neighbor
responsible for the current direct view is stored for all initiation
dates that it has already been able to cover (updateRecord()),
then the one responsible for the new indirect view is stored
in turn. The same update operation is executed when the
level changes, but instead of being stored in turn, the new
level proxy replaces the previous one. Due to the periodicity,
the algorithm necessarily terminates in O(p) time (in fact, in
exactly one period p) because the first parent reappears and
can deliver the same initiation dates as before, plus p.

D. Example traces

The tables below show some execution traces based on the
example graph of Figure 3 (with respect to emitter a only).
These traces consider that c starts at time 50 (modulo 100), and
b at time 60 (modulo 100). These dates are chosen to reflect a
variety of initial conditions and behaviors. The traces include
the list of dated notifications and modifications of the parents
table for both nodes (Tables III and IV), and the resulting
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tables of parents, using both their original and interval-based
representations (Tables V and VI).

Date Event Parents table for source a
65 –
71 dateImproved(a, 59, c) parents[a].add(59, c)
1 levelChanged(a, 1, a)
30 levelChanged(a, 2, c) parents[a].add(29, a)
40 levelChanged(a,+∞, nil) parents[a].add(38, c)
165 end of the period

Table III
RELEVANT TRACES WITH RESPECT TO NODE b AND EMITTER a.

Date Event Parents table for source a
50 levelChanged(a, 1, a)
60 levelChanged(a,+∞, nil) parents[a].add(59, a)
11 levelChanged(a, 2, b)
21 levelChanged(a, 1, a) parents[a].add(19, b)
50 end of the period

Table IV
RELEVANT TRACES WITH RESPECT TO NODE c AND EMITTER a.

Initiation date → 59 → 29 → 38
Parent c a c

Initiation date [0, 29) [29, 38) [38, 59) [59, 100)
Parent a c c a

Table V
RESULTING TABLE OF PARENTS FOR NODE b.

Initiation date → 59 → 19
Parent a b

Initiation date [0, 19) [19, 59) [59, 100)
Parent b a b

Table VI
RESULTING TABLE OF PARENTS FOR NODE c.

E. Network Backbone Construction

The authors of [23] define the concept of essentiality of
a contact, with respect to a time t, as the fact that this
contact contributes to reduce the information latency between
(at least) one pair of nodes in the network with respect
to a piece of information originated at time t. Based on
this concept, they define the network backbone for time t,
noted Ht, as the set of all the essential edges w.r.t. time
t. Interestingly, this backbone corresponds precisely to the
exact union of all foremost broadcast trees for initiation date
t. Consequently, our algorithm computes at once, as a by-
product, the backbones for all possible initiation dates. Further,
the backbones so-computed are generalizations of those of [23]
in that the context does not assume instantaneous contacts nor
instantaneous propagation delays on edges.

V. CONCLUDING REMARKS AND OPEN PROBLEMS

This paper addressed the general question of measuring
temporal lags in highly-dynamic networks. A centralized ver-
sion of this problem was recently formulated in the field
of social networks, and solved for the particular case where
contacts between entities are assumed to have instantaneous
durations and propagation delays. We formulated this problem
in a distributed setting, and solved it for the more general
case of contacts that have arbitrary durations and can overlap
with each other, as well as non-instantaneous propagation
delays. The second part of the paper illustrated how tem-
poral lags could be use to solve more elaborate network
problems, such as the construction of foremost broadcast
trees in periodically-varying graphs. Interestingly, the provided
solution also solved, as a by-product, the construction of time-
dependent backbones, a concept recently formulated in [23].

The feasibility of measuring temporal lags was demon-
strated through an algorithm that adapts vector clocks to the
task of measuring temporal lags in the general context of
contacts with duration – when both direct and indirect journeys
can co-exist in the network. The complexity of the algorithm
– in its current version – is however high, and implementing it
in a practical scenario definitely requires further optimization
(same for the distributed version of [23] for instantaneous
contacts). Improving the communication costs of this algo-
rithm is an interesting research avenue. It is especially relevant
if we consider that the measurement of time lags can serve
as a building block for other tasks, as it was the case here.
Indeed, any improvement in this regard would have instant
repercussions – new upper bounds, typically – on all derivative
problems and algorithms.

The type of problems and algorithms discussed here, as
well as a number of currently investigated problem on highly-
dynamic networks, raise interesting analytic questions on the
analysis of solutions. Contrarily to most distributed algorithms
for static networks, the complexity of an algorithm in this new
context does not only depends on the number of nodes and
edges, but is strongly dependent on the number of topolog-
ical events during the execution (in fact, a vast majority of
communications and computations in this paper algorithms are
precisely triggered by topological events). It would therefore
be interesting to study the impact of the network schedule
(e.g., through mobility models) on the complexity.

Finally, we believe that in the same way as temporal lags
were used here to build foremost broadcast trees, they could
be used to solve a number of other problems, in particular for
periodically-varying DTNs. Example of these open problems
include building fastest broadcast trees – trees that minimize
the time between the first and last exchange of message – or
electing a leader based on its temporal eccentricity – the speed
at which it can reach the other nodes.
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