A Generic Framework for Computing
Parameters of Sequence-based Dynamic Graphs*

Arnaud Casteigts!, Ralf Klasing!, Yessin M. Neggaz?, and Joseph G. Peters?

! LaBRI, CNRS, University of Bordeaux, France
2 IRIT - SMAC Team, University of Toulouse, France
3 School of Computing Science, Simon Fraser University, Burnaby, BC, Canada

Abstract. We presented in [10] an algorithm for computing a parame-
ter called T'-interval connectivity of dynamic graphs which are given as a
sequence of static graphs. This algorithm operates at a high level, manip-
ulating the graphs in the sequence as atomic elements with two types of
operations: a composition operation and a test operation. The algorithm
is optimal in the sense that it uses only O(d) composition and test oper-
ations, where ¢ is the length of the sequence. In this paper, we generalize
this framework to use various composition and test operations, which
allows us to compute other parameters using the same high-level strat-
egy that we used for T-interval connectivity. We illustrate the framework
through the study of three minimization problems which refer to various
properties of dynamic graphs, namely BOUNDED-REALIZATION-OF-THE-
FOOTPRINT, TEMPORAL-CONNECTIVITY, and ROUND-TRIP-TEMPORAL-
DIAMETER.

Keywords: Dynamic networks, Property testing, Generic algorithms,
Temporal connectivity.

1 Introduction

Dynamic networks consist of entities making contact over time with one another.
The types of dynamics resulting from these interactions are varied in scale and
nature. For instance, some of these networks remain connected at all times [21];
others are always disconnected [18] but still offer some kind of connectivity over
time and space (temporal connectivity); others are recurrently connected, pe-
riodic, etc. All of these contexts can be represented as properties of dynamic
graphs (also called time-varying graphs, evolving graphs, or temporal graphs).
A number of such classes were identified in recent literature and organized into
a hierarchy in [9]. Each of these classes corresponds to specific properties which

* Part of this work was done while Joseph Peters was visiting the LaBRI as a guest
professor of the University of Bordeaux. This work was partially funded by the ANR
projects DISPLEXITY (ANR-11-BS02-014) and ESTATE (ANR-16-CE25-0009-03).
This study has been carried out in the frame of “The Investments for the Future”
Programme IdEx Bordeaux CPU (ANR-10-IDEX-03-02). The work of Joseph Peters
was partially supported by NSERC of Canada.

2 Arnaud Casteigts, Ralf Klasing, Yessin M. Neggaz, and Joseph G. Peters

play a role either in the complexity or in the feasibility of distributed prob-
lems. For example, it was shown in [12] that if the edges are recurrent (i.e. if an
edge appears once, then it will reappear infinitely often), denoted class R, then
such a property guarantees the feasibility of a certain type of optimal broad-
cast with termination detection (namely, foremost broadcast). However, it is
not sufficient to satisfy other measures of optimality, such as shortest or fastest
broadcast. Strengthening the assumption to having a bound on the reappear-
ance time (class B) makes it possible to achieve shortest broadcast, and the even
stronger assumption of having periodic edges (class P) enables fastest broad-
cast. These three classes have been shown to play a role in a variety of problems
(see e.g. [1,15,22]). Another important class, which is less constrained (and thus
more general) is the class of all graphs with recurrent temporal connectivity (i.e.
all nodes can recurrently reach each other through journeys), corresponding to
class Cs in the hierarchy of [9]. This property is very general, and it is used
(implicitly or explicitly) in a number of recent studies addressing distributed
problems in highly-dynamic environments [4-6, 14]. Interestingly, this property
was considered more than three decades ago by Awerbuch and Even [2].

Given a dynamic graph, a natural question to ask is to which of the classes
this graph belongs, or what related property it satisfies. These questions are
interesting in several respects. Firstly, most of the known classes correspond to
necessary or sufficient conditions for given distributed problems or algorithms
(broadcast, election, spanning trees, token forwarding, etc.). Thus, being able
to classify a graph in the hierarchy is useful for determining which problems
can be solved on that graph. Furthermore, it is useful for choosing a good algo-
rithm in settings where some properties are guaranteed (as in the above example
with classes R, B, and P). Hence, when targeting a given scenario from the real
world, an algorithm designer may first record some topological traces from the
target environment and then test which useful properties are satisfied. A growing
amount of research is now focusing on testing properties (or computing struc-
tures) in dynamic graphs. A seminal example is the computation of foremost,
shortest, or fastest journeys [7], the algorithms of which can also be used to test
membership in a number of dynamic graph classes [8]. More recent examples
include computing reachability graphs [3, 24], enumerating maximal cliques [23],
and establishing the hardness of computing metrics like temporal diameter (that
is, how long it takes in the worst case to communicate through journeys) when
the evolution is not known in advance [17].

In a previous paper [10], we focused on a property called T-interval connec-
tivity [20], which captures two aspects of a network, stability and connectivity,
and was shown to play a role in several distributed problems, such as determining
the size of a network or computing a function of the initial inputs of the nodes.
T-interval connectivity (Class C1g in [9]) generalizes the class of dynamic graphs
that are connected at all time instants [21] (Class Cg in [9]). The definition of
T-interval connectivity is closely related to a representation of a network as a
sequence of graphs G = (G1,Ga,...,Gs) which correspond to the state of the
topology at increasing time instants (also called untimed evolving graphs [7]).

Computing Parameters of Sequence-based Dynamic Graphs 3

Informally, T-interval connectivity requires that, for every T consecutive graphs
in G, there exists a common connected spanning subgraph. In [10], we proposed
a high-level algorithm for finding the largest T" such that a given sequence G is
T-interval connected. We also addressed the related decision problem of testing if
G is T-interval connected for given T'. The approach in [10] focuses on high-level
strategies in which the graphs in the sequence are considered to be atomic ele-
ments and the algorithm only uses two high-level operations on these elements:
the intersection of two graphs, and testing if a given graph is connected. We
showed that both the maximization and decision versions of the problem can
be solved using only a linear number (in the length ¢ of the sequence) of such
operations. The technique is based on a walk in a hierarchy, the elements of
which are graphs that represent the intersections of various subsequences of G.

1.1 Contributions

In this paper, we show that the high-level logic of the algorithm from [10] is
actually quite general and can be used to compute a number of parameters in
addition to T-interval connectivity by replacing the intersection and connectivity
test operations by other operations. We begin by abstracting the two operations
into a composition operation, which defines the hierarchy of elements in which
the walk is performed, and a test operation, which determines the choices made
by the walk. We investigate both the maximization and minimization of graph
parameters and illustrate our framework with four instantiations of the oper-
ations: one solves a maximization problem (T-interval connectivity) and three
instantiations solve the following minimization problems concerning temporal
properties of recognized importance.

First, we consider the class of dynamic graphs with time-bounded reappear-
ance of edges. A graph has time-bounded edge reappearance with bound b if the
time between two appearances of the same edge in the graph G is at most b. This
property, together with the knowledge of n (the number of nodes) and b, allows
the feasibility of shortest broadcast with termination detection [11]. We consider
the problem BOUNDED-REALIZATION-OF-THE-FOOTPRINT of finding the small-
est bound b such that G has time-bounded edge reappearance, i.e. the smallest
b such that every edge that appears in the sequence G appears at least once in
every subsequence of length b of G.

Then, we look at the class of dynamic graphs with temporal connectivity
where a journey (temporal path) exists from any node to all other nodes. In this
class of graphs, any node can perform a broadcast to all other nodes and can col-
lect information from all the other nodes. The concept of temporal connectivity
is relatively old and dates back at least to the article [2]. We consider the mini-
mization problem TEMPORAL-DIAMETER of finding the temporal diameter of a
given dynamic graph G, i.e. the smallest duration in which there exist journeys
(temporal paths) from any node to all other nodes.

Finally, we are interested in the class of dynamic graphs with round-trip
temporal connectivity meaning that a back-and-forth journey exists from any

4 Arnaud Casteigts, Ralf Klasing, Yessin M. Neggaz, and Joseph G. Peters

node to all other nodes. This class characterizes an important property of dis-
tributed solutions for information collection problems that require termination
detection [9]. We investigate the problem ROUND-TRIP-TEMPORAL-DIAMETER
of computing the round trip diameter of a given graph G, i.e. the smallest du-
ration in which there exist back-and-forth journeys from any node to all other
nodes.

2 Definitions and Observations

Let G be a graph sequence {G1, G, ..., Gs} such that G; = (V, E;) represents the
network topology at time . Note that V' does not vary; only the edges change.
We assume that the changes between two consecutive graphs in the sequence are
arbitrary. Let P be a boolean predicate (hereafter called property) defined on a
consecutive subsequence {G;, Git1,....,G;} C G.

Definition 1. The minimization problem on G with respect to P is the problem
of finding the smallest k such that Vi € [1,6 — k+ 1], {Gi, Git1, ..., Gitrp—1} has
property P (in other words, any subsequence of G of length k satisfies P).

Definition 2. The maximization problem on G with respect to P is the problem
of finding the largest k such that Vi € [1,8 — k + 1], {G;,Git1, ..., Giyr—1} has
property P.

We present here a general strategy for minimization and maximization prob-
lems that relies on a composition hierarchy of elements which is computed on
demand using a composition operation.

Definition 3 (Composition hierarchy and test operation). An element
Gij) @ < J of a composition hierarchy is a graph from which one can deter-
mine whether the sequence {G;, Gi11,...,G;} satisfies a predicate P using a test
operation which maps any element into {true, false}: test(G; ;)) = true iff the
sequence {G;, Git1,...,G;} satisfies P. The initial G;’s are not elements of the
hierarchy themselves, but all G ; ;)’s are.

A hierarchy of elements consists of rows denoted G',G?,...,G° where GF =
{Ga k), Gaktrys - G—k+1,6)) We use G*[i] to denote the i*" element of row
GF, that is the element G(iivk—1)- The first row G! of the hierarchy corresponds
to the graphs of the sequence G (or to simple transformations of these graphs);
that is, G;) corresponds to Gi. An evample of a hierarchy in which elements
are intersection graphs is shown in Figure 1.

Definition 4 (Composition operation). A composition operation o is a
binary operation that maps two elements of the hierarchy into another ele-
ment: G) 0 G joy = S where S is the element that relates to the sequence

{Giv Gi+17 ooy ij Gi/v Gi/+17 ey Gj/}'

Observation 1. A minimization (resp. mazimization) problem amounts to
finding the lowest (highest) row G* in which all elements {G (1 1), G(2,k41), - - »
G (5—kt1,5)) satisfy the test.

Computing Parameters of Sequence-based Dynamic Graphs 5

(1,4) Cs(275) (3,6) ~(4,7) Y (5,8)
(1,3) &(2,4) & (3,5) Y (4,6) U (5,7) “1(6,8)
(1,2) &(2,3) ©(3,4) L(4,5) Y(5,6) U(6,7) LU (7,8)
(1,1) &(2,2) V& (3,3) “(4,4) & (5,5) Y (6,6) I (7,7) 7 (8,8)

Fig. 1: Example of partial hierarchy with intersection graphs as elements.

The general framework that we propose makes it possible to solve minimiza-
tion or maximization problems by focusing only on the composition and test
operations, while the high-level logic of the algorithm remains the same. More
precisely, there is one high-level algorithm for minimization problems, and an-
other for maximization problems.

Observation 2 (Requirements). For a minimization or a mazimization
problem relative to some property P to be solvable within our framework, the
following conditions must hold on the composition operation o and the test op-
eration test:

(1) test(G jy) = true & {Gi,Giy1,...,Gj-1,G;} satisfies P;

(2) The composition operation o is associative, that is

(Gag) Gl gn) 0 Gar gy = Giagy © (Gar gy © G gm))-
Only for maximization problems:

(3°) If test(G(; ;) = true then test(Gy ;1)) = true
for all i’ >4 and j' < 7.

Only for minimization problems:

(37) If test(G(; 5)) = true then test(Gy j)) = true
for alli <i andj >j.

3 Generic algorithm

We propose a strategy based on the generic composition and test operations
defined above. The algorithm is then instantiated in Section 4 to solve three
specific minimization problems and one maximization problem by plugging in the
appropriate operations. The strategy relies on the concept of ladder. Informally, a
ladder is a sequence of elements that “climbs” the composition hierarchy bottom-

up.

6 Arnaud Casteigts, Ralf Klasing, Yessin M. Neggaz, and Joseph G. Peters

Fig.2: Example of execution of the algorithm in (a) the maximization case (b)
the minimization case.

Definition 5. The right ladder of length I at index i, denoted by R'[i], is the
sequence of elements {G*[i], k = 1,2,...,1}. The left ladder of length [at index
i, denoted by L'[i], is the sequence {G¥[i —k+ 1], k=1,2,...,1}.

Lemma 1 ([10]). A ladder of length I can be computed using l — 1 binary com-
positions by computing each element as the composition of the preceding element
in the ladder and an element in G'.

Lemma 2 ([10]). Given a left ladder of length l; at index iy and a right ladder
of length . at index i, = ig+ 1. For any pair (i, k) such that i, —l; < i < i, and
i —i <k <i.—i+l., GF[i] can be computed by a single composition operation,
namely GE[i] = Gir—[i] o GF—ir+i[4,].

Informally, the constraints i, —ly < i < 4, and 7, —1 <
k <i,.—i+!, in Lemma 2 define a rectangle delimited
by two ladders and two lines that are parallel to the 'y
two ladders as shown in the figure to the right. The

pairs (i, k) defined by the constraints, shown in light (6t =

grey in the figure, include all pairs that are strictly ([]) o
inside the rectangle, and all pairs on the parallel lines, o ki)
but pairs on the two ladders are excluded. br

3.1 Informal description of the algorithm

We describe the algorithm with reference to Figures 2a and 2b that respectively
show examples of executions in the maximization case and the minimization case
(see Algorithm 1 for details).

The algorithm takes as input a boolean problem type problem € {min, max},
a dynamic graph G, a composition operation o, and a test operation test. It
starts by computing the first element G![1] and then traverses the hierarchy from
left to right by computing a new adjacent element at each step: the next element
in the same row, or the element with the same index in the row above, or the

Computing Parameters of Sequence-based Dynamic Graphs 7

next element in the row below, depending on problem and the result of the test
operation on the current element. We will call this traversal process a walk.

In the maximization case, the walk starts at the element G'[1] and builds
a right ladder incrementally until the test is negative (first loop, lines 3 ff. of
Algorithm 1). If G°[1] is reached and test(G°[1]) = true, then the execution
terminates returning §. Otherwise, suppose that test(G*+1[1]) = false for some
k. Then k is an upper bound on the maximization parameter of G and the walk
drops down a level to G¥[2] which is the next element in row k that needs to
be tested. The walk proceeds rightward on row k by computing at each step a
new element in the row while the test is true. However, every time the test is
negative, the walk drops down by one row. If the walk eventually reaches the
rightmost element G*[§ — k + 1] of some row k and test(G*[§ — k + 1]) = true,
then the algorithm terminates returning k. Otherwise the walk will terminate
at an element G'[i] that does not satisfy the test. In this case, the algorithm
returns 0 indicating that the dynamic graph G does not have the property.

In the minimization case, the walk goes up in the composition hierarchy if
the test is negative, otherwise it moves forward in the same row. If the walk hits
the right side of the hierarchy and the last visited element G*[§ —k+1] in the row
GF satisfies the test operation, then it terminates and returns k. Otherwise, it
terminates returning k+1 (Observation 2, requirement (3”)). If the walk reaches
G1[8] and the test is negative, then the algorithm outputs 0 indicating that the
dynamic graph G does not have the property.

Computing elements of the hierarchy (function compute()). The elements
resulting from the walk (red/dark elements) are computed based on ladders
(intermediate elements, in grey in Figure 2a and Figure 2b) as follows. When the
walk moves one step forward in the same row, the next element is computed from
aright ladder and a left ladder (e.g. G*[6] = G?[6]0G?[8] in Figure 2b) or from the
ladder to which it belongs and an adjacent bottom element (e.g. G°[9] = G'[9] o
G*[10] in Figure 2b). Intermediate elements i.e. ladders (in grey in Figure 2a and
Figure 2b) are computed, according to Lemma 1, by incrementally composing
an element G; ;) with the adjacent bottom element G;_; ;1) (left ladder) or
G (j4+1,j+1) (right ladder), providing useful shortcuts in the construction. Suppose
that G¥[4] is the first element to be computed where no element G* [i] with &' < k
has been computed. The first ladder built is £¥[k + 4 — 1] of length k ending at
Gk[i] (G7[2] in Figure 2a, G*[4] in Figure 2b). Differently from left ladders, right
ladders are constructed gradually as the walk proceeds. Each time that the walk
moves right to a new index, the current right ladder is incremented (a new
element is added to the ladder) and the new top element of this right ladder is
used immediately to compute the element at the current index in the walk (using
Lemma 2). This continues until the walk crosses the current right ladder, on an
element G*[i] (G%[8] in Figure 2b), at which time a left ladder £L¥[k +i — 1] is
built to compute G*[i] and to be used to compute the next elements on the walk.

This generic algorithm has the following property which is crucial for the
correctness of two of the problems described in Section 4.

8 Arnaud Casteigts, Ralf Klasing, Yessin M. Neggaz, and Joseph G. Peters

Input: problem € {min, maz}, G, composition operation o, test operation test
11+ 1 // current index in the row
2 k+1 // current row
3 if problem = mazx then
4 compute (G*[i])

5 while test (G*[i]) do
6 if k=6 then
7 ‘ return k
8 else
9 ‘ k + +; compute (G*[i])
10 k—— i+ +
11 while 1 < k <6 do
12 compute (G*[4])
13 if test(G*[i]) then
14 if i=§d—k+ 1 then
15 ‘ return k
16 else
17 | i++
18 else
19 switch problem do
20 case max do
21 | k——i++
22 case min do
23 if i=0—k+1 then
24 ‘ return k +1
25 else
26 | k++
27 return 0

Algorithm 1: Generic algorithm for minimization and maximization prob-
lems

Lemma 3 (Disjoint sequences property). If the algorithm performs a com-
position of two elements G; ;) and Gy jry, then the corresponding sequences
{Gi,Git1,...,G;} and {G},Gir41,...,Gj} are disjoint and consecutive. That
is, in any execution, G jn = G0 Gy = j=1i — 1.

Proof. According to the algorithm, each element of the composition hierarchy is
computed from: 1) two elements of two different ladders, a left one and a right
one, or 2) an element of a ladder and an element in the first row. In both cases the
two sequences covered by the two elements used in the computation are disjoint
and consecutive, so in any execution, G; ji) = G jy o Gy jiy = J = 7 —1. O

Lemma 4. Let GF[6 —k+1] be the last visited element at the termination of the
algorithm. If test(GF[6 — k + 1]) = true , then Vi € [1,5 — k|, test(G*[i]) = true
(all elements in the row G*).

Computing Parameters of Sequence-based Dynamic Graphs 9

Fig. 3: Example of the execution of the algorithm for the decision variant.

Proof. According to the algorithm, for any element G(; ;) above (below) the
walk in the minimization (maximization) case, there exists a computed element
Gy j7y in the walk such that " <i A j" > j (i > i A j' < j) and test(G(y 1)) =
true. According to Observation 2 (requirements (3’) and (3”)), any element
above (below) the walk in the minimization (maximization) case satisfies the
test operation. O

Decision variant. The algorithm for the decision variant of each problem (i.e.
for a given k, answer true if any sequence of length %k in the dynamic graph G
has the property P, answer false otherwise) can be deduced readily from the
algorithm for the minimization/maximization variant. The algorithm gradually
computes elements of row k from left to right, starting at G¥[1], as shown in
Figure 3. If an element that does not satisfy the test operation is found, the
algorithm returns false and terminates. If the algorithm reaches the last element
in the row, i.e. G¥[§ — k + 1], and it satisfies the test operation, then it returns
true. The elements G*[1],G*[2],...,G*[0 — k + 1] are computed based on ladders.

Theorem 1. The generic algorithm has a cost of O(§) composition and test
operations.

Proof. The ranges of the indices covered by the left ladders that are constructed
by the process are disjoint, so their total length is O(d). With the computation
of each new element in a right ladder, the walk moves closer to the right side of
the hierarchy, so the total length of the right ladders is also O(d). According to
Lemma 2, any element can be computed using a single composition operation
based on ladders. According to the algorithm, the number of elements computed
by the walk is O(4) and any computed element is tested at most once. This
establishes that this algorithm has a cost of O(J) composition operations and
test operations. O

Online version. The generic algorithm can be adapted to an online setting in
which the sequence of graphs G1, G2, G3, ... of a dynamic graph G is processed in
the order that the graphs are received. For the decision problem, the algorithm
cannot provide an answer until at least k£ graphs have been received. When
the k" graph is received, the algorithm builds the first left ladder using k — 1
compositions. It can then perform a test and answer whether or not the sequence
has the property so far. After this initial period, a test can be performed for
the k most recently received graphs (by performing a test on the corresponding

10 Arnaud Casteigts, Ralf Klasing, Yessin M. Neggaz, and Joseph G. Peters

element in row T') after the receipt of each new graph. The same logic is followed
for minimization and maximization problems.

Theorem 2. The online generic algorithm has an amortized cost of O(1) com-
position and test operations per graph received.

Proof. At no time during the execution of the algorithm does the number of
compositions performed to build left ladders exceed the number of graphs re-
ceived and the same is true for right ladders. The number of elements on the
walk that are not on ladders never exceeds the number of graphs received, and
each can be computed with one composition by Lemma 2. Only elements on the
walk are tested. In summary, the amortized cost is O(1) composition and test
operations for each graph received. a

4 TIllustration of the Framework

We illustrate the general framework by solving one maximization prob-
lem: INTERVAL-CONNECTIVITY and three minimization problems: BOUNDED-
REALIZATION-OF-THE-FOOTPRINT, TEMPORAL-DIAMETER, and ROUND-TRIP-
TEMPORAL-DIAMETER. We define each problem within the framework and pro-
vide the corresponding operations for composition and test.

4.1 T-Interval Connectivity (maximization)

A dynamic graph G is said to be T-interval connected if for any ¢t € [1,0 —
T +1] all graphs in {Gy, G¢11, ..., Giy7—1} share a common connected spanning
subgraph. We consider the problem INTERVAL-CONNECTIVITY of finding the
smallest duration T for which the dynamic graph G is T-interval connected.

Composition and test operations. By using the intersection of two elements
as the composition operation (starting with {G;;y} = {G;}), a hierarchy of
intersection graphs (Figure 1) as elements can be used to solve INTERVAL-CON-
NECTIVITY which is the problem of finding the highest row G” in which every
element GT[i], i € [1,6 — T + 1], is connected. So, the composition operation is
intersection and the test operation is connectivity test.

Observation 3 (Cost of the operations). Using an adjacency list data struc-
ture, the binary intersection of two elements G; ;) and Gy jy can be computed
in time O(min(|E(G ¢)|, [E(Gir jn)|). Testing connectivity of an undirected
graph can also be done in time O(|E(G; j)|) by building a depth-first search
tree from an arbitrary node to test whether all nodes are reachable.

4.2 Bounded Realization of the Footprint (minimization)

The footprint G of a dynamic graph G is the graph that contains all the edges
that appear at least once, that is U{G1, Ga, ..., Gs}. We consider the problem of

Computing Parameters of Sequence-based Dynamic Graphs 11

finding the smallest duration b such that in any window of length b, all edges
of G appear at least once (BOUNDED-REALIZATION-OF-THE-FOOTPRINT). The
problem then amounts to finding the lowest row G° in which every element G°[i],
i € [1,8 — b+ 1], equals the footprint G.

Composition and test operations. Finding these operations is straightfor-
ward. By taking the union of two elements as the composition operation (starting
with G(; ;) = G;), it follows that the lowest row G such that all elements equal
the footprint indicates, by definition, that the answer is b. So, the composition
operation is union and the test operation is equality to footprint.

Observation 4 (Cost of the operations). Using an adjacency matriz repre-
sentation, the union operation and the equality test can be performed in O(|V|?)
time.

4.3 Temporal Diameter (minimization)

A dynamic graph might never be connected at one time, and yet offer a form of
connectivity over time based on journeys (temporal paths). Informally, a journey
is a path whose edges are crossed at non-decreasing (or increasing) times, with
possible pauses at intermediate nodes. The edges need not be all present simul-
taneously. If at most one edge can be crossed at a time (i.e. the crossing times
are strictly increasing), then we refer to the journey as being strict. Formally,
journeys can be defined in various ways, depending on the graph formalism used.
In sequence-based models like evolving graphs, it is defined as follows.

Definition 6 (Journey). A journey J from u to v in G is a sequence of edges
e1,€2,...,ep connecting u to v through intermediate vertices and a correspond-
ing sequence of non-decreasing indices t1,ta,...,t, such that e; € E(Gy,). In
a strict journey, the sequence ti,ta,...,t, is strictly increasing. The existence
of a journey from u to v is denoted u ~~ v. We note departure(J) = t; and
arrival(J) = t,.

The distinction between strict and non-strict journeys actually boils down to
deciding if the latency of communication is neglected or not. In either case, one
can define the concept of temporal diameter (at time t) as the smallest d such
that for all nodes u and v, there exists a journey from u to v in the sequence
{Gt,Gt11, ..., Gtyd—1}- We consider here the problem TEMPORAL-DIAMETER of
finding the smallest d such that the temporal diameter of G is less than or equal
to d at every time t < § —d + 1. In other words, any subsequence of G of length
d is temporally connected. Several solutions exist for this and similar problems
(see e.g. [24]), which operate at a lower level of abstraction. Here, we show how
the problem fits elegantly within our proposed framework. More specifically,
we consider the case of non-strict journeys, which is slightly more difficult and
contains as a subproblem the case of strict journeys.

Definition 7 (Transitive closure). The transitive closure of the dynamic
graph G is the static directed graph G* = (V, E*) such that (u,v) € E* & u ~ v.

12 Arnaud Casteigts, Ralf Klasing, Yessin M. Neggaz, and Joseph G. Peters

¢ B o W

Gaa Ges Gse Gurn Ges

2N

Gas Geay Gas Gue Gon Ges

¢ o & N oK om KX

Ga2 Ges Gea Gus Gee Gen Gag)

Foen B R R B KK %

Ga1y Ge2 Gas Guay Ges Gees Gan Gee)
G iGZ@ vl ﬁ @Z'i ﬁ z of @Z'S
1 3 4 5

Go Gs G~

Fig.4: Example of a transitive closure hierarchy for a given dynamic graph G
of length § = 8.

O—-0 [exzJe] O«0 [o 2] o€ 0
Xt cat X! = 1t U ™ = X
[eX=JXe) 0—-0 O«0 O O OO0
G G i) Gy UGar 5 G)= 5"

Fig.5: Example of concatenation of transitive closures. Edges in G(; j)— (i j)
are added after the union.

The composition hierarchy built here is one of transitive closures of journeys.
Figure 4 shows an example. For this problem, each bottom element G ; ;) is not
equal to G;; instead, it corresponds to the “classical” transitive closure of G,
i.e. the graph G built on the same vertex set as G;, such that an edge exists
between w and v in G} if and only if a path exists between v and v in G; (the
G (i,iy's are computed gradually as the algorithm progresses). Then, the answer is
the smallest d such that every element in row G? of the hierarchy is a complete
graph (i.e. every subsequence of G of length d is temporally connected).

Composition and test operations. The composition hierarchy is built us-
ing concatenation of transitive closures, cat(G;), G j)), with the restriction
that i’ = j + 1 (Lemma 3), defined as follows. First compute the union of both
elements, then add an additional edge (u,v) if there exists a node w such that
(u,w) € E(G(;,5) and (w,v) € E(G(; ;). See Figure 5 for an example. Then,
the test operation consists of determining if an element of the hierarchy (transi-
tive closure) is a complete graph.

Observation 5 (Cost of the operations). The union of two transitive clo-
sures G ; jy and Gy jry can be computed in time O(max(|E(G; ;))|, |[E(G i j)]))
using an adjacency list data structure. The cost of the concatenation oper-
ation is dominated by the computation of the additional edges which costs
O(|E(G (i jn)| - V). The completeness test of a transitive closure G(; ;) can

Computing Parameters of Sequence-based Dynamic Graphs 13

be done in constant time by checking |E(G ; jy)| which is maintained during the
construction of the transitive closure graph.

4.4 Round-Trip Temporal Diameter (minimization)

We address here the more complex property of round-trip temporal connectivity
defined by the existence of a back-and-forth journey from any node to all other
nodes. The round-trip temporal diameter of a graph G at time ¢ is the smallest d
such that, in the sequence {G¢, Gi41, ..., Gi+d—1}, there is a journey J(u, v) from
any node u in the graph to any other node v and a journey J'(v,u) from v to
u which starts after the arrival of the journey J(u,v). This does not mean that
there is simply a succession of two temporally connected sequences. A back-and-
forth journey from a node u to a node v can finish before a back-and-forth journey
from a node v’ to a node v’ starts. Also, the time intervals of the two back-and-
forth journeys can overlap. We consider the problem ROUND-TRIP-TEMPORAL-
DIAMETER of finding the smallest d such that the round-trip temporal diameter
of G is less than or equal to d at any time t < § — d + 1. For this problem, we
consider the case of non-strict journeys.

Definition 8 (Round trip transitive closure). A round trip transitive clo-
sure G; j) is the directed graph where (u,v) € G(; ;) iff at least one journey u ~ v
exists in the sequence {G;,Giy1,...,G;j}. The edges {(u,v) € E(G()} are la-
belled with two times: arrival(u,v,G(; j)) is the earliest arrival of any journey
in the sequence and departure(u,v,G(; ;) is the latest departure of any jour-
ney in the sequence. Labels on the same edge may or may not be the departure
and arrival times of the same journey. Note that departure(u,v, G ;) =i and
arrival(u,v, G ;) = 1.

The composition hierarchy built for this problem is one of round trip transi-
tive closures of journeys. Figure 6 shows an example of a round trip transitive
closure hierarchy of a dynamic graph G of length § = 3. Labels arr and dep

arr,dep

on an edge u —————— v (label on the destination/head end) represent
respectively arrival(u,v,G(;) and departure(u,v,G; ;). As for TEMPORAL-
DIAMETER, each bottom element G; ;) corresponds to the “classical” transitive
closure of G, i.e. the graph G7 built on the same vertex set as G;, such that an
edge exists between v and v in G} if and only if a path exists between v and v in
G;. The labels of the edges are initialized with “¢,4”, which corresponds to the
arrival and departure times of the corresponding journey(s). Then, the answer is
the smallest d such that every element in row G¢ is a complete graph (i.e. every
subsequence of G of length d is round-trip temporally connected).

Composition operation. The composition operation in this case is the concate-
nation of round trip transitive closures rtcat(G ; jy, G jy) with the restriction
that ¢/ = j + 1 (Lemma 3). A composition is computed as follows. First, com-
pute the graph GV© = G ue G/(i,5-y which is the union graph G; ;) UGy jn
with arrival(u,v, GY©) = min(arrival(u,v, Gi,5)), arrival(u, v, Gy ;1)) and
departure(u,v, GY©) = max(departure(u,v, G i,5)), departure(u, v, Gy) if

14 Arnaud Casteigts, Ralf Klasing, Yessin M. Neggaz, and Joseph G. Peters

gl

Q
Q0O

OQ—— 0

Gy G

Fig.6: Example of a round trip transitive closure hierarchy of a dynamic graph
G of length 6 = 3. (Arrival and departure times are on the head ends of the
arrows.)

(u,v) € Gy N G yry. Otherwise, the edge is added with the initial ar-
rival and departure times. A graph of extra edges G; jy— (i j») is then com-
puted as follows: (u,v) € G(; jy— () iff there exists a non-empty set of nodes
extra = {w : (u,w) € E(G(; ;) and (w,v) € E(G;y jy)}. The labels on an ex-
tra edge are arrival(u,v, G j)— () = Milyeeptralarrival(w,v, G ;) } and
departure(u,v, G j)— (1)) = MaXyeextraideparture(u,w, G j))}. Finally,
the round trip transitive closure rtcat(G(;), G j)) = GY© U© G(ij)— (5"
(see Figure 7).

Test operation. The test operation used for this problem is the round trip com-
pleteness test, that is, test if the graph is complete and if arrival(u, v, G; ;) <
departure(v,u, G(; ;) for every edge (u,v) in the graph.

Computing Parameters of Sequence-based Dynamic Graphs 15

o—2%o0 o0&l o 0<5—>0 o o 0250

o A A i Noy” Tt

A R oY _ A A~ ~ W6 _ ~ 6 ~

Yortcat 7 =0 7T U0 TN = AR

o) o 0%5—0 0%5—0 0—%50 S0
G5 Ge,7) G5 U° Geny G(1,5)-(6,7) G

Fig. 7: Example of round trip transitive closures concatenation. (Arrival and
departure times are on the head ends of the arrows.)

Observation 6 (Cost of the operations). As for the concatenation opera-
tion for TEMPORAL-DIAMETER, the concatenation of two round trip transitive
closures G(; jy and Gy jy can be computed in time O(|E(G ;)| - [V]). The
completeness test can be done in time O(|E(G(;j))|) by verifying the condition
on the times for each pair of edges (u,v), (v,u).

4.5 Parallel Version

We define a subset of particular minimization and maximization problems that
we call symmetric problems as follows.

Definition 9 (Symmetric problems). A minimization or mazimization
problem is symmetric if it can be solved using a composition hierarchy of ele-
ments and a composition operation o such that G jy o G jy = G 4y for all
1<i<i'<j<j <o

BOUNDED-REALIZATION-OF-THE-FOOTPRINT and T-INTERVAL-
CONNECTIVITY are examples of symmetric problems. We now present a
strategy for symmetric problems that can be parallelized on a PRAM. We first
describe the algorithms for a sequential machine (RAM). The general strategy
is to compute only some of the rows of the composition hierarchy based on the
following lemma. The proofs of Lemma 5 and Lemma 6 are straightforward
generaliztions of proofs in [10].

Lemma 5. If some row G* is already computed, then any row G¢ for k +1 <
£ < 2k can be computed with O(5) composition and test operations.

Decision variant. Using Lemma 5, for a given k, we can incrementally
compute rows G2 (“power rows”) for all i from 1 to [logy k] — 1 without
computing the intermediate rows. Then, we compute row G* directly from row
gale= i (again using Lemma 5). This way, we compute [log, k] = O(logd)
rows using O(d log §) composition operations, after which we perform O(4) tests.

Minimization and maximization variants. For the maximization case, we
incrementally compute rows G2 until we find a row that contains an element
that does not satisfy the test operation (thus, a test is performed after each
composition). By Lemma 5, each of these rows can be computed using O(0)
compositions. Suppose that row G2 is the first power row that contains an

16 Arnaud Casteigts, Ralf Klasing, Yessin M. Neggaz, and Joseph G. Peters

element that does not satisfy the test, and that G2 is the row computed before
g¥". Next, we do a binary search among the rows between G? and ¢¥" to
find the highest row G* such that all elements on this row satisfy the test. See
Figure 8 (left) for an illustration of the algorithm. The computation of each of
these rows is based on row G2’ and uses O(§) compositions by Lemma 5. Overall,
we compute at most 2[log, k] = O(log §) rows using O(d log §) compositions and
the same number of tests.

For the minimization case, we follow the same principle. This time, we in-
crementally compute rows G2 while each row contains an element that does
not satisfy the test. Suppose that row G2 is the first power row such that all
elements on this row satisfy the test. Then, we do a binary search among the
rows between G2 and G to find the lowest row G* such that all elements on
this row satisfy the test. See Figure 8 (right) for an illustration of the algorithm.

Lemma 6. If some row G* is already computed, then any row between G+ and
G? can be computed in O(1) time on an EREW PRAM with O(8) processors.

Parallel version for the decision problems on an EREW PRAM. The
sequential algorithm for this problem computes O(logd) rows. By Lemma 6,
each of these rows can be computed in O(1) time on an EREW PRAM with O(9)
processors. Therefore, all of the rows (and hence all necessary compositions)
can be computed in O(logd) time with O(J) processors. The O(9) tests for row
G* can be done in O(1) time with O(§) processors. Then, the processors can
establish whether or not all elements in row G* satisfy the test operation by
computing the logical AND of the results of the O(d) tests in time O(logd) on
a EREW PRAM with O(d) processors using standard techniques (see [16, 19]).
The total time is O(logd) on an EREW PRAM with O(d) processors.

Parallel version for maximization and minimization problems on
an EREW PRAM. The sequential algorithm for this problem computes
O(log 0) rows. Differently from the decision version, a test is done for each of
the computed elements (rather than just those of the last row) and it has to be
determined for each computed row whether or not all of the elements satisfy
the test. This takes O(logd) time for each of the O(logd) computed rows using
the same techniques as for the decision version. The total time is O(log® §) on
an EREW PRAM with O(d) processors.

5 Conclusions

In this paper, we generalized the framework and the algorithm for INTERVAL-
CONNECTIVITY [10] to solve other problems on dynamic graphs. We studied the
minimization problems of finding the temporal diameter and the round trip tem-
poral diameter of a given dynamic graph G = {G1, Gs, ..., Gs}, and the problem
of finding a bound on the footprint realization of G. We proposed algorithms for
these problems within the same framework.

Computing Parameters of Sequence-based Dynamic Graphs 17

o
5059569
03096
09
O
O

&
63
030
g

o
o
o
080
8283
35
35
o
Q5
o

X000
0000000000000

Fig. 8: Examples of the execution of the parallel version of the algorithm; maxi-
mization case on the left and minimization case on the right.

In our study, we focused on algorithms using only two elementary operations,
composition and test operations. This approach is suitable for a high-level study
of these problems when the details of changes between successive graphs in a se-
quence are arbitrary. If the evolution of the dynamic graph is constrained in some
ways (e.g., bounded number of changes between graphs), then one could benefit
from the use of more sophisticated data structures to reduce the complexity of
the algorithms.

A natural extension of our investigation would be a similar study for other
classes and properties of dynamic networks, as identified in [9].

References

1. Aaron, E., Krizanc, D., Meyerson, E.: DMVP: foremost waypoint coverage of time-
varying graphs. In: International Workshop on Graph-Theoretic Concepts in Com-
puter Science. pp. 29-41. Springer (2014)

2. Awerbuch, B., Even, S.: Efficient and reliable broadcast is achievable in an eventu-
ally connected network. In: Proceedings of the third annual ACM symposium on
Principles of distributed computing (PODC). pp. 278-281. ACM (1984)

3. Barjon, M., Casteigts, A., Chaumette, S., Johnen, C., Neggaz, Y.M.: Testing tem-
poral connectivity in sparse dynamic graphs. CoRR abs/1404.7634, 8p (2014), (A
French version appeared in Proc. of ALGOTEL 2014.)

4. Bournat, M., Datta, A., Dubois, S.: Self-stabilizing robots in highly dynamic envi-
ronments. In: SSS 2016 - 18th International Symposium Stabilization, Safety, and
Security of Distributed Systems. Lecture Notes in Computer Science, vol. 10083,
pp. 54-69. Springer (2016)

5. Bramas, Q., Tixeuil, S.: The complexity of data aggregation in static and dynamic
wireless sensor networks. Information and Computation (2016)

6. Braud-Santoni, N., Dubois, S., Kaaouachi, M.H., Petit, F.: The next 700 impos-
sibility results in time-varying graphs. International Journal of Networking and
Computing 6(1), 27-41 (2016)

7. Bui-Xuan, B., Ferreira, A., Jarry, A.: Computing shortest, fastest, and foremost
journeys in dynamic networks. Int. J. of Foundations of Computer Science 14(2),
267-285 (April 2003)

18

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

21.

22.

23.

24.

Arnaud Casteigts, Ralf Klasing, Yessin M. Neggaz, and Joseph G. Peters

Casteigts, A., Chaumette, S., Ferreira, A.: Characterizing topological assumptions
of distributed algorithms in dynamic networks. In: Proc. 16th Int. Colloquium on
Structural Information and Communication Complexity (SIROCCO 2009). Lecture
Notes in Computer Science, vol. 5869, pp. 126-140. Springer (2009), (Full version
in CoRR, abs/1102.5529.)

Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs
and dynamic networks. Int. J. of Parallel, Emergent and Distributed Systems 27(5),
387-408 (2012)

Casteigts, A., Klasing, R., Neggaz, Y., Peters, J.: Efficiently testing T-interval
connectivity in dynamic graphs. In: Proc. 9th Int. Conf. on Algorithms and Com-
plexity (CIAC 2015). Lecture Notes in Computer Science, vol. 9079, pp. 89-100.
Springer (2015)

Casteigts, A., Flocchini, P., Mans, B., Santoro, N.: Measuring temporal lags in
delay-tolerant networks. IEEE Transactions on Computers 63(2), 397-410 (2014)
Casteigts, A., Flocchini, P., Mans, B., Santoro, N.: Shortest, fastest, and foremost
broadcast in dynamic networks. International Journal of Foundations of Computer
Science 26(4), 499-522 (2015)

Casteigts, A., Klasing, R., Neggaz, Y.M., Peters, J.G.: Calcul de Parameétres Mini-
maux dans les Graphes Dynamiques. In: 19émes Rencontres Francophones sur les
Aspects Algorithmiques de Télécommunications (ALGOTEL) (2017)

Dubois, S., Kaaouachi, M.H., Petit, F.: Enabling minimal dominating set in highly
dynamic distributed systems. In: Symposium on Self-Stabilizing Systems. pp. 51—
66. Springer (2015)

Flocchini, P., Mans, B., Santoro, N.: On the exploration of time-varying networks.
Theoretical Computer Science 469, 53-68 (2013)

Gibbons, A., Rytter, W.: Efficient parallel algorithms. Cambridge University Press
(1988)

Godard, E., Mazauric, D.: Computing the dynamic diameter of non-deterministic
dynamic networks is hard. In: Proc. 10th International Symposium on Algorithms
and Experiments for Sensor Systems, Wireless Networks and Distributed Robotics
(ALGOSENSORS 2014). Lecture Notes in Computer Science, vol. 8847, pp. 88—
102. Springer (2014)

Jain, S., Fall, K., Patra, R.: Routing in a delay tolerant network. In: Proc. of
SIGCOMM. pp. 145-158 (2004)

J&4J4, J.: An introduction to parallel algorithms. Addison-Wesley (1992)

Kuhn, F.; Lynch, N., Oshman, R.: Distributed computation in dynamic networks.
In: Proc. of STOC. pp. 513-522. ACM (2010)

O’Dell, R., Wattenhofer, R.: Information dissemination in highly dynamic graphs.
In: Proc. of DIALM-POMC. pp. 104-110. ACM (2005)

Raynal, M., Stainer, J., Cao, J., Wu, W.: A simple broadcast algorithm for re-
current dynamic systems. In: Advanced Information Networking and Applications
(AINA), 2014 IEEE 28th International Conference on. pp. 933-939. IEEE (2014)
Viard, T., Latapy, M., Magnien, C.: Computing maximal cliques in link streams.
Theoretical Computer Science 609, 245-252 (2016)

Whitbeck, J., Dias de Amorim, M., Conan, V., Guillaume, J.L.: Temporal reach-
ability graphs. In: Proc. of MOBICOM. pp. 377-388. ACM (2012)

