
Chapter 7

Topology control in sensor,
actuator and mobile robot
networks

Arnaud Casteigts, Amiya Nayak and Ivan Stojmenović

School of Information Technology and Engineering, University of Ottawa,
800 King Edward, Ottawa, Ontario K1N 6N5, Canada.

Abstract

The efficiency of many sensor network algorithms depends on characteristics
of the underlying connectivity, such as the length and density of links. It is
therefore a common practice to control the number and nature of links that are
to be used among all potentially available links. Such topology control can be
achieved by modifying the transmission radii, selecting a given subset of the
links, or moving some nodes (if such functionality is available). This chapter
reviews some of these problems, and related solutions applicable to the context
of sensor and actuator networks. Spanning structures and minimum weight con-
nectivity are first discussed, and some applications for power efficient and delay
bounded data aggregation are described. The issue of detecting critical nodes
and links to build a bi-connected topology is also investigated, with the aim
of providing fault-tolerance to the applications, and some recent and prospec-
tive works considering bi-connectivity of mobile sensors/actuators and related
deployment of sensors, augmentation, area and point coverage are discussed.

1

CHAPTER 7. TOPOLOGY CONTROL 2

7.1 Introduction

Unless indicated otherwise, all the solutions presented in this chapter assume
that every node is able to know its own position and the positions of its neigh-
bors using exchanges of HELLO messages. These solutions also assume that no
obstacles are present and that the network can thus be represented by a Unit
Disc Graph (UDG for short), that is, a graph where two vertices are joined
by an edge (and said neighbors) if and only if the distance between the two
corresponding nodes is under a given threshold R. The chosen value for R
corresponds to the transmission radius, which is generally assumed to be the
same for all nodes. Some variations of this model can however be considered to
represent obstacles or different transmission radii among nodes, in which case
the edges are considered either as directed (arcs), or used only if both com-
munication directions are available. The min-power graph is an example of
such non-symmetrical UDG that represents the cases where each node has the
smallest possible transmission radius with respect to the network connectivity.
Depending on the scenarios considered, the transmission power can be decided
once at the starting time, or adjusted for each message.

The chapter starts with a discussion on the main general approaches used
to control the connectivity in static sensor networks. The emphasis is put in
particular on the problem of finding minimum transmission radii so that the
network is connected (i.e., there exists a path between any two nodes in the
network). This problem is actually closely related to the problem of finding a
minimum spanning tree, since the longest edge of such structure corresponds
to the minimal common radius achieving the connectivity. We thus discuss the
problem of approximating this structure in a distributed and localized manner.
A few applications of the minimum spanning tree in the context of data ag-
gregation are then presented, with a couple of example protocols that exploit
the localized approximation discussed before. Finally, we discuss the problem
of maintaining a distributed spanning forest over a uncontrolled sensor and ac-
tuator topology so that each sensor belongs to the same tree as at least one
actuator.

The second part of the chapter (starting at section 7.6) is concerned with
problems related to bi-connectivity. The question of detecting local critical
nodes and links in a distributed fashion is first covered. We then discuss several
scenarios involving bi-connectivity of mobile robots (which may correspond to
sensors or actuators, depending on the cases). The first two scenarios address
the problem of deploying bi-connected sensors around a given point of interest,
whereas the two last scenarios address the problem of bi-connecting a network
that is initially 1-connected.

7.2 General approaches in static sensor networks

When the nodes are static, controlling the topology amounts to selecting only a
subset of the possible links for effective use, according to some desired criteria

CHAPTER 7. TOPOLOGY CONTROL 3

(distance between nodes, remaining level of energy, avoidance or favoring of
cycles, etc.). There are essentially three ways of proceeding:

1. Selecting particular neighbors based on other criteria than the sole dis-
tance between them. We refer to [BLRS06] as an example of such selec-
tion, where the criterion is to minimize the number of symmetric links so
that interferences are bounded. The topology is designed by maintaining
the number of neighbors of each node below a value k while guaranteeing
the overall connectivity with high probability. The proposed protocol con-
sists in two message exchanges. First, all nodes transmit their ID using
the maximal emission power. Upon reception, each node i builds a list
Li containing its k nearest neighbors. Then each node transmits its list
using again the maximum power. A link between two nodes is then kept
if and only if it belongs to the k closest neighbors of each other. While
the value k needed for connectivity with high probability is logarithmic,
their experiments showed that k = 6 was the ’magic’ number above which
the network is always connected in practice.

2. Using an adjusted transmission range, possibly being different for each
node, and then using all neighbors within that range. While being very en-
ergy efficient, the problem of this approach is that medium access (MAC)
protocols become complicated, and a vast majority of the existing ones,
which assume symmetric and same transmission powers, does not work
well in this context.

3. Using an adjusted transmission range, but with the same value for every
node. This option is often preferred over the previous one, and can also
serve as a prior step to further selection. The main question here is to
find the minimal value that still guarantees the network connectivity.

We now discuss the construction of a minimum spanning tree, that one can
see as being closely related to the first and the third approaches.

7.3 The Minimum Spanning Tree

Minimum spanning trees (MST for short) are emblematic example of topological
structures commonly used in communication networks. In a graph G = (V,E),
an MST is a connected subset of the graph that contains all the vertices and
minimizes the overall sum of its edge lengths (or more generally their weight).
A well known centralized algorithm to build such structure is the Kruskal’s
algorithm, which mainly works as follows. All edges of E are sorted in the
increasing weight order, and a new empty set E′ is created. For each edge e in
the ordered set E, e is added to E′ if it does not create a loop in G′ = (V,E′).
The resulting graph G′ is a minimum spanning tree of G.

The Figure 7.1 gives an example of MST that has been built over a random
unit disc graph. As usual in wireless networks, the length of the edges was used
as their weight. Note that if several edges have the same length, then several

CHAPTER 7. TOPOLOGY CONTROL 4

equivalent MSTs may exist, but this non-determinism can be easily broken
based on additional parameters (such as a comparison between nodes IDs).

Figure 7.1: A Minimum Spanning Tree on top of a random unit graph

An interesting fact about the minimum spanning tree is that its longest edge
also corresponds to the optimal common transmission radius (i.e., the minimal
radius such that network connectivity is preserved). This follows directly from
Kruskal’s algorithm, this edge being the last added edge in E′.

Considering a few related results, Penrose [Pen99] proved that the ’furthest
nearest’ neighbor of a node in the network, and the longest MST edge, have
asymptotically (when n goes to +∞) the same value. The probability of con-
nectedness exhibits a very sharp transition from 0 to 1 just before the critical
value [Bet02]. Another interesting fact is that an important amount of energy
can be saved if a fewer connectivity is required. Santi and Blough [SB03] showed
for example that, in two and three dimensions, halving the critical transmission
range of the nodes still keeps 90% of them connected within a same component.

While the problem of building an MST and finding the optimal transmission
range are closely related, both of them require to consider global knowledge such
as the size and density, or the spacial distribution of nodes. The problem is then
to approximate these optima in a distributed fashion. We present below a few
approaches for doing so, based on a localized approximation of the minimum
spanning tree.

Localized approximation of the Minimum Spanning Tree (LMST)

Localized Minimal Spanning Trees (LMST), introduced in [LHS03] and already
discussed in the Chapter 2, are distributed structures that approximate the min-
imum spanning tree using only local information. More precisely, each node u is
assumed to collect position information of its 1-hop neighbors, then to compute
the local minimum spanning tree that covers itself and its 1-hop neighbors (in-
cluding edges between these neighbors, possibly deduced from their positions).
Then, an edge (uv) belongs to the LMST if and only if is belongs to the local

CHAPTER 7. TOPOLOGY CONTROL 5

MST of both u and v. For illustration purpose, we provide on Figure 7.2 the
results obtained using this algorithm, as opposed to the optimal solution given
on Figure 7.1. As one can see, just a few cycles (3) were created. Considering
that only 1-hop information was used, the approximation can be qualified as
good.

Figure 7.2: Localized Minimum Spanning Tree

Based on the observation of Penrose that the longest edge of the MST corre-
sponds to the optimal transmission range value, Ovalle et al [OSGS05] proposed
to use the LMST algorithm to find this value. More precisely, the basic idea
was to find the longest LMST edge (that approximate this value) using a wave
propagation within. However, it was observed in this paper that even a very
small number of additional edges (such as those creating a cycle on Figure 7.2,)
representing less than 3% in their experiments (on networks with up to 500
nodes) may extend the range value by about 33%. In turn, these 33% of range
value may represent 50% or more increase in energy consumption, depending
on the power attenuation factor that is considered. A quasi-localized scheme is
thus proposed in the paper to remove additional edges of the LMST, using in
average less than 7 messages per node. This procedure is a loop breakage pro-
cedure, which iteratively follows dangling edges from leaves to loops. The loops
are then broken by eliminating their longest edge. These procedures continue
until they all end up at a same node, considered as a defacto leader, that can
learn the value of the longest edge in the process, and broadcast it back to the
other nodes. This procedure operates only in two dimensions, since it is based
on a face routing scheme (see Chapter 4 for details on face routing).

7.4 Data aggregation

A common scenario of sensor networks involves the deployment of hundreds
or thousands of low-cost, low-power sensor nodes in a region from where in-
formation will be collected periodically. Sensor nodes must sense their nearby

CHAPTER 7. TOPOLOGY CONTROL 6

environment and send the information to a sink or actuator, from which the col-
lected information can be further processed or made available to the user. In the
most basic reporting schemes, each sensor independently sends its data to the
associated actuator using routing operations that generates a lot of redundant
traffic if the data is geographically or temporally correlated (e.g. if two neigh-
boring, or successive, measure values are expected to be close to one another).
Data aggregation arise from the observation that most of this redundancy could
be avoided if the data were partially processed locally to the sensors, for ex-
ample by averaging it over time or space before forwarding it. This is what
data aggregation does, by applying fusion/consolidation functions to the data
along its way to the sink. Example of such functions include average, maximum,
minimum, sum, count, or deviation, that can be applied either periodically or
on-demand.

Once these functions are chosen and combined, the main problem of data
aggregation is to build the overlay structure along which data will be effec-
tively aggregated. This structure must be as efficient as possible to allow a fast
aggregation while maximizing the lifetime of the network (i.e., the number of
aggregation cycles, or rounds, before energy depletion).

A1

A2

A3

A4

Figure 7.3: Data aggregation trees based on the cumulative distance to the sink.

A very common type of structure in this context is the tree, which represents
a natural hierarchical organization where parent nodes collect and aggregate the
data coming from their children, before forwarding their own data in turn. At
the top of the tree is the sink (or actuator). Figure 7.3 gives an example scenario
where sensors are reporting toward four actuators. Here the trees are set up
in such a way that the sum of edge lengths between sensors and actuators are
minimized. Other criteria such as minimizing the number of hops or the favoring
the nodes with more remaining energy could be used instead.

In order to be realistic and efficient in the context of sensor and actuator

CHAPTER 7. TOPOLOGY CONTROL 7

networks, an algorithm to build such structure should have some important
properties. First, the algorithm should be distributed since it is extremely
energy consuming to calculate the optimum paths in a dynamic network and
inform others about the computed paths in a centralized manner. The algorithm
must scale well with increasing number of nodes. Another desirable property
is robustness, which means that the routing scheme should be resilient to node
and link failures. The scheme should also support new node additions to the
network, since not all nodes fail at the same time, and some nodes may need to
be replaced. In other words, the routing scheme should be self-healing. The final
and possibly the most important requirement for a data aggregation scheme for
wireless sensor networks is being energy efficient.

One common approach to build an aggregation tree is to flood a packet from
the sink (or actuator) so that every node can select a parent among the nodes
from which it received the packet. The data is then aggregated along this so-
constructed hierarchy. The problem with flooding techniques (some of which
are detailed in Chapter 2) is that this may generate a lot of redundant messages,
be problematic with respect to possible interferences, are more generally cost
an important amount of energy, since several retransmissions happen uselessly.
In [TKS07], the idea was proposed to build and maintain an underlying LMST
that is considered as the topology during the flooding operation, so that the
overhead of messages is much reduced (the same principle may also work with
other structures such as the Relative Neighborhood Graph, as pointed out by the
authors).

A set of three protocols, called Localized Power Efficient Data Aggregation
Protocols (L-PEDAP), are proposed. Their variations correspond to different
strategies of parent selection. According to the decisions made during this
flooding process, the tree is yielded. The three methods are: 1) choosing the
first node from which the flooded packet is received, 2) choosing the node that
minimizes the number of hops to the sink, and 3) choose the node that minimizes
the total energy consumed over the path to the sink. Note that the first and
second methods are nearly equivalent in sensor networks, since the processing
time of messages overcomes their physical transmission time over the air, making
the transmission time quasi-proportional to the number of hops.

Since the underlying structure (here, the LMST) can be locally maintained,
this solution accommodates new node arrivals and departures of existing nodes.
The authors also propose power-aware versions of these protocols that consider
the energy level of nodes while constructing the underlying structure. Finally,
the paper derives a theoretical upper-bound for the lifetime in terms of the first
node failure, and simulation results show that the protocols achieve up to 90%
of this upper bound.

Delay-bounded and power-efficient data aggregation. While the pur-
pose of the LMST is to build an energy-efficient structure by selecting the short-
est edges, it is not optimal with respect to delay considerations. In [XLNS09],
the authors propose a data aggregation protocol where a LMST is first con-

CHAPTER 7. TOPOLOGY CONTROL 8

sidered, then modified at reporting time in order to match additional delay
constraints. As with most existing solutions for delay-bounded data aggrega-
tion, the metric used here to approximate the delay of a communication is the
number of hops. Indeed, among the delays experienced by a packet at each hop,
the distance travelled over the air is negligible compared to the time required to
process it at the nodes, which can be considered equal for each node when all
packets are of the same size. The delay experienced by a packet is thus directly
proportional to the number of hops it travels. The proposed algorithm, called
Desired Hop Progress (DHP), allows to respect given delay bounds while using
significantly less energy than the known competitor in [MPGA05] (from 25 to
75% less energy consumption and up to 123% network lifetime depending on
the configurations). We detail it now.

As with the previous algorithm (L-PEDAP), a tree is built on LMST edges
when an actuator (they can be several) floods the network with a request.
Thanks to a specific retransmission mechanism, every node computes and mem-
orizes several parameters during this process, the main of which are the hop
distance to the sink. Two kind of distances are actually memorized: the LMST-
based distance (or LD), which represents the number of hops to the actuator
using only the LMST edges, and the UDG-based distance (or UD), which is
the number of hops to the actuator if any edge could be used. These different
distances are illustrated on Figure 7.4, where thick edges represent the LMST-
based tree, and all edges together the UDG. The aggregation process then starts
from the leaves to the actuator as explained below.

6

9

1

7

0

4

2

3

5

8
A

LD=6
UD=3

LD=6
UD=4

LD=3
UD=2

LD=2
UD=1

LD=1
UD=1

LD=5
UD=2

LD=4
UD=2

LD=6
UD=3

LD=5
UD=3

LD=5
UD=3

Figure 7.4: Example topology for the DHP protocol.

Every request (packet flooded) contains information about the delay that
must be respected during this aggregation. If this delay is achievable using only
LMST edges (that is, if for every node, LD is equal to, or lower than the desired
delay), then the aggregation occurs as with L-PEDAP using only these edges.
Otherwise, the reporting nodes tries to find shortcuts outside of the LMST,
using the UDG distance. More precisely, before sending the aggregated packet
to its parent, every node calculates a particular ratio to decide whether using

CHAPTER 7. TOPOLOGY CONTROL 9

LMST edges is sufficient or a shortcut is necessary. This ratio, called dhp (for
desired hop progress), is defined as:

dhp = d LD
Delay−MED e,

where MED (most experienced delay) is the number of hops already done by
the childs. The meaning of this ratio is actually to represent the LD distance
that should be gained at every next hop so that the delay is finally matched. If
this value is higher than 1, then it determines which level of shortcut should be
ideally used. Considering the scenario given on Figure 7.4 with a delay limit of
3, this leads to the following execution.

Since node 8 has an UD equal to the required delay, it cannot accept any
child (because the delay could not be respected whatever the shortcuts). Node
9 will therefore not be considered for the aggregation. Since nodes 3 and 6 have
both a dhp value of 2 (d 6

3−0e), they try to apply a shortcut to gain 2 LMST
hops, and thus select node 2 as parent. Nodes 4, 5 and 8 compute their dhp
(also equal to 2), and thus select node 1 (shortcutting node 2). Node 2 then
computes dhp (also equal to 2), and takes node 7 as parent. For the same reasons
again, node 1 decides that node 0 is its parent. In turn, node 7 finds that its
report has to be sent directly to the actuator, as a single last hop is allowed
(Delay −MED = 1). Finally, node 0 naturally determines the actuator to be
its parent. While almost no LMST edges were used in this example, the point of
this protocol is that such edges are always used when the delay constraint allows
it, which tends to offer both delay-bounded and power-efficient aggregation at
the same time.

Two variations of the DHP protocol were also proposed in the same pa-
per (DHPA and DHPAC), to integrate it with sensor activity scheduling and
connected dominating set (CDS), respectively. Detailed discussion on CDS can
be found in Chapter 1. The two variants require fewer sensors to report and
thus have reduced bandwidth usage and improved energy efficiency. The first
variant, DHPA, adopts a localized area coverage algorithm [GCSRS06] for se-
lecting an active node set. Active nodes monitor the environment and generate
reports, whereas the others switch to sleep mode for energy saving. The DHP
protocol is therefore run only on active nodes. In this area coverage algorithm,
each node sets a timeout t to start coverage evaluation and schedule its activity.
Considering that nodes with shorter t will have a higher chance to stay active,
they define t = c/Erest (c is a constant, and Erest is remaining nodal energy).
This definition favors energetic nodes. That is, the more residual energy a node
has the more chance the node gets to work. The second variant, DHPAC, is a
combination of DHPA and the localized CDS algorithm from [CSR04]. In this
combination, the CDS algorithm is run on active nodes determined by the area
coverage algorithm. Since each active node either belongs to the CDS or has a
direct neighbor in it, non-CDS nodes will report to their closest CDS neighbor,
while CDS nodes will run the DHP protocol to organize data aggregation within
the CDS.

CHAPTER 7. TOPOLOGY CONTROL 10

7.5 Spanning trees in uncontrolled dynamic
topologies

The discussion below addresses the scenarios where sensors are to move in an
uncontrolled fashion, which is for example the case when they are carried by
some physical actors of the considered scene (e.g. animals, vehicles, virtual in-
sects or robots whose movement are to be determined by external parameters).
The problem of maintaining distributed spanning trees over dynamic topolo-
gies has been extensively studied these past few decades, especially in the two
research areas of dynamic graphs and mobile ad hoc networks. To the best
of our knowledge, a vast majority of approaches, if not all of them, consid-
ered the problem of building a single spanning tree to cover the whole network.
Generally tackled from the angle of self-stabilization, these approaches consider
topological events as faults that induce a non-legal state that the algorithm must
correct. The correction is then achieved when the whole network is covered by
a single tree, which is the legal state. To give a few references on this fam-
ily of approaches, one can cite the distributed graph algorithm in [AKM+93],
which exhibits the shortest construction time ’from scratch’ (recently adapted
to the message passing model in [BK07]), and [Gae03] that describes a number
of comparable approaches.

While most proposed algorithms engage a complete re-construction of the
tree after each topological failure, some other more realistic approaches (e.g.
[BFG+03], [AMZ06]) attempt to correct only the local discrepancies resulting
from the link failures. However, these algorithms still require some stabilization
time during which the separate subtrees are unavailable and inconsistent. An
important consequence is that they simply cannot deal with topologies that
change quicker than the stabilization time.

Up to now we discussed scenarios where the connectivity of the whole net-
work was required. This might not always be the case, however. Most appli-
cations for sensor and actuator networks do not actually require that a path
exists between a sensor and all of the actuators, the point being that sensor
must only be able to report information to, or communicate with, at least one
actuator (or perhaps a few, for fault tolerance). On the other hand, is it of
utmost importance that such communication are always achievable, i.e., that
the underlying supporting structure is always available.

A novel approach addressing highly dynamical topologies was proposed in a
recent paper [CCGP09]. The basic idea behind this apprach is to renounce to
build a single tree covering the whole network, but instead consider maintaining
a forest of several trees that grow opportunistically and that recover a consistent
state in one single operation after any topological failure in such a way that the
two parts of a given broken tree remain transparently usable. The key point to
achieve such property is that both mergings and splittings of the trees are purely
localized events that do not generate any wave propagation. The algorithm relies
on the circulation of tokens whose number is strictly maintained at one per tree.
The difference with other token-based approaches is that the walk of each token

CHAPTER 7. TOPOLOGY CONTROL 11

is limited to the edges of its tree, which offers some very specific properties.
The main of these properties is that every node knows anytime which one of
its local edges leads to the token, this edge being simply the one by which the
token went out after its previous visit. The consequence is that when an edge
of a tree is broken, one of the two endpoint nodes knows that its remaining part
of the tree is token free, and that it is now the ’highest’ node on the route that
led to the lost token. As a consequence, it can locally regenerate a new token
and resume the circulation transparently for the other nodes.

The principle of this algorithm can be detailed by a small set of localized
modification patterns, depicted on Figure 7.5. Initially, every vertex is a one-
vertex tree that has its own token (label T). When two tokens are located on
neighboring vertices, they are merged and the corresponding edge is marked as
a tree edge (rule r3). This marking use a different value on each side (1 and
2) to reflect the orientation induced by the remaining token. If no merging is
locally achievable, the token is transmitted to any neighbor in the tree (rule r4),
and the orientation mark is updated consequently. For any given node, if the
local edge leading to the token is broken, then a new token is regenerated locally
(rule r1). The other side of the broken edge does not perform any particular
operation (rule r2).

r1 :
N T

1

off

r2 :
Any Any

2

off

r3 :
T T T N

∅ ∅ 2 1

r4 :
T N N T

2 1 1 2

initial states:

• T for every vertex,

• ∅ for every edge extremity.

meaning of the states:

• T: a token is on this node,

• N: no token is on this node,

• 1: this tree edge leads to the token.

• 2: this tree edge does not.

Figure 7.5: The spanning forest algorithm.

An interesting question for the context of sensor and actuator networks is
whether the expected size of the trees is large enough to guarantee that each
sensor has at least one actuator in its tree at anytime. In other words, one might
want to answer the following question: “given a number of sensors, their density
and the expected rate of topological changes, how many actuators are needed so
that the probability to have anytime at least one in each tree is above a given
threshold?”. In [CCGP09] the authors provided a first element of answer by
characterizing the expected merging time of two given trees, as a function of
their size and the number of links available between them. The road between
these first results and the complete answer may still be important, though.

CHAPTER 7. TOPOLOGY CONTROL 12

7.6 Detection of critical nodes and links

In sensor and actuator networks, the failure of some nodes or links, if generating
several partitions of the network, may be fatal for collecting data from the
field or performing certain actions on sensors. It is expected however that the
network exhibits some critical connectivity before partitioning. Recognizing
such properties in a timely fashion could allow to perform some data or service
replication, so that the network can continue to function after the partition
occurred. This kind of detection may also be used at deployment time (e.g.
while deciding a common communication radius) to ensure that no such critical
node or link exist, that is, that the network is bi-connected. Both approaches
may be considered to add fault tolerance to the network. We discuss below
some ideas for detecting critical links and nodes.

Algorithms for detecting critical nodes and links based on global knowledge
are well known. However, their use in sensor networks is limited since this
requires the entire topology to be known by a single entity, which is not scalable
and implies a delay between topological changes and the system reactions. It
appears therefore preferable to try to detect critical links and/or nodes in a local
and distributed fashion, even if making possibly a few appreciation mistakes that
implies a more ’pessimistic view’ of the connectivity (an element seen as critical
while not being so).

In a global context, a node, or link, is said critical if its removal disconnects
the network, that is, if this partitions it into several connected components. The
definitions of what critical nodes and links are must be slightly modified in a
localized context. As introduced in [JSHS04], a node can be said locally critical
if its removal disconnects the subgraph of its p-hop neighbors. In the case of
links, several definitions can be considered, and three were proposed in the
same paper, based on the method used to look at the local connectivity. These
methods are illustrated on Figure 7.6. The first method consists in looking at the
p-hop neighbors of both endpoints and see if some are in common (Fig. 7.6(a)).
The second one is to initiate a face traversal on both sides of the tested link in
order to see if the other endpoint is reached before 2p-hops (Fig. 7.6(b)). Finally,
the link can also be decided critical if its endpoints are critical themselves, and
this information is already available (Fig. 7.6(c)).

Depending on whether position information is available to the nodes, a vari-
ation of each definition can be considered, as discussed in [JSHS04]. Let us
consider the simple example given on Figure 7.7, where nodes A and B must
determine if their common link is critical, based on a 1-hop neighboring infor-
mation. If the respective positions of C and D are known, then the fact that a
link exists or not between them can be established without additional informa-
tion, while this is not possible using only topological information. Obviously,
such position-based deduction assumes UDG model without obstacle. These
two variations are denoted as k-top- and k-pos-criticality by the authors.

Experiments using random UDGs showed a high correlation between global
and local decisions. The only difference is when alternative routes exist but are
relatively long. The point is that real critical elements will be detected as such,

CHAPTER 7. TOPOLOGY CONTROL 13

A B

Nk(A) Nk(B)

(a) Nk(A) ∩Nk(B) = ∅

A B

loop1

loop2

(b) |loop1| > 2k∧|loop2| > 2k

A B
? ?

(c) critical(A) ∧ critical(B)

Figure 7.6: Localized detection of a critical link (here (AB))). For each method,
the link is decided critical if the caption formula is true.

A

C

B

D
?

Figure 7.7: Impact of the availability of position information on the detection
of criticality.

and any wrong appreciation is only generated by excess of caution (in case of
reactive replications) or a slight excess of connectivity (in case of link selection).

These notions can be generalized to the case of critical k-connectivity of the
network, as proposed in [JGK+07]. In the first protocol of this paper, each
nodes makes criticality decision by verifying whether or not each of its p-hop
neighbors has degree (number of neighbors) at least k. The second protocol
tests also whether the subgraph of p-hop neighbours of a given nodes is k-
connected. The third protocol verifies also whether this subgraph contains any
critical nodes.

7.7 Bi-Connected robot team movement for sen-
sor deployment

We consider here the problem of deploying static sensors around a point of
interest (POI) using a fleet of mobile robots able to carry them. We describe
the solution proposed in [Li09]. Here, the number of mobile robots is considered
arbitrary (and limited), and each one is initially supplied with an arbitrary
number of sensors. The problem is then to deploy collaboratively the sensors so

CHAPTER 7. TOPOLOGY CONTROL 14

that their topology forms a triangle tesselation around the POI. The choice of
a triangle tesselation is motivated by its interesting geometrical properties that
create a near-optimal coverage by the sensors while making them bi-connected
as a by-product. The main concern is to ensure that the robot network remains
also bi-connected during the deployment, while minimizing the sum of their
moves.

The principal steps of the proposed protocol are as follows. At the beginning,
the robots are randomly scattered in the region. They first run an auxiliary
protocol such as Greedy-Rotation-Greedy (see [LFSS07] or Chapter 10) to gather
around the POI into several concentric hexagonal layers that form a triangle
tesselation at the local scale. Let us first assume that the number of robots is
such that the outmost layer is complete (as with the 7-robots hexagon depicted
in the middle of Figure 7.7). Each robot starts by dropping one sensor at its
position, then the whole group of robots shifts in one direction, and starts a
circular (or more precisely, a hexagonal) course around the already deployed
sensors, dropping new sensors along their way. This process repeats until all
sensors have been deployed. Note that each circumvolution can deploy several
layers, depending on the group diameter.

Figure 7.8: Simple case of deployment by mobile robots

More in details, let us call frontier robots the robots that are located in the
front head of the group with respect to the current direction (that is, robots 2,
1, and 6 on the hexagon representing the group after the initial shift). Frontier
robots are those in charge of dropping their sensors when they encounter an
empty virtual vertex of the tesselation. Whenever the group arrives at a corner
of the hexagon, the frontier nodes change according to the new direction (on the
same example, the new frontier robots after the first corner has been reached
will be robots 1, 6, and 5). If the frontier robots run out of sensors at some point,
the second layer of robots (e.g. 5, 0, and 3 between Corner 0 and Corner 1)
will take over the task. It is however expected that a re-organization of robots
within the group may be required in some situations, especially if the initial
supply in sensor is not uniform among robots.

CHAPTER 7. TOPOLOGY CONTROL 15

The problem becomes more complex when the number of robots does not
correspond to a perfect hexagon. Some sketches of solutions given in [Li09] are
depicted on Figures 7.9(a) and 7.9(b). The first picture corresponds to the case
where the outmost layer contains only one robot. It is suggested that robots in
the inner hexagons behave as previously, while the robot in the outmost layer
rotate around the group when a corner is encountered (this robot is expected
to be relatively quickly depleted in sensors, thereby forcing more frequent re-
organizations of the group). The second picture corresponds to cases where the
outmost hexagon contains more than one robot. In this case, the robot team is
to move using a different pattern. Here the team is a hexagon with two robots
on the sides of the frontier. The other extra robots can be placed around the
core, for example, at the positions marked by empty circles. As for the previous
case, the outer robots will have to move within the group when a corner is
encountered.

(a) One robot in the outmost layer (b) Several robots in the outmost layer

Figure 7.9: Robot team behavior

7.8 Augmentation algorithm for robot self-
deployment

In the same vein as the previously discussed scenario, the deployment of a
bi-connected network of sensors around a point of interest (POI) is addressed
in [FNS09]. The major difference is that sensors are themselves endowed with
movement capabilities, and are therefore capable of self-deploying around the
POI. Here, the sensors are released one at a time from potentially various remote
places.

The main idea of the proposed protocol is to incrementally build a perfect
triangle tesselation around the POI (this tesselation structure is chosen here
for the same geometrical reasons as previously discussed), while minimizing the
sum of sensors moves. This protocol roughly works as follows: the first sensor
moves directly to the exact position of the POI. Then, when a new sensor is

CHAPTER 7. TOPOLOGY CONTROL 16

released, it moves toward the POI until entering the range of a sensor that
already belongs to the tesselation. At this point, the already deployed sensor is
in charge of finding an appropriate tessellation position to ask the new node to
move at.

N
A

Figure 7.10: Minimizing the sum of movement to place a new node

The main objective here is to minimize the sum of robots movements while
keeping the tesselation centered around the POI. The kind of choice resulting
from these constraints is illustrated on Figure 7.10, where an empty tessella-
tion vertex is available at the opposite of a new arriving node (node N). Here,
we should prefer to shift every node in the diagonal instead of asking the new
node to turn around the tessellation (because this latter movement represents a
much larger overall distance). However, such decision implies that a tessellation
node can be aware of, or inquire for, an empty remote position in the tessella-
tion. Since forcing all nodes to memorize (and synchronize) a global view of the
tessellation is not reasonable, the challenge will be to design a distributed pro-
tocol where nodes can collaboratively decide what destination can be assigned
to a new node. Note that the question of how uniformly the movements are
distributed among robots may arise as a second step, since here the already de-
ployed nodes can be asked to move again afterward. Another interesting result
could be to characterize an upper bound on the deploying time of one sensor,
in order to determine how frequently they can be initially released (this time
might increase with the number of sensors previously deployed).

7.9 Bi-Connectivity from connectivity without
additional constraints

We now discuss some scenarios where mobile robots were already randomly
deployed but still assumed 1-connected. From this initial connected network,

CHAPTER 7. TOPOLOGY CONTROL 17

the objective is to turn the network bi-connected using only localized movement
decisions and minimizing the total movements of robots. The solution presented
in this section comes from [DLNS09].

From a global point of view, a bi-connected network is a network that does
not contain any critical nodes nor critical links, that is, that remains connected
if any node or link is individually removed. Since a link is critical only if at least
one of its endpoint nodes is critical, making the network bi-connected comes to
turn every critical node into non-critical. By looking at the Figure 7.11, it
appears intuitively clear that the global criticality of a node (e.g. N) cannot
be locally decided, since it depends on some remote edges (e.g. AB) whose
existence is locally unknown.

N

A

B

?

Figure 7.11: Locally critical node vs. globally critical node

The algorithm is based on the concept of p-hop criticality, already discussed
in Section 7.6. More practically, each node is assumed to collect information
about its p-hop neighbors through exchanging and relaying hello messages over
multiple hops. If the p-hop neighborhood of a node n appears to n as discon-
nected without itself, then n locally decides that it is p-hop critical (we will
simply say critical in the following). In the example depicted on Figure 7.11,
N will decide that it is critical (unless p ≥ 5).

By definition, the movement of any critical node is susceptible of disconnect-
ing the network. The basic idea of this protocol is thus to use only non-critical
nodes to create bi-connectivity, while keeping the critical nodes static (until
they become in turn non-critical and able to move). The algorithm is thus
based on a small set of pre-determined actions that critical nodes trigger on
their non-critical neighbors according to the situation. In particular, the fact
that a critical node has, or has not, other critical neighbors will generate differ-
ent actions. Let us define a few more concepts before detailing these actions.

A critical node is called available if it has at least one non-critical neighbor,
in other words if it has a neighbor that can move. This notion of availability
can be used to decide which one among some critical neighbors is to pilot the
local actions. More precisely, the pilot node in this case (also called critical
head) must be available and have a larger ID than any of its available critical
neighbors (in case of tie). Considering the example on Figure 7.12(a) (topology
on the left), nodes 2, 4 and 5 are all critical. Since 4 is larger than 2 and node

CHAPTER 7. TOPOLOGY CONTROL 18

4 is available, node 2 is not a critical head. Since 5 is larger than 4 and 5 is
available, node 4 is not a critical head neither. Node 5, here, is the only critical
head. Note that if node 2 had a larger ID than node 4, there would have been
two critical heads here instead of one (nodes 2 and 5).

1

2

3

4

5 6

(a) Initial network

1

2

3

4

5

6

(b) Resulting network

Figure 7.12: Simple scenario for DLNS.

The algorithm works as follows. At initialization stage, each node checks
whether it is a p-hop critical node, and will continue to check it after every
hello message exchanged. Whenever a node detects that it is p-hop critical, it
broadcasts a critical announcement packet to all its direct neighbors, including
the information about its availability. Two cases are then possible:

1. If the node has no critical neighbor, then it selects two of its neighbors n1

and n2 that belong to separate ’bi-connected component’ and ask them to
move towards each other. If the distance between n1 and n2 is d, then each
node should move a distance of (d − r)/2, where r is the communication
range. In case of several possible choices, the pair minimizing d is chosen.

2. If the node has one or several other critical neighbors, then it figures
out whether it is critical head or not, and if so, it asks a non-critical
neighbor to move toward one of the other critical neighbors. Here, the
selected neighbor should move a distance of d−r. As for the previous case,
the pair is selected so that both nodes belong to separate ’bi-connected
components’ with a distance d as small as possible.

If a node receives a request of movement while being already in the process
of moving, it simply ignores it; if it receives several requests at the same time
from different neighbors, it considers the request coming from the one with the
largest ID. Note that the resulting movements may thus not create a new link at
every expected place, which is the case for example when a node moves towards
another, that finally moves elsewhere (in case 1). However, since the algorithm
is incremental, this situation is likely to be solved at a later iteration.

CHAPTER 7. TOPOLOGY CONTROL 19

Considering again the network given on Figure 7.12, we will describe the
execution sequence transforming the initial topology (Fig. 7.12(a)) into a bi-
connected topology (Fig. 7.12(b)). As explained above, nodes 2, 4, and 5 are
initially critical, but only node 5 is a critical head. It is thus the first node to
act by asking node 6 to move toward node 4. Then node 5 becomes non-critical
and node 4, that has became critical head, asks node 5 to move toward node
2. Finally, node 2 remains the only critical node, and apply the first case by
asking nodes 1 and 3 to move toward each other, after what the network is
bi-connected.

This algorithm was experimentally compared to the centralized algorithm [BR04].
Simulation results showed that the total distance of movement of robots is sig-
nificantly lower with the localized algorithm (about 2.5 times for networks with
density 10). However, this algorithm does not totally guarantee bi-connectivity,
and may even disconnect the network in some very particular case (e.g. when
two non-critical nodes happen to be in-between some separate components, and
they are both asked to move simultaneously away from each other).

7.10 Bi-Connectivity from connectivity with ad-
ditional constraints

We are interested here in the same problem as in the previous section, that is to
achieve bi-connectivity of mobile robots starting from a random (but connected)
topology. Here however, the objective is also to maximize the overall coverage
and minimize the network diameter at the same time. Every robot n is assumed
to have a communication range, and a coverage range. The first, denoted c(n),
indicates up to which distance other nodes can receive messages from c(n). The
second, denoted s(n), is the radius defining the area where the robot is to serve.
For example, if n is a sensor, then s(n) corresponds to its sensing range. If
n is an actuator, then s(n) may correspond to the area in which sensors are
monitored by n. The ratio between these ranges is usually considered to satisfy
cr(n) > 2× sr(n). The overall coverage of the network is defined as the union
of the coverage areas of all the robots. One can intuitively see that the closer
the robots, the smaller the overall coverage due to potential overlappings.

The diameter of a network is defined as the ’largest’ shortest path between
any two nodes. More formally, if d(u, v) is the length of the shortest path
between two vertices u and v, then the diameter of a graph G = (V,E) is
defined as max(d(u, v) : u, v ∈ V). Because the diameter bounds the number of
hops of transmissions, making it small is crucial for most real-time applications.
It can be intuitively seen that the closer the robots, the smaller the diameter
of the network. Hence, the concepts of diameter and overall coverage appear
somehow antinomic and may present contradictory objectives for an algorithm.

The Figure 7.13 illustrates this point with a topology of 4 bi-connected
robots. On the left (Fig. 7.13(a)), the diameter has been reduced in the ex-
treme (1), which generates a substantial overlap of the coverage areas. If we

CHAPTER 7. TOPOLOGY CONTROL 20

take the same network and move the nodes away from each other until their
coverage areas do not overlap (Fig. 7.13(b)), then the diameter of the network
increases (here to 2). However, as depicted on the right (Fig. 7.13(c)), some
geometrical organizations such as the triangle tessellation seems to offer an in-
teresting tradeoff between diameter and coverage.

(a) Minimum diameter (b) Maximum coverage (c) Triangle tessellation

Figure 7.13: Three configuration examples.

Hence, it appears a good option to consider this pattern of organization.
However, since we consider here a scenario where the nodes are initially already
deployed, we do not want to built such perfect topology over the whole network
(but rather use it to determine local organization of neighboring nodes). Let
us nonetheless continue with some ideas illustrated on a whole tesselation. Us-
ing such structure, regulating the tradeoff between coverage and diameter can
be done my merely tunning the distance between neighboring nodes without
changing the organization geometry (the smaller distance, the higher priority
for a small diameter). This is illustrated on Figure 7.14, where the left picture
illustrates the choice to favor coverage (with a diameter of 3), and the right
one the choice of reducing the diameter to 2 (but with overlapping coverages).
Because the only difference between favoring coverage and diameter lies in the
distance between nodes without modification of the topology geometry, this sug-
gest that part of the tradeoff can be achieved using only localized operations
(e.g. determining the local distance to direct neighbors).

(a) Favoring the coverage (b) Favoring the diameter

Figure 7.14: Different choices of tradeoff

The algorithm presented in the previous section ([DLNS09]) can be adopted

CHAPTER 7. TOPOLOGY CONTROL 21

so that the resulting network tends to have a smaller diameter and/or a higher
coverage depending on a given tradeoff parameter. This adaptation could also
apply localized triangle tesselation pattern that helps improving both criteria
at the same time.

As a by-product, the original algorithm already reduces the diameter of the
network by moving the robot closer to one another. This aspect could however
be further improved by changing the way the nodes move. For example, instead
of simply asking two nodes to move half the distance toward one another to get
connected, one could first check if one of them have no additional neighbor, and
then ask only this one to move. More generally, making the nodes with lower
degrees move more than the others could help decrease the network diameter
(although it could also raise some new problems at the same time).

Once the network becomes bi-connected, a kind of localized triangle tessela-
tion could be achieved by using repulsive forces, equally pushing the nodes away
from one another, and therefore increasing the coverage. Here, the range of the
force would serve as the tradeoff parameter between coverage and diameter.
The Figure 7.15 shows a simple scenario where such forces were applied after
the original algorithm. These forces may be applied once the first algorithm
terminates, or they could be merged with it.

(a) Initial topology (b) After DLNS (c) After repulsion

Figure 7.15: Mixing bi-connectivity and repulsion forces.

The process of applying repulsive forces should however carefully avoid to bi -
disconnect the network. Note that the use of virtual forces, introduced in [ZC03]
in the context of mobile sensor networks, was recently used to maximize the
overall coverage of a robot network.

In [GJK08], the authors consider an initial network that is not necessarily
connected and propose an algorithm to make it connected. It is assumed that
all the nodes know a common location (e.g. the base station) toward which
they can move. Each robot that is arrived at this location (e.g. in range with
the base station) floods a packet so that every node that receives the packet is
thus aware of being connected with the others. Once all nodes are connected,
virtual forces are applied to maximize the coverage of the network.

In [LCLD09], a localized protocol is proposed to bi-connect a network of
robots from an initially non-connected topology. The objective is to minimize

CHAPTER 7. TOPOLOGY CONTROL 22

total moving distance of robots while maximizing sensing coverage of the net-
work. It assumes that robots have a common communication range and a sens-
ing range. Each robot is aware of locations of 1-hop neighbors and boundary
of the sensing region. As with the previous solution, all robots are supposed to
move toward a common position and maximize their sensing coverage. Here,
however, nodes move by following only two kinds of virtual forces. The first is
an attraction force that always draws every robot toward the common point of
interest, and the second is a repulsive force that is applied between every pair
of neighboring nodes. The simultaneous application of both forces (illustrated
on one node in Figure 7.16 ends up in a bi-connected triangle tesselation cen-
tered on the POI (such as the one on Figure 7.17, that results from effective
simulations). This is due to the fact that each node is located on a loop which
surrounds the POI when the nodes come into equilibrium. Each node defini-
tively stops moving when a certain number of changes in directions for obtuse
angles, called oscillations, are detected. The final topology was proved to be
bi-connected if the network is stable, and the proposed protocol was shown to
be highly scalable. Another advantage of this solution is that no communication
is ever required beyond 1-hop.

POI

Figure 7.16: Neighboring repulsion and POI attraction.

Figure 7.17: Topology resulting from 50 randomly deployed nodes.

Bibliography

[AKM+93] B. Awerbuch, S. Kutten, Y. Mansour, B. Patt-Shamir, and
G. Varghese. Time optimal self-stabilizing synchronization. In
STOC ’93: Proceedings of the twenty-fifth annual ACM symposium
on Theory of computing, pages 652–661, New York, NY, USA, 1993.
ACM.

[AMZ06] S. Abbas, M. Mosbah, and A. Zemmari. Distributed computation
of a spanning tree in a dynamic graph by mobile agents. Engineer-
ing of Intelligent Systems, 2006 IEEE International Conference on,
pages 1–6, 0-0 2006.

[Bet02] C. Bettstetter. On the minimum node degree and connectivity of
a wireless multihop network. In MobiHoc ’02: Proceedings of the
3rd ACM international symposium on Mobile ad hoc networking &
computing, pages 80–91, New York, NY, USA, 2002. ACM.

[BFG+03] H. Baala, O. Flauzac, J. Gaber, M. Bui, and T. El-Ghazawi. A
self-stabilizing distributed algorithm for spanning tree construction
in wireless ad hoc networks. Journal of Parallel and Distributed
Computing, 63:97–104, 2003.

[BK07] J. Burman and S. Kutten. Time optimal asynchronous self-
stabilizing spanning tree. In DISC, pages 92–107, 2007.

[BLRS06] D.M. Blough, M. Leoncini, G. Resta, and P. Santi. The k-neighbors
approach to interference bounded and symmetric topology control
in ad hoc networks. IEEE Transactions on Mobile Computing,
5(9):1267–1282, 2006.

[BR04] P. Basu and J. Redi. Movement control algorithms for realization of
fault-tolerant ad hoc robot networks. Network, IEEE, 18(4):36–44,
July-Aug. 2004.

[CCGP09] A. Casteigts, S. Chaumette, F. Guinand, and Y. Pigné. Distributed
maintainance of anytime available spanning trees in dynamic net-
works. Technical report, RR-1457-09 LaBRI, 2009.

23

BIBLIOGRAPHY 24

[CSR04] J. Carle and D. Simplot-Ryl. Energy-efficient area monitoring for
sensor networks. Computer, 37(2):40–46, Feb 2004.

[DLNS09] S. Das, H. Liu, A. Nayak, and I. Stojmenovic. A localized algorithm
for bi-connectivity of connected mobile robots. Telecommunication
Systems, 2009. to appear.

[FNS09] R. Falcon, A. Nayak, and I. Stojmenovic. Reliability oriented robot
augmentation protocol. Technical report, University of Ottawa,
2009. In preparation.

[Gae03] F.C. Gaertner. A Survey of Self-Stabilizing Spanning-Tree Con-
struction Algorithms. Technical report, 2003.

[GCSRS06] A. Gallais, J. Carle, D. Simplot-Ryl, and I. Stojmenovic. Localized
sensor area coverage with low communication overhead. pages 10–
337, March 2006.

[GJK08] T. Guang, S.A. Jarvis, and A.-M. Kermarrec. Connectivity-
guaranteed and obstacle-adaptive deployment schemes for mobile
sensor networks. pages 429–437, June 2008.

[JGK+07] M. Jorgic, N. Goel, K. Kalaichevan, A. Nayak, and I. Stojmenovic.
Localized detection of k-connectivity in wireless ad hoc, actuator
and sensor networks. In Proceedings of 16th International Con-
ference on Computer Communications and Networks, pages 33–38,
2007.

[JSHS04] M. Jorgic, I. Stojmenovic, M. Hauspie, and D. Simplot-Ryl. Lo-
calized algorithms for detection of critical nodes and links for con-
nectivity in ad hoc networks. In Proc. of the Third Annual IFIP
Mediterranean Ad Hoc Networking Workshop, MedHocNet, pages
360–371, 2004.

[LCLD09] H. Liu, X. Chu, Y.-W. Leung, and R. Du. An efficient physical
model for movement control towards bi- connectivity in robotic
sensor networks. In preparation, 2009.

[LFSS07] X. Li, H. Frey, N. Santoro, and I. Stojmenovic. Localized self-
deployment of mobile sensors for optimal focused-coverage forma-
tion. Technical report, Carleton University, Ottawa, 2007.

[LHS03] N. Li, J.C. Hou, and L. Sha. Design and analysis of an MST-based
topology control algorithm. In Proc. of INFOCOM, 2003.

[Li09] X. Li. Deploying sensors for optimal coverage by bi-connected mo-
bile robot team. Technical report, University of Ottawa, 2009. In
preparation.

BIBLIOGRAPHY 25

[MPGA05] T. M, D. Pompili, V.C. G, and I.F. A. A distributed coordination
framework for wireless sensor and actor networks. In MobiHoc ’05:
Proceedings of the 6th ACM international symposium on Mobile ad
hoc networking and computing, pages 99–110, New York, NY, USA,
2005. ACM.

[OSGS05] F.J. Ovalle-Martinez, I. Stojmenovic, F. Garcia-Nocetti, and
J. Solano-Gonzalez. Finding minimum transmission radii for pre-
serving connectivity and constructing minimal spanning trees in ad
hoc and sensor networks. J. Par. Distrib. Comput., 65(2):132–141,
2005.

[Pen99] M.D. Penrose. On k-connectivity for a geometric random graph.
Random Struct. Algorithms, 15(2):145–164, 1999.

[SB03] P. Santi and D.M. Blough. The critical transmitting range for con-
nectivity in sparse wireless ad hoc networks. IEEE Transactions on
Mobile Computing, 2(1):25–39, 2003.

[TKS07] H.O. Tan, I. K, and I. Stojmenovic. A distributed and dynamic data
gathering protocol for sensor networks. In AINA ’07: Proceedings
of the 21st International Conference on Advanced Networking and
Applications, pages 220–227, Washington, DC, USA, 2007. IEEE
Computer Society.

[XLNS09] C. Xu, X. Li, A. Nayak, and I. Stojmenovic. DHP: A delay-
constrained power-efficient data aggregation scheme in sensor-actor
networks. submitted for publication, 2009.

[ZC03] Y. Zou and K. Chakrabarty. Sensor deployment and target local-
ization based on virtual forces. volume 2, pages 1293–1303 vol.2,
March-3 April 2003.

