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Abstract The Bluetooth Scatternet Formation (BSF) prob-
lem consists of interconnecting piconets in order to form
a multi-hop topology. While a large number of BSF algo-
rithms have been proposed, only few address time as a key
parameter, and when doing so, virtually none of the solu-
tions were tested under realistic settings. In particular,the
baseband and link layers of Bluetooth are highly specific
and known to have crucial impacts on performance. In this
paper, we revisit performance studies for a number of time-
efficient BSF algorithms, focusing on BlueStars, BlueMesh,
and BlueMIS.We also introduce a novel time-efficient BSF
algorithm calledBSF-UED(for BSF based on Unnecessary-
Edges Deletion), which forms connected scatternets deter-
ministically and limits the outdegree of nodes to 7 heuristi-
cally.The performance of the algorithm is evaluated through
detailed simulation experiments that take into account the
low-level specificities of Bluetooth. We show that BSF-UED
compares favorably against BlueMesh while requiring only
1/3 of its execution time. Only BlueStars is faster than BSF-
UED, but at the cost of a very large number of slaves per
master (much more than 7), which makes it impractical in
many scenarios.
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1 Introduction

In this paper, we study the problem of forming multi-hop ad
hoc networks with Bluetooth, one of the most widespread
communication technologies. Point-to-point communication
between two Bluetooth devices is relatively straightforward,
but the construction of efficientmulti-hoptopologies is chal-
lenging. This problem attracted much attention a decade ago,
less recently as the question of whether Bluetooth is more
than a point-to-point cable replacement technology started
to be debated. With the current development of home au-
tomation and personal area networks, which involves de-
vices as varied as heart-rate monitors, smart-phones, blood-
glucose meters, smart watches, window and door security
sensors, car key fobs, or blood-pressure cuffs, there is a re-
vival of interest for Bluetooth in an ad hoc networking con-
text. This revival is also due to the wide adoption of Blue-
tooth (about 95 % of today’s mobile phones are enabled [1])
and the fact that it offers communication at low cost, low
energy consumption, and low interference. While the Blue-
tooth specifications kept evolving (it is now in its seventh
version), new marketing trademarks were recently pushed
forward by the Bluetooth Special Interest Group (SIG) in
anticipation of a new networking trend around Bluetooth,
includingBluetooth SmartandBluetooth Smart Ready1.

The Bluetooth Scatternet Formation (BSF) problem: Accord-
ing to the specifications [2], a Bluetooth device can be ei-
thermasteror slavewhen it communicates. A master along
with its slaves is called apiconet. All communications in a
piconet is controlled by the master. The number ofactive
slaves (that is, slaves that can participate in the piconet’s
communication) is limited to7. More slaves are possible in
a piconet if some of them are inactive (orparked). In such

1 Bluetooth Smart Ready: http://www.bluetooth.com/pages/Bluetooth-
Smart-Devices.aspx. Fetched on Dec. 20, 2012
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cases, the master dynamically parks and unparks its slaves
to regulate communications, which imposes a penalty on the
piconet throughput. Thus, maintaining the number of slaves
per piconet below 7 is highly desirable. A piconet that has at
most 7 slaves is calledoutdegree limited2.

The interconnection of several piconets is called ascat-
ternet. Scatternets are the solution for multi-hop communi-
cation in Bluetooth. A scatternet interconnects several pi-
conets by having some nodes playing a dual role in two pi-
conets, namely, master in one piconet and slave in the other
(M/Sbridge) or slave in both (S/Sbridge).M/M bridges are
not allowed (that is, a node cannot be master to more than
one piconet at the same time). A bridge node must sched-
ule its time between the different piconets it belongs to (us-
ing a so-called interpiconet scheduling algorithms). As a re-
sult, a large number of bridges in a scatternet also imposes
a penalty on the throughput of the scatternet. Among those,
M/S bridges impose a higher penalty than S/S bridges be-
cause an M/S bridge causes all its slaves to be inactive when
it is itself inactive. It is also preferable to keep the number of
piconets a node belongs to – its number ofroles– to a mini-
mum. A classical metric in this regard is theaveragenumber
of roles per node. A scatternet such that all its piconets are
outdegree limited is called anoutdegree limited scatternet.
Limiting the outdegree of a scatternet, which is a main ob-
jective in many BSF algorithms, improves the performance
of the scatternet significantly.

An algorithm that forms scatternets is called a Blue-
tooth Scatternet Formation (BSF) algorithm. The way pi-
conets must interconnect to form scatternets is not speci-
fied in Bluetooth specifications and left open to the research
community. The many possible approaches as well as the
number of quality metrics to be assessed on the resulting
topology make this problem challenging. One difficulty is
that some of the metrics are conflicting (i.e., improving one
may deteriorate another). We are interested in BSF algo-
rithms that balance between all metrics under reasonable as-
sumptions, while keeping a light emphasis on the execution
time for suitability to changing environments.

It is a challenging task for BSF algorithms to verify such
a dosage of performance metrics. BlueStars [3] forms in
a time-efficient manner connected scatternets that have a
low number of piconets and M/S bridges, but potentially
a large number of slaves per piconet. Many attempts have
been made to solve the issue of large piconets in BlueStars.
For instance, Li et al. [4] introduce an algorithm that gen-
erates outdegree limited scatternets using geometric struc-
tures, but they assume that knowledge of nodes positions
is available. Bluenet [5] forms outdegree limited scatternets

2 In the following, a piconet is modeled as a star graph with a master
and slaves. We model a master-slave relationship as a directed edge
from the master to slave, whence the number of slaves of a master is
its outdegree.

with an acceptable number of piconets and M/S bridges, but
does not guarantee connectivity of the resulting scatternet.
BlueMesh [6] offers similar qualities together with connec-
tivity, but at the cost of a long execution time. Another ex-
ample is BlueMIS I [7] which generates in a time-efficient
manner scatternets that are connected and outdegree-limited
but with significantly high number of piconets. The authors
of [7] introduce simple rules to be executed over BlueMIS I
that were called BlueMIS II in order to improve the quali-
ties of BlueMIS I. However, BlueMIS II suffers from either
a long execution time or outdegree unlimited scatternets de-
pending on how these rules are implemented.

Unfortunately, the BSF algorithms which are presented
as time-efficient were not evaluated under the complex base-
band and link layers of Bluetooth, despite the high speci-
ficity of these layers and their impact on performance. The
corresponding papers either do not mention what simulator
was used, or present simulations that relied on naive simu-
lators such assimjava [8] or bluehoc3, which makes it
hard to assess the real efficiency of these solutions.

This paper extends a line of work [9, 10] whose focus
is the execution time of Bluetooth networks algorithms.In
[10], we showed how simple changes in the configuration
of Bluetooth devices may either significantly improve or de-
grade the execution time of a distributed algorithm running
over a Bluetooth network. The work in [10] focused on time
efficient implementations of communication rounds in Blue-
tooth networks (that is, we studied the problem of how every
node sends and receives a message to and from all its neigh-
bors as fast as possible). The study in [10] introduced us to
interesting properties of Bluetooth networks. These proper-
ties affect the execution time of distributed algorithms run
over Bluetooth networks. These properties must be consid-
ered in the design of BSF algorithms in order to improve
their execution times. In [9], we used some of the results
obtained in [10] to design time-efficient outdegree limited
BSF algorithms. The algorithms of [9] do not perform well
in term of some performance metrics.

The first main contribution of this paper is a comparative
study of major BSF algorithms. The major criteria that we
focus on in the studied algorithms are:

1. The execution time of the algorithms, from an empirical
and theoretical point of view.

2. The balance between performance metrics: a BSF algo-
rithm shall form scatternets that are efficient with respect
to performance metrics other than execution time (e.g.,
scatternet connectivity, outdegree limitation, number of
bridges, average role per node and fault tolerance). and,

3. Other criteria: a BSF algorithm shall not run only in
single-hop networks, or depends on knowledge of nodes

3 Bluehoc: http://bluehoc.sourceforge.net/. Fetched on Dec. 20,
2012
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positions or relative distance to other nodes, or assume
the existence of a centralized entity, such a server or a
fixed distinct node.

The algorithms that match our criteria are BlueStars [3],
BlueMesh [6], BlueMIS I and BlueMIS II [7]. These al-
gorithms form mesh-like scatternets which give more fault-
tolerance to the scatternet compared to tree-like scatternets.
These algorithms have distinctive theoretical and practical
features, as it is shown in the rest of the paper. We believe
that these algorithms are the best of their kind. This view is
shared with the authors of [11].

The second main contribution of this paper is the in-
troduction of a distributed algorithm that we call Bluetooth
Scatternet Formation based on Unnecessary Edges Deletion
(BSF-UED). Algorithm BSF-UED uses concepts of
BlueMesh, BlueStars and BlueMIS in order to achieve a bal-
ance between the advantages of these algorithms.We give
special attention to forming outdegree limited scatternets in
a time efficient manner without significantly affecting the
other quality metrics of the scatternet. We focus mainly on
three performance metrics of scatternets, 1) connectivity,
2) execution time, and 3) outdegree limitation. Focusing on
a small set of requirements without significantly affecting
other quality metrics leads to a better understanding of the
problem which, as a result, leads towards the design of more
efficient BSF algorithms in the Future.Algorithm BSF-UED
is time-efficient, and deterministically forms connected scat-
ternets in multi-hop networksand heursitically forms outde-
gree limited to 7. It forms scatternets with a low average
role per node, low average piconet size using low number of
messages. Furthermore, the algorithm does not require any
knowledge of position or relative distance between nodes.
The idea of the algorithm is to delete edges that are unnec-
essary for the connectivity of our scatternets using simple
local rules.BSF-UED may form scatternets that are not out-
degree limited. However, simulation experiments show that
using BSF-UED with a heuristic, which we call H1, gen-
erates scatternets that are outdegree limited in virtuallyall
the cases (e.g. only one outdegree non-limited scatternet was
formed over 5000 runs we performed).

The performance of BSF-UED is studied using simula-
tion experiments. It is compared to that of BlueStars [3],
BlueMesh [6] and BlueMIS [7]. We show that the execu-
tion time of BSF-UED is approximately 1/3 the execution
time of BlueMesh. BSF-UED is shown to form scatternets
with similar properties to those of BlueMesh. We show that
BSF-UED is better than the algorithms in hand with respect
to many performance metrics. We include also a theoretical
analysis of the algorithms in hand in Appendix A.

The paper is organized as follows; Section 2 gives some
basics of the Bluetooth technology. Section 3 gives a formal
definition of the Bluetooth Scatternet Formation problem.
Section 4 gives a brief literature review. Section 5 describes

in details the algorithm BSF-UED. Section 6 discusses the
simulation results, and section 7 concludes the paper.

2 Bluetooth Basics

Bluetooth technology is a wireless technology that uses the
ISM band from 2400-2480 MHz divided into 79 channels
(1 MHz each). Bluetooth devices use the Frequency Hop-
ping Spread Spectrum (FHSS) technique for communica-
tion. A pair of nodes communicating with each other alter-
nates between a set of pseudo-random frequency channels
known to both nodes. During this alternation, the nodes ex-
change their messages. Two basic procedures are of inter-
est to us; the device discovery and link establishment proce-
dures. For a node to discover a neighbor, it must switch to a
state called INQUIRY. It broadcasts small packets called ID
in different channels to announce its existence. A node that
wants to be discovered switches to a state called INQUIRY
SCAN. The scanner alternates pseudo-randomly between a
set of channels. If a scanner receives one of the packets of
an inquirer, it sends back a packet to the same inquirer. The
two devices exchange some packets then. The procedure of
discovery is terminated thereafter.

Bluetooth is a connection-oriented communication stan-
dard (that is, any two communication nodes must build a
link before communicating). For a nodeu to establish a link
with a neighborv, nodeu switches to a state called PAGE
while nodev switches to a state called PAGE SCAN. Nodeu

sends packets specifically designated tov in different chan-
nels. Nodev on the other hand alternate between a set of
frequency channels in the PAGE SCAN state and in case it
received a packet fromu, then both nodes exchange some
packets in order to terminate the procedure. Such a link rep-
resents a piconet of a master (nodeu in this example) and
one slave (nodev in this example).

According to the Bluetooth specifications, for any pair
of Bluetooth devices to communicate with each other, they
both need to be in the same scatternet or the same piconet.
Given the unavailability of scatternet before a BSF algo-
rithm is executed, most BSF algorithms uses the following
technique to exchange messages in order to build the scat-
ternets; if a node needs to send a message to a neighbor it
builds a temporary piconet with it, exchanges messages and
then destroys the piconet. A standard forwarding technique
is used for a node to send a message to a non-neighbor node.

3 Problem Statement

The scatternet formation problem can be defined as follows.
The input is an undirected graphG = (V,E), whereV is the
set of Bluetooth nodes andE is the set of edges between the
nodes ofV such that an edge(u, v) ∈ E if u andv are within
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the radio range of each other, and both nodes have discov-
ered each other during the discovery phase. The objective is
to form a scatternetS = (V,E′) such thatS is a directed
subgraph ofG with V as set of nodes andE′ as set of edges,
whereas if an edge(u, v) is in E′, then (u, v) ∈ E and
(v, u) /∈ E′. The setE′ essentially represents the master-
slave relationships between neighbor nodes. We denoten as
the size ofV (i.e. the number of nodes).

The set of neighbors to any nodeu is denotedN(u). The
degree of a nodeu is the size ofN(u) (i.e. |N(u)|). The set
of all masters ofu is denotedM(u). The set of all slaves to
u is denotedS(u). The outdegree of a nodeu is the size of
the setS(u). It is preferred that the outdegree of all nodes
in the scatternet to be at most 7. We call such scatternets as
outdegree limited scatternets.

A piconetu is the setρ(u) such thatρ(u) = {u∪S(u)}.
The master of piconetρ(u) is u. A scatternetS = (V,E′) is
a set of interconnected piconets. The set of all piconetsρ(u)
in a scatternetS = (V,E′) is denotedPS . Note that it is not
necessary that every nodeu in the scatternetS = (V,E′)

is a master, and whence it is not necessary that there is a
piconetρ(u) ∈ PS for every nodeu ∈ V . Throughout this
paper, we use the notationG = (V,E) for the input graph,
S = (V,E′) for the output scatternet,E for the set of edges
of the input graph andE′ for the set of edges of the output
scatternet.

3.1 Performance metrics

The standardperformance metrics used to measure the ef-
ficiency of BSF algorithms are many. The most important
metrics:

1. Execution time: The BSF algorithm shall form a scatter-
net in a short time.

2. Connectivity:The subgraph consisting of the scatternet
must be connected.

3. Outdegree limitation:Each piconet shall not have more
than seven slaves. Otherwise they have to be parked and
unparked, which imposes a penalty on the performance.

4. Number of piconets:The number of piconets should be
minimized. A large number of piconets causes a scatter-
nets to consume more energy because a larger number
of nodes (that is, the masters) have to control the flows
of packets, which consumes substantial energy.

5. Number of M/S and S/S bridges: M/S bridges have a
higher penalty on the performance of scatternets. How-
ever, both should be minimized.

6. Average role per node: The number of roles per node is
the number of piconets it belongs to. The average role
per node should be minimized.

These performance metrics are discussed in [11] and [12]
and are used to measure the performance of most BSF algo-

rithms in the literature (see for example, [3][4][5][6][13][14]
and [15]).

Algorithm BSF-UED focuses on the execution time, con-
nectivity, and outdegree limitation quality metrics. Focusing
on these three quality metrics helps in better understanding
of the BSF problem, which as a result leads to the design
of more efficient BSF algorithms on the future. It should
be noted that the BSF problem remains challenging with
only these three performance metrics as shown in Section 4.
However, BSF-UED gives an acceptable balance between
the other performance metrics.

4 Related Work

We present in this section a brief literature survey for the
BSF problem. A more detailed survey can be found in [11].
We categorize existing BSF algorithms into four categories.
We discuss each of these categories in the following.

4.1 Centralized BSF algorithms

These BSF algorithms assume that there is a centralized
node that has full knowledge of the network topology. The
centralized node can be a specific centralized server or an
elected leader node. The centralized node collects informa-
tion about all the nodes in the network and performs a BSF
algorithm that assigns to each node a role and to which pi-
conet each node belongs to. For example, algorithm BTCP
(Bluetooth Topology Construction Protocol) [16] elects a
leader node that collects all nodes information and executes
a BSF algorithm. BTCP assumes that every node is in the
radio range of all other nodes and that the number of nodes
in the network is at most 36. Given the the availability of a
centralized node, more sophisticated approaches can be ex-
ecuted such as evolutionary algorithms [17],[18], linear pro-
gramming optimization [19], or others [20][21]. These algo-
rithms attempts to optimize a larger number of performance
metrics simultaneously and often outperforms decentralized
algorithms. The main weakness of this category of BSF al-
gorithms is being not decentralized and thus non-scalable.
Also, centralized BSF algorithms do not perform well with
respect to execution time.

4.2 Single-hop BSF algorithms

Single hop BSF algorithms assumes that all nodes in the
network are in the radio range of each others. These algo-
rithms take advantage of the fact that a single hop network
can be modeled as a complete graph, making it possible,
thus, to mimic known graph topologies. Daptardar intro-
duced in [22] a BSF algorithm that constructs a mesh-like or
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cube-like scatternets. Similarly, scatternets formed by algo-
rithm dBBlue [23] follows the structure of the well-known
de-Bruijn graph, which limits the diameter of the scatternet
to O(log n)4. Zhang et al. in [24] introduced an algorithm
that forms ring-like scatternets. The nodes of the ring are
piconets. A slave in a given piconet has either one role or
serves as an S/S bridge to connect a pair of piconets. In their
algorithm, no M/S bridges are used. Wang et al. in [25] in-
troduced an single-hop BSF algorithm based on virtual co-
ordinates. Each node selects a random virtual location (po-
sition) and shares it with all the other nodes. The authors
of [25] suggest the use of a geometric structure to build the
scatternet such delaunay triangulation, Gabriel graph, rela-
tive neighborhood graph, or minimal spanning tree. Barriere
et al. introduced in [26] a sophisticated theoretical algorithm
based on projective geometry. The main issue in [26] is the
high level of abstraction of the scatternet formation proce-
dure which led to ignoring some important system specifi-
cations and high execution time in practical Bluetooth net-
works. The main, and obvious, weakness of single-hop BSF
is the necessity that every node is in the radio range of all
others. This assumption reduces significantly the applicabil-
ity of this type of algorithms.

4.3 Tree-based BSF algorithms

Note that any connected graph contains a spanning tree. This
observation is used by the algorithms of this category to cre-
ate tree-like scatternets. The spanning tree structure canbe
used as a backbone that guarantees the connectivity of the
scatternet, whereas additional links may be added to the tree
to improve the routing performance as suggested in [11] or
improve the fault tolerance of the tree, as it is the case in
[27] and [28].

Law et al. introduced in [29] a tree-based BSF algorithm
that assumes that the network is a single-hop network. The
algorithm is based on the idea of merging subtrees [30],
which is commonly used in distributed spanning trees algo-
rithms. Initially, every node is a subtree that contains itself
only. Algorithm TSF (Tree Scatternet Formation) [31] is a
similar single hop tree-based algorithm. Both algorithms in
[29] and [31] mix the procedure of neighbor discovery with
the scatternet formation procedure. That is, initially no node
has any knowledge of its neighbors. Each node alternates
between inquiring and scanning the environment to find new
nodes. As a node discovery a new neighbor, it executes cer-
tain rules of the scatternet formation procedure. On the other
hand, it is assumed in [25] that a separate neighbor discov-
ery phase is executed. After this phase, each node exchanges
information with all the other nodes. Then, all nodes build

4 Given two functionsf , g, we say thatg is in O(f) if there is a
constantc > 0 such thatg(n) < c · f(n) for a sufficiently largen.

a minimum spanning tree which forms the scatternet. Note
that the assumption of single-hop networks simplifies the
procedure of scatternet formation. Another similar single-
hop tree based algorithm can be found in [32].

Algorithm Bluetree [33] is a multihop tree-based BSF
algorithm that initiated a series of algorithms that used the
same approach. There is also a series of algorithms that pro-
vided modifications on algorithm Bluetree. There are two
versions of Bluetree. In the first version, it is assumed that
there is a unique node that initiates the algorithm as a root
of the tree. The root node captures its neighbors as slaves.
The root then assigns its slaves to become masters (i.e. M/S
bridges) and capture their neighbors as slaves. If the network
is modeled as a unit disk graph, then it is possible with the
use of simple rules to restrict the size of any piconet to at
most 5. This version of Bluetree did not introduce a leader
election algorithm to select the root node. This, in fact, a ma-
jor weakness of this version of Bluetree. The second version
of Bluetree solves the issue of electing a leader. Each node
that has the highest identifier among its neighbors considers
itself as a root. A given root initiates a procedure similar to
that of the first version of Bluetree, and creates a tree. None
of the trees shall have a node from another tree. That is, the
result of this procedure is a set of disjoint trees that span
over all nodes. A second phase in Bluetree is then initiated.
Its goal is to connect the disjoint trees in a single tree. Algo-
rithm Bluetree has been slightly modified in [34], [35] and
[27].

Cuomo et al. introduced in [28] algorithm
SHAPER. The algorithm is an implementation of the well-
known distributed MST algorithm by Gallager et al. [30].
Note that the same algorithm of [30] was used as a base for
a tree-based BSF algorithm introduced in [13]. In [28], an
optimization of the tree structure is introduced. This opti-
mization is a set of heavy calculations, called DSOA (Dis-
tributed Scatternet Optimization Algorithm), that generates
a mesh-like scatternet. DSOA is a centralized algorithm. In
order to execute DSOA in a distributed manner the nodes
of the SHAPER tree must be sequentially visited in a Depth
First Traversal manner as shown in [28], which is a time-
consuming procedure. Methfessel et al. introduced in [36]
a modification of SHAPER that overcomes some practical
issues in the implementation of SHAPER.

In general, tree-based BSF algorithms main advantage is
the simplicity of design. However, implementing such algo-
rithms on Bluetooth networks is a sophisticated procedure
that causes increased execution time and overhead in com-
munication [11]. Moreover, tree-like scatternets suffer from
weak fault-tolerance and bottleneck at some nodes in the
tree.
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4.4 Mesh-based BSF algorithms

These algorithms solve the main issue of tree-based BSF al-
gorithms by forming mesh-like scatternets. Algorithms be-
longing to this category are usually simpler to implement
and run on top of a neighbor discovery algorithm (i.e. every
node knows its neighbors in advance). Some of the major
BSF algorithms belong to this category [11, 14]. BlueStars
[3] is an important mesh-based algorithm. In BlueStars, a
maximal independent set5 of the input network is first con-
structed, denotedMIS(V ) whereV is the set nodes of the
network. The nodes ofMIS(V ) becomes masters and try
to capture all their neighbors that have smaller identifiers.
No slave is captured by two masters. This forms a set of
disjoint isolated piconets. BlueStars implements the previ-
ous procedure as follows. A nodeu waits for all its larger
neighbors (i.e. having larger identifier). If none of the larger
neighbors slavedu, thenu becomes master and attempts to
slave its smaller neighbors. Otherwise,u informs its smaller
neighbors that it has been slaved. Note that the nodes with
no larger neighbors initiate the algorithm. The worst case
time complexity of this algorithm isO(n). This is achieved
in a network modeled as a line and the nodes are sorted
ascendingly according to their identifiers (see more detail
in Appendix A). In a second phase of BlueStars, neighbor
piconets are interconnected via bridge nodes (called gate-
ways). Two piconets are neighbors if their mastersm1 and
m2 are separated by either 1) one slavesx belonging to the
piconet of eitherm1 or m2 but neighbor to both, or 2) two
slavess1 ands2 which are neighbors to each other,s1 is a
slave ofm1 ands2 is a slave ofm2. Each pair of neighbor
piconets selects, using simple local rules, a unique gateway
or pair of gateways to be interconnected.

Algorithm BlueStars advantages is the simplicity and the
short execution time. Its main disadvantage is its incapabil-
ity of forming outdegree limited scatternets. This issue has
been tackled using different approaches. One of them is the
use of location information as in [4]. Given location knowl-
edge at each node, the nodes form a degree-limited geomet-
ric structure such as Yao graph [4]. Algorithm BlueStars is
then run over this degree-limited structure. Note however
that the use of location knowledge is a strong assumption
that significantly simplifies the scatternet formation proce-
dure. Another approach to solve this issue is the use of ran-
domization as it is the case in [37]. This approach trades off
degree limitation with connectivity. Similarly, Wang et al.
introduced in [5] algorithm Bluenet which solves the outde-
gree limitation problem but does not guarantee connectivity.
Note how achieving connectivity and outdegree limitation at
the same time can be a challenging task.

5 An independent set of a network (or a graph) is a set of nodes that
none of which is neighbor to another. A maximal independent set is an
independent set that is not a subset of any other independent set.

Basagni et al. introduced a deterministic algorithm,
called BlueMesh [6], to solve the outdegree limitation is-
sue of BlueStars. Algorithm BlueMesh runs in iterations.
Initially, given an input graphG = (V,E), a maximal in-
dependent set ofV (denotedMIS(V )) is constructed using
a similar technique to that of BlueStars [3]. Each dominator
u (i.e. u ∈ MIS(V ))) selects a subsetS(u) of its smaller
neighborsN≺(u) (that is, having a smaller identifier).S(u)
has the following properties: 1) its size is at most seven, 2)
every node inN≺(u) is either inS(u) or a neighbor to a node
in S(u), and 3) the set is maximal (that is, there is no other
subset inN≺(u) having the previous two properties. A dom-
inator nodeu then becomes a master to every node inS(u).
The previous procedure creates a set of piconets. We say a
pair of piconets are neighbors iff: 1) they share one slave or
more (calledconnected neighbor piconets), or 2) if there is
a pair of slavess1, s2, each of which belonging to one of
the piconets, and both are neighbors in the input graphG
(calledunconnected neighbors piconets). The masters of a
pair of unconnected piconets select a unique pairs1, s2 fol-
lowing a certain criteria. We call these nodesunique gate-
ways. The nodess1 ands2 are not masters. Each BlueMesh
iterationi repeats the same procedures above executed over
the graphGi, whereGi is defined as the induced graph of
the set of all unique gateways generated in the previous it-
erationi− 1. The graphG0 is equivalent to the input graph
G. We give in Appendix A the worst case time complexity
of BlueMesh accompanied with an illustrative example of
BlueMesh. We also analyze the maximum number of itera-
tions of BlueMesh.

Another major BSF algorithm that solves deterministi-
cally the outdegree limitation problem is BlueMIS [7]. The
novel approach of BlueMIS is to form in short time a con-
nected outdegree limited scatternet that is not necessary ef-
ficient with respect to all performance metrics. The formed
scatternet is then improved using simple rules. BlueMIS uses
a similar idea to those of algorithm XTC [38], which is a
topology control algorithm for wireless ad-hoc networks.
BlueMIS assumes that the network is modeled as a unit disk
graph. The algorithm runs in two phases, BlueMIS I and
BlueMIS II. In BlueMIS I, each node passes greedily by
its neighbors in an order from the smallest neighbor to the
largest neighbor, with respect to the identifier of nodes. A
nodeu adds a neighborv to S(u) if v is not neighbor to
any node inS(u). A nodev in S(u) is considered as a slave
of u if u is not in S(u) or if u is in S(u) and the identi-
fier of v is smaller than that ofu. The execution time of
BlueMIS I is improved by algorithm Eliminate introduced
in [9]. To our knowledge, BlueMIS I is the first BSF al-
gorithm that hasO(1) time complexity (i.e. local). This is
of theoretical importance, since the execution of the algo-
rithm does not depends on the number of nodes. The main
disadvantage of BlueMIS I is the large number of piconets
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(masters) in the formed scatternets. BlueMIS II improves
the efficiency of the scatternets by simple rules. The rules
are proven to be correct theoretically. However, some im-
plementation details were not included in the description of
these rules which resulted in different possible implementa-
tions. For instance, there could be cases where a node cannot
execute its rules until some other (possibly all other) nodes
execute their rules in order to achieve the expected results.
This turns the algorithm to be non-efficient with respect to
time. Thus, we found that BlueMIS II either suffers from a
long execution time or from piconets with large number of
slaves depending on the implementation used. More details
about BlueMIS can be found in Appendix A.

Lastly, Song et al. introduced in [15] algorithm
M-dBBlue. The algorithm idea is to build a connected dom-
inating setS from the input network (that is, any node in
the network is either inS or neighbor to a node inS and
the network induced byS is connected). The algorithm does
not guarantee outdegree limitation, but the authors gave the-
oretical upper bounds for the formed scatternets maximum
outdegree if the input graph is a unit disk graph. The algo-
rithm is based on a heavy tree-based method to construct a
dominating set. Furthermore, the algorithm did not include
any details of the algorithm implementation.

5 BSF-UED: A New BSF algorithm based on
Unnecessary-Edges Deletion

In this section we describe our algorithm, BSF-UED. The
algorithm is mesh-based, and runs in two phases. The first
forms disjoint outdegree-limited piconets, whereas the sec-
ond interconnects these piconets. This interconnection
in phase 2 may induce scatternets that are not outdegree-
limited, but we mitigate this impact by introducing heuristic
H1, whose main effect is to reduce the number of outdegree
unlimited piconets. BSF-UED is inspired by an extensive
study of the algorithms BlueStars, BlueMesh and BlueMIS
given their interesting distinctive properties.

BSF-UED uses the idea of delegating nodes in a piconet
to a different master in order to achieve low average piconet
size. BSF-UED gives different colors to the edges of the net-
work and categorizes them into: Type 1) edges that unneces-
sary for connectivity but may cause exceeding the outdegree
limit, Type 2) edges that may be necessary for connectivity
but does not cause exceeding the outdegree limit, and Type
3) edges that may be necessary for connectivity and may
cause exceeding the outdegree limitation. With this in mind,
we attempt to give priority for edges of Type 2 over those of
Type 3, and we avoid using edges of Type 1. The coloring
of edges is done locally. That is, each pair of nodes decides
locally the edge color that they share.

Our algorithm has anO(n) time complexity. We use a
wave-like communication rounds implementation adapted

to Bluetooth networks in order to decrease the algorithm’s
execution time. In this implementation, each node is given
a unique priority (e.g. its unique identifier). A node waits to
receive a message from all its neighbors with higher prior-
ity, then it sends a message to all its neighbors with lower
priority. This guarantees that each edge is contacted once.
This technique, which is used in BlueStars and BlueMesh,
was found in [10] to be more efficient with respect to time
compared to standard implementations of communication
rounds.

5.1 Assumptions

We use the same set of assumptions used in BlueMesh and
BlueMIS. Each node in the input graphG = (V,E) has a
unique (and comparable) identifier. Using this order onV ,
we say nodeu is larger (smaller) than nodev if the identifier
of u is larger (smaller) than that ofv, denoted asu ≻ v (u ≺
v). Given a graph or network, we denoteN(u) as the set of
neighbors ofu, N≺(u) as the set of smaller neighbors ofu
andN≻(u) as the set of larger neighbors (that is,v ∈ N(u)

iff (u, v) ∈ E, andv ∈ N≻(u) iff v ∈ N(u) andv ≻ u).
Using the total order onV , we consider the acyclic di-

rected graph
−→
G(V,

−→
E ) such that

−→
E = {(u, v) ∈ E : u ≻

v}. Note that the graph
−→
G is used frequently in this paper.

We refer to
−→
G sometimes as thedirected version of the input

graph.
The input graphG is assumed to be a unit disk graph

(UDG); but some other graphs that we manipulate are not.
An interesting property of unit disk graphs is that any node
in the graph cancoverall its neighbors by at most 5 neigh-
bors. In other words, a nodeu in a unit disk graphG can
have at most 5 neighbors that are not neighbors to each other.
We assume that a node has no knowledge of its location nei-
ther of the distance to its neighbors. As most mesh-based
BSF algorithms (if not all), we assume that the nodes are
static. Thus, we do not treat nodes joining or leaving the
scatternet.

5.2 Phase 1: piconet construction

Given the directed version of the input graph
−→
G = (V,

−→
E ),

the first phase of BSF-UED generates a forest
−→
G ′ = (V,

−→
E b)

of disjoint outdegree-limited piconets such that every node
is either master or slave in exactly one piconet. Our tech-
nique is inspired from a technique proposed in BlueStars [3]
(which does not limit the number of slave per nodes).

5.2.1 Informal strategy

All nodes identifiers are unique and ordered, and therefore
some nodes must be local maxima (that is, larger than all
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their neighbors). This property is used to initiate a wave-like
process whereby larger nodes successively attempt to cap-
ture (i.e., to slave) smaller neighbors. Nodes cannot be cap-
tured twice nor capture other nodes once they are themselves
slaves. In order to limit the outdegree, we adapt a number of
delegation rules by which nodes can control the number of
slaves they capture and delegate excesses (if any) to other
neighbors. We prove that such delegation is feasible suffi-
ciently often to limit the number of slaves to 7, thanks to the
UDG assumption. The rules are described formally in the
next section.

5.2.2 Detailed strategy

The state of a nodeu is denoted bystate(u) ∈ {none,
master, slave}. The state of an edge(u, v) is denoted by
c(u, v) ∈ {white, black, silver, green, red, blue}. Initially,
state(u) = none for all u ∈ V , andc(e) = white for all

e ∈ E. Given an edge(u, v) ∈
−→
E (keeping in mind that

u ≻ v), the meaning of each color is as follows:

– black: u capturedv.
– silver: u contactedv, butv was already captured.
– green: u was captured by a third node and thus gave up

on capturingv.
– red: u delegated the capture ofv to another nodew such

thatu ≻ w ≻ v.
– blue: u delegated tov the capture of a common neighbor

w such thatw ≺ v ≺ u.

The first phase of BSF-UED colors all the edges of the
graph

−→
G(V,

−→
E ) by means of Algorithms 1 to 4. At every

nodeu a variableϕ(u) denotes its capacity (initially set to
7) accounting for the number of slaves it can capture.

Each node is considered as a potentialprey to all its
larger neighbors. A prey can be captured only by one of its
larger neighbors. In case a nodeu was not captured by any
of its larger neighbors, it will consider its smaller neighbors
N≺(u) as preys and attempts to capture them. An attempt
of capture fails if the prey is already captured by another
node. We denote the set of preys ofu aspreys(u), initially
equal toN≺(u). We add the following rules to the proce-
dures of capturing in order to limit the number of slaves
per master to at most 7. Whenever a nodeu starts the cap-
ture procedures, ifpreys(u) ≤ 7, thenu attempts to cap-
ture all of them. Otherwise,u goes through each of them in
decreasing order. For each preyv, u finds a subset of com-
mon smaller neighborsCN(u, v) that it shares withv (pro-
cedureFindCommonNeighbors() on Algorithm 4). If
CN(u, v) = ∅, thenu attempts to capturev. Otherwise,u
delegates some of the common neighbors inCN(u, v) to v
and does not capturev either. Nodev and the neighbors in
CN(u, v) are then removed frompreys(u), and the process
repeats untilu has enough capacity to capture the remaining

neighbors (that is,preys(u) ≤ ϕ(u)). The details of these
procedures are illustrated in Algorithms 1, 2, 3 and 4. A flow
diagram of these procedures is available in Figure 12 in Ap-
pendix B.

Algorithm 1 Procedureconstruct() at nodeu
1: while ∃v ∈ N≻(u) : c(v, u) = white do
2: wait

3: if state(u) = slave then
4: for all v ∈ N≺(u) do
5: c(u, v)← green.
6: else
7: state(u)← master
8: capture()

Algorithm 2 Procedurecapture() at nodeu
1: preys← N≺(u)
2: while (|preys| > ϕ(u)) do
3: v ← max(preys)
4: preys← preys− {v}
5: CN(u, v)←FindCommonNeighbors(v)
6: if CN(u, v) = ∅ then
7: contact(v).
8: else
9: c(u, v)← blue

10: preys← preys− {CN(u, v)}
11: for all x ∈ CN(u, v) do
12: c(u, x)← red

13: ϕ(x)← ϕ(x)− 1 {to be explained in phase 2}
14: for all x ∈ preys do
15: contact(x).

Algorithm 3 Procedurecontact(v) at nodeu
1: if state(v) 6= slave then
2: state(v)← slave
3: c(u, v)← black.
4: ρ(u)← ρ(u) ∪ v

5: else
6: c(u, v)← silver.
7: ϕ(u)← ϕ(u)− 1.

Remark 1Procedurecontact(v) of Algorithm 3 is con-
sidered to be atomic: if nodesu and w attempts to con-
tact a nodev, then only one of them can enter procedure
contact(v) at a time. This is guaranteed in Bluetooth
specifications, since a node can communicate only with one
node at a time.

5.2.3 ProcedureFindCommonNeighbors(v)

Called at a nodeu, this procedure is responsible for select-
ing a set of common smaller neighborsCN(u, v) to be dele-
gated tov. Precisely, given the setL = {preys(u)∩N≺(v)}
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of potentially capturable common neighbors betweenu and
v, the procedure selects the largest subsetL′ ⊆ L of nodes
such that:

– |L′| ≤ 7: no more than7 nodes are delegated.
– |L−L′| ≥ ϕ(u): u does not delegate a number of nodes

that would leave it with less thanϕ(u) neighbors to con-
tact.

As a result,u delegates a number of neighbors equal to
min(|preys(u)|−ϕ(u), 7, |L|). By convention, these neigh-
bors are those whose identifiers are the largest. (See Algo-
rithm 4.)

Algorithm 4 ProcedureFindCommonNeighbors(v) at
nodeu
1: L← {preys(u) ∩N≺(v)}
2: nb← min(|preys(u)| − ϕ(u), 7, |L|)
3: return largestnb nodes inL

An example illustrating all procedures of Phase 1 is pro-
vided next in Section 5.2.4, followed by theoretical analysis
of correctness in Section 5.2.5.

5.2.4 Example

We give in this section an example to describe in more de-
tails the procedures of Phase 1. Consider the graph in Fig-
ure 1 - A. Initially,ϕ(u) = 7 for every nodeu. The nodes
that are larger than all their neighbors are 35 and 21 (see Fig-
ure 1 - B). Node 21 has only two smaller neighbors, which
are 12 and 14. Thus it contacts both of them directly. Since
both 12 and 14 are not slaves to any other nodes, 21 captures
them (thicker directed arrows).

The case of 35 is different since|preys(35)| = 9. Since
9 is larger thanϕ(35) = 7, node 35 selects the largest neigh-
bor in preys(35) [line 3, capture()], which is 30. The
set of common neighbors between 35 and 30 is{1}. Thus,
edge(35, 30) is colored blue, while(35, 1) is colored red.
This means that node 35 delegated to 30 the responsibility
of capturing nodes{1}. Then, all the remaining preys are
captured by 35.

The nodes that were contacted by all their larger neigh-
bors, which are 30, 25, 22 and 12, start the next round (See
Figure 1 - C). Node 30 contacts both of its smaller neigh-
bors 1 and 14. Neighbor 1 is captured and colored black,
whereas neighbor 14 is not because it was already captured
by node 21. Thus, edge(30, 14) is colored silver. Nodes 22
and 12 are already captured by 35. Thus, they inform all
their smaller neighbors that they are slaves by coloring the
corresponding edges in green. The final result of Phase 1 is
the three piconets depicted on Figure 1 - F, that are,ρ(35) =

{35, 25, 6, 22, 16, 15, 8, 7}, ρ(30) = {30, 1}, andρ(21) =

{14, 12}.

5.2.5 Correctness

Given the input graph
−→
G = (V,

−→
E ), we prove that phase

1 always terminates and that its output is a set of disjoint
piconets that are outdegree limited to 7, and every node is
either master or slave in exactly one piconet. For clarity, we
denote byEcolor the subset of those edges that are colored
color (e.g.,Eblack = {(u, v) ∈

−→
E : c(u, v) = black}).

Let us first observe that the algorithm always terminates.

Lemma 1 (Termination) Phase 1 of BSF-UED terminates
in a finite time.

Proof Procedureconstruct() is executed over the di-
rected input graph

−→
G = (V,

−→
E ). Since the nodes can be or-

dered with respect to identifiers, then
−→
G is a directed acyclic

graph (DAG), and there is at least one nodeu with N≻(u) =

∅ (called sources) andv with N≺(v) = ∅ (called sinks) and
u 6= v. In a DAG the set of all paths from sources to sinks
cover all the nodes, and each pathπ = {u1, ..., uk} is de-
creasing (that is,ui > ui+1 for 1 ≤ i < k). Note that each
non-sink node will necessarily color all of its outgoing edges
(all possible execution sequences starting atconstruct()
eventually lead to such a coloring). Therefore, no edge re-
mains white if all the paths of

−→
G = (V,

−→
E ) are used; which

is what the activation control inconstruct() guarantees.

Lemma 2 After the execution of the first phase, each node
is either a master or slave.

Proof This is clear by the content of procedure
construct(); upon activation, if a node was not yet made
slave during its waiting period, then it turns itself as a mas-
ter.

Lemma 3 shows that Phase 1 results in disjoint piconets.
We denote the set of these piconets asV.

Lemma 3 (Disjoint piconets)Let’sG = (V,Eblack) be the

spanning subgraph of the input graph
−→
G = (V,

−→
E ) with the

edgesEblack ∈
−→
E . Then, after Phase 1G is a forest of

disjoint piconets, denoted asV.

Proof The proof follows from Lemma 2 and the condition
that is not possible for a node to be captured twice (see pro-
cedurecontact()). ⊓⊔

We prove in Lemma 4 that the generated set of piconets
V in G′(V,Eblack) are all outdegree limited to7, given that
ϕ(u) is initialized to 7.

Lemma 4 Let’sG = (V, {Eblack∪Esilver}) be the spanner

subgraph of the input graph
−→
G = (V,

−→
E ) with the set of

edges{Eblack ∪Esilver} ∈
−→
E . Then, after the Phase 1G is

outdegree-limited to7, givenϕ(u) is initially set to 7.
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Fig. 1: Example illustrating the procedures of phase 1. (B: Blue, R: Red, G: Green, S: Silver)

Proof We need to compute the number of times a nodeu

calls procedurecontact(v), since we are interested only
in black and silver edges. Given thatϕ(u) is initialized to
7, any nodeu will color at most 7 of its smaller neighbors
(preys) with black or silver (that is, attempt to contact them
using procedurecapture(v).

Without loss of generality, assume that|preys(u)| > 7.
At the while-loop [lines 2 to 13,capture()], a nodeu
contactsv if and only if v andu had no common neigh-
bors that are smaller than bothu and v. There is at most
five neighbors ofu having the property ofv given the unit
disk graph property of our input graph. Therefore, proce-
durecontact(v) is called from the while-loop [lines 2 to
13] at most 5 times. Since the execution of the loop stops
only if preys(u) < ϕ(u) = 7, and since each time a node
u executescontact(v), ϕ(u) is decreased by 1, thenu
will not executecontact(v) in the while-loop and the
for-loop [lines 14 to 15], combined, more than 7 times at
most. ⊓⊔

The combination of Lemmas 1 to 4 allows us to conclude
as follows:

Theorem 1 Phase 1 produces a set of disjoint piconets that
are outdegree limited to 7, and such that every node is either
master or slave in exactly one piconet.

We will now introduce an extra Lemma, not strictly rel-
evant to the objectives of Phase 1, but which will be helpful
to prove the correctness of Phase 2. It establishes that the set
of blue edges are not necessary for the connectivity of the
input graphG = (V,E).

Lemma 5 Let’s G1 = (V, {
−→
E − Eblue}) be the spanner

subgraph of the input graph
−→
G = (V,

−→
E ) with the set of

edges{
−→
E − Eblue} ∈

−→
E . Then, after the Phase 1,G1 is

connected.

Proof Note that if an edge(u, v) ∈ Eblue, thenv is the
largest node amongpreys(u) at that while-loop iteration
[lines 2 and 13,capture()]. If there is an edge(u, v) that

is colored blue, then there must exist two edges(u,w) and

(w, v) in
−→
E such thatu ≻ v ≻ w. Therefore,u, v andw

forms a triangle, where edge(u,w) is colored red [line 12
of capture()]. We need to show that, following a spe-
cific ordering of edges, a minimum spanning tree (MST) of
−→
G will not include blue edges.

The ordering of edges that we follow is a lexicographical
order in which we assume that(u1, v1) ≻ (u2, v2) if u1 ≻
u2 or if u1 = u2 and v1 ≻ v2). Note now that for any
triangleu,v andw such that(u, v) is blue and(u,w) is red
andu ≻ v ≻ w, then the blue edge(u, v) will surely be not
included by Kruskal algorithm in the MST as it is the largest
edge in that 3-circle. This completes the proof. ⊓⊔

5.3 Phase 2: Piconets Interconnection

The second phase of BSF-UED interconnects the disjoint
piconets formed in Phase 1 to form the output scatternet
S = (V,E′). This phase guarantees the connectivity of the
resulting scatternetS = (V,E′), while maintaining its max-
imum outdegree to a reasonable value.

5.3.1 Informal strategy

The problem can be formulated as a meta-graph problem
in which every piconet formed in Phase 1 is a vertex. The
objective is to define edges in this meta-graph in a way that
guarantees its connectivity. The edges of the meta-graphG =

(V, E) are to correspond to edges or paths in the input graph
G = (V,E). We then apply to this meta-graph a technique
inspired from BlueMIS I [7] to interconnect vertices. The
resulting strategy is as follows. Each nodeu in V constructs
a maximal independent set of itslarger neighbors, denoted
MIS≻(u). (A set of nodes is saidindependentif it does not
contain any pair of neighbor nodes; it ismaximalif the ad-
dition of any node makes it no more independent.) Then,u
interconnects only to the nodes inMIS≻(u). This technique
guarantees the connectivity of the new graph. It also guaran-
tees its outdegree limitation in caseG is a unit disk graph,
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which unfortunately is not necessarily the case (however it
is almost always so in practice).

The input of Phase 2 is the graph
−→
G = (V,Eblack),

which is the graph that contains all the master/slave relation-
ships formed in Phase 1. Keep in mind that an edge(u, v) ∈
Eblack indicates thatu is the master ofv and thatu ≻ v.
The output of the Phase 2 isG(V, {Eblack∪Eblack′}), where
Eblack′ is the master/slave relationships formed in Phase 2.
It is not necessarily that for each(u, v) ∈ Eblack′ thatu ≻ v.
The procedures of Phase 2 are described in the sequel.

5.3.2 Detailed strategy

Let us consider the meta-graphG = (V, E) whose vertices
V are the piconets formed in Phase 1 and edgesE = ∅ are
initially an empty set. The objective of Phase 2 is to de-
fine E in such a way thatG becomes connected and every
edge inE corresponds to a real path connecting two piconet
masters inG (the input graph). We call two piconetsρ(u)
andρ(v) neighborsif their mastersu andv can be intercon-
nected through one of the following types of paths: master-
to-master (one-hop interconnection), master-to-slave (two-
hops interconnection), or slave-to-slave (three-hops inter-
connection). If each piconet interconnects with all its neigh-
bor piconets, the resulting graph is necessarily connected
(see Theorem 2)

We first discuss the potential interconnection of each
pair of neighbor piconets through such a path, and then con-
sider, in a second step, the possibility to actually discarda
number of edges that are unnecessary to the connectivity.
The followinginterconnection rulesare considered, listed in
priority order. (We provide more details later on about their
concrete implementation.) Note that only one interconnec-
tion rule is to be applied relative to a given pair of neighbor
piconets, more would be unnecessary with respect to the fi-
nal scatternet’s connectivity. Without loss of generality, we
assume below thatu ≻ v.

I-Rule 1 (Three-hop interconnection): Two piconetsρ(u)
andρ(v) may be interconnected through an edgee between
two slavessu ∈ ρ(u) andsv ∈ ρ(v), wherec(e) = green.
(Operation:su capturessv.)

u su sv v u su sv v
G

I-Rule 2 (Two-hop interconnection):

I-Rule 2a: through the edge(su, v) ∈
−→
E ; wherec(su, v) =

green, su is a slave ofu andv is a master of piconetρ(v).
(Operation:su capturesv.)

u su v u su v
G

I-Rule 2b: through the edge(v, sx) or (u, sx) wheresx ∈
ρ(u) orsx ∈ ρ(v), andc((v, sx)) = silver or c((u, sx)) =

silver (that is,sx is smaller than bothu andv, and it be-
long to eitherρ(u) or ρ(v) but not both. Both piconets at-
tempted to slavesx but only one of them was successful).
(Operation:v capturessx or u capturessx.)

u su v u su v
S

I-Rule 2c: through the edge(u, sv) wheresv ∈ ρ(v) and
c((u, sv)) = red (that is,sv is smaller than bothu and
v. sv is slaved byv, and sv was delegated byu to v).
(Operation:sv capturesu.)

u sv v u sv v
R

I-Rule 3(One-hop interconnection): through the edge(u, v) ∈
−→
E wherec((u, v)) = red. Bothu andv are masters of dif-
ferent piconets. (Operation:v capturesu asv ≺ u.) 6

This case occurs ifv delegated to a neighborw the responsi-
bility of u, and hence(v, u) is red. Then,u becomes master.
For instance, there is a node aw′ that is larger thanu and
delegatedto u the responsibility of slaving common neigh-
bors betweenu andw′.

u v u v
R

We call the nodes that are used to interconnect two pi-
conetsgateways(e.g, nodesu and sv in I-Rule 2c). It is
of course desirable to try to minimize the number of slaves
for any gatewaysu used to interconnect a piconetρ(u) and
ρ(v). This number can however not be strictly limited to 7
becauseG is not necessarily a unit disk graph.

This strategy to construct the edges setE in the graph
G = (V, E) guarantees the connectivity ofG. Indeed, the
only type of edges we do not consider in these rules are the
blue edges, which we prove not necessary for connectivity
in Lemma 5.

Once the meta-graphG is connected, we use a technique
inspired from [7] in order to delete further edges fromE
that are unnecessary for the connectivity ofG. The technique
can be implemented using simple local rules executed at the
vertices ofG. (Keep in mind that in our case the vertices are
piconets.) Since each piconet has one master, the local rules
will be implemented in the masters of the piconets ofG. We
describe next this technique.

Let us denote byN≻(u) the set of all neighbor piconets
of ρ(u) whose masterv is such thatv ≻ u. We defineN≺(u)

symmetrically. Each piconetρ(u) constructs a maximal in-
dependent setMIS≻(u) amongN≻(u) in G. Then all the
edges ofG that do not lead to a node ofMIS≻(u) are
discarded. The resulting graph is guaranteed to remain con-
nected (see Theorem 3).

6 In this rule, the fact thatv capturesu (and not the opposite) is
important; it follows the anticipated decrease ofϕ(v) in Phase 1 when
the edge(u, v) was colored red. In a sense,v is “more prepared” thanu
to handle new slaves. The impact of this operation is seen while starting
the elimination algorithm from smaller to larger piconets.
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5.3.3 Implementation Details

The detailed implementation is given in Algorithm 5, and
illustrated in a flow diagram in Appendix B. We give an ex-
planation in the following. The decision of which edge (rule)
should be used to interconnect two piconetsρ(u) andρ(v)
in G is local to the mastersu andv. Each masteru of a pi-
conetρ(u) constructs agateway table(denoted asT (u)).
The entries of a gateway table represent all the rules that
can be applied to merge with neighbor piconets. Each entry
consists of the following elements:

– v: the master of the neighbor piconetρ(v).
– su: the gateway of piconetρ(u) (note thatsu may be

equivalent tou).
– sv: the gateway of piconetρ(v) (note thatsv may be

equivalent tou).
– ϕ(su): the piconet capacity ofsu.
– I: the interconnection rule of the tuple (that is,I-Rule 1,

..., I-Rule 3).
– role: the role to be played in the new relation (eitherM

or S). If role isM , su becomes master tosv according
to interconnection ruleI. If role isS, su becomes slave
to sv.

As already mentioned, a given neighbor piconetρ(v) can
be interconnected toρ(u) by multiple rules. Therefore, the
gateway tableT (u) may contain several entries for a same
neighbor piconetρ(v), with differentsu andsv.

The construction of the gateway tableT (u) is straight-
forward. It is sufficient that each masteru collects from
its slavessu information about their neighborsvi; namely,
their masterm(vi), capacityϕ(vi), and the color of the edge
(su, vi). Using such information,u can infer all the possible
rules of interconnection.

The next step is to let each piconetρ(u) construct a max-
imal independent set of its larger piconet neighbors
(MIS≻ ⊆ N≻(u)). The construction is done on-the-fly and
is described in procedureinterconnect(); each time a
piconetρ(u) interconnects to a larger neighbor piconetρ(v),
it does not interconnect with any neighbor piconetρ(w) that
is common neighbor to bothρ(u) andρ(v) and has a larger
identifier than both. Any master/slave relationship between
nodessu andsv added by procedureinterconnect()
is represented as an edge(su, sv), wheresu is the mas-
ter of sv regardless of their identifiers. The set of all edges
interconnected byinterconnect() is denotedEblack′ .
The output ofinterconnect() therefore is the graph
G = (V, {Eblack ∪ Eblack′}) (remind thatEblack is the set
of master/slave relationships formed in Phase 1).

An issue that needs more clarification ininterconnect()
is how to select the best pair of gateways to interconnect
two piconetsρ(u) andρ(v) [line 7]. In order to do this, a
nodeu ascendingly sorts the rows ofT (u) in a lexicograph-
ical order of(ρ(v), d(I),−ϕ(su)), whered(I) is a number

Algorithm 5 Procedureinterconnect() at piconetu
1: Ul ← N≻(u), Us ← N≺(u), B ← ∅
2: while (Us 6= ∅) do
3: wait for gateways of smaller piconets to contact.
4: upon receipt of a message from a gatewayv;

Us ← Us − {v}.
5: while (Ul 6= ∅) do
6: v ← min(Us)
7: select best row(v, sv , su, ϕ(su), I, role) ∈ T (u)
8: if (role = M) then
9: u orderssu to be master ofsv

10: ϕ(su)← ϕ(su)− 1
11: updateT (u)
12: else
13: u orderssu to be the slave ofsv
14: ϕ(sv)← ϕ(sv)− 1
15: B ← {B ∪ {N≻(u) ∩ N≻(v)}}
16: Ul ← Ul − {v ∪N≻(v)}
17: for all (piconetx ∈ B) do
18: select any tuple(v, sv , su, ϕ(su), I, role) ∈ T (u)
19: u askssu to contactsx without any operation ofM or S.

given to the interconnection ruleI (that is,d(I-Rule 1) =
1, d(I-Rule 2a) = 2,d(I-Rule 2b) = 3 etc ..). We say a set
(x1, .., xk) lexicographically succeeds the set(y1, .., yk) if
xi = yi andxj ≻ yj for j = i + 1 and for all1 ≤ i < k.
Whenever masteru attempts to select the best gateway to a
neighboring piconetρ(v) with masterv, it simply finds the
first occurrence ofv in T (u). That is, masteru starts inter-
connecting with the smallest neighbor piconets to the larger
ones. In case of multiple choices, masteru prefers the lower
rules (that is,I-Rule 1 toI-Rule 2a etc .. ), and in case of
multiple choices, masteru selects the slave to interconnect
with ρ(v) via the slavesu with the maximum piconet capac-
ity ϕ(su). An example illustrating the procedures of Phase 2
is given in Figure 2.

We should note that each time a gatewaysu becomes
master to a gatewaysv, the piconet capacity ofsu (ϕ(su)) is
decreased by one [line 10 -interconnect()]. Thus, the
gateways tableT (u) should be updated after each of such
changes by simply sorting it again [line 11
interconnect()]. Note that using this method a gate-
waysu with higher capacityϕ(su) is always preferred. Also,
this method preserves the priorities of the interconnection
rules.

5.3.4 Correctness

We prove that the output of Phase 2, which isG = (V,E′ =
{Eblack∪Eblack′}), is a connected scatternet. First, we prove
the connectivity of the meta-graphG = (V, E). Recall that
the vertices ofG are the piconets formed in Phase 1, while
E contains edges to interconnect neighbor piconets based on
the rules of Section 5.3.2.

Theorem 2 (Connectivity) Let G = (V, E) be such that
(u, v) ∈ E iff u and v are two piconets that can be inter-
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Fig. 2: Example illustrating the procedures of phase 2, taking over the resulting graph of the example in Phase 1 (Figure 1). (B: Blue, R: Red, G:
Green, S: Silver). Those piconets that have no larger piconets are the ones to start, while others wait. Piconet 35 starts the execution. The smaller
neighbor piconets are piconet 30. The highest priority interconnection between these piconets is through the edge(25, 1) (I-Rule 1). Node 25
captures node 1 since its master 35 is larger than 30. Piconet 30 then starts. It creates a connection with its smaller neighboringpiconet 21 through
the edge(1, 14) (I-Rule 1). In this case, 1 becomes the master of 14 because the master of1 is larger than the master of 14.

connected with any of theinterconnection rules. Then,G is
connected.

Proof The interconnection rules consider all cases of green,
silver and red edges (i.e.,all edges in the setsEgreen,Esilver

andEred). By definition, the endpoints of any edge(u, v)
with silver or red color must belong to two different pi-
conets, while green edges may be between nodes belonging
to the same or different piconets. Thus, any such edge inter-
connects two different piconets. The interconnection rules
does not consider blue edges, which are not needed for the
connectivity ofG = (V,E) according to Lemma 5. ⊓⊔

In Theorem 3, we prove that the graphG remains con-
nected as long as each vertexu ∈ V keeps an edge(u, v)
for eachv ∈ MIS≻(u), whereMIS≻(u) is the maximal
independent set of larger neighbors ofu.

Theorem 3 If a graphG = (V,E) is connected, then the
graph G′ = (V, {(u, v) ∈ E : v ∈ MIS≻(u)}), where
MIS≻(u) is the maximal independent set of larger neigh-
bors ofu, is also connected.

Proof For simplicity, let us refer to this technique asAlgo-
rithm A. We show that the graphG′ resulting from execu-
tion of AlgorithmA contains a minimum spanning tree if we
follow a specific ordering of the edgesE. We give a lexico-
graphical order to the edges such that(x1, y1) ≺ (x2, y2)
iff y2 ≻ y1 or y1 = y2 but x2 ≻ x1. For every triangle
in G of three edges(x, y), (y, z) and (x, z) of three ver-
ticesx, y, z wherex ≻ y ≻ z, Algorithm A deletes only
the edge(x, z). Note that(x, y) ≺ (y, z) ≺ (x, z). We
follow Kruskal algorithm for minimum spanning tree, we
order the edges ascendingly, and select greedily the edges
that form a tree. Edge(x, z) will never be considered in the
MST of G as it is always the maximum edge in the 3-circle
{(x, y), (y, z), (x, z)}. ⊓⊔

Theorem 4 The graphG = (V, {Eblack ∪Eblack′}) is con-
nected.

Proof G = (V, {Eblack∪Eblack′}) is the output ofinter-
connect(). Note thatinterconnect() let each node
u in the graphG connects to all its neighborsv ∈ MIS≻(u).

Recall that each node inG is a piconet formed in Phase 1.
According to Theorem 2,G is connected. Therefore, the con-
nectivity follows from Theorem 3.

Theorem 5 The graphG = (V, {Eblack ∪ Eblack′}) is a
scatternet.

Proof We prove that no two pair of nodes are slaves and
masters to each other at the same time.G = (V,Eblack) is
a set of disjoint piconets. Thus, we consider only the added
master/slave relationships at Phase 2, which are inEblack′ .
The proof follows from three arguments. First, If
two piconetsρ(u) andρ(v) are interconnected in procedure
interconnect(), thenu is larger thanv (see line 6 in
interconnect()). Second, note thatρ(u) contacts a
neighbor piconet ρ(v) only once (see line 16 in
interconnect()). Third, according to Lemma 3, a slave
su belongs to only one piconet and each node is either a
slave or a master according to Lemma 2. Therefore if a gate-
waysu was assigned to be a master or slave to another gate-
waysv, thensv cannot have the same role in a later stage of
interconnect(). ⊓⊔

5.4 Heuristic optimization

We introduce in the following a heuristic that improves the
qualities of the generated scatternets.

5.4.1 Heuristic H1: Decreasing the Number of Outdegree
Unlimited Piconets

One property of the previous interconnection procedure is
that if no red edges used for interconnection, then the algo-
rithm forms outdegree limited scatternets. Note that black
and silver edges do not cause excess on the outdegree lim-
itation of the scatternet (see Lemma 4). Note also that blue
edges are not used in the scatternet construction and do not
cause disconnectivity of the scatternet. Therefore, it remains
to show that green edges do not cause excess in the out-
degree limitation of the scatternet. Consider a scenario in
which a nodeu is master to nodev. In the interconnection
piconet, nodev shall use more than 7 green edges to connect
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with neighboring piconets. Assume that nodev must be the
master of all the nodes on the other end of its green edges
(call them green nodes ofv). Let assume that interconnec-
tion rules not involving red edges are not used. Then, there
is a maximal independent set of the green nodes ofv that
is of size at most five. This is because edges between these
green nodes are either silver or green. This result, however,
that red edges are not used in the interconnection process.

We adapt to these results by introducing a heuristic that
improves the properties of the scatternet formed. It should
be noted that the number of outdegree limited piconets in
scatternets formed by BSF-UED is acceptable as simulation
experiments show. This heuristic eliminates virtually allout-
degree unlimited piconets, while not increasing the execu-
tion time of the algorithm. The heuristic is as follows.

Assume that piconetu assigned gatewaysu to become
master of gatewaysv. Assumesu is already a master to 7
slaves. Note thatsv may have slaved some nodes in the in-
terconnection phase. Nodesu checks ifsv is a master to less
than 7 slaves. If this is the case, thensv becomes the master
of su instead. Ifsu had less than 7 slaves, this heuristic is
not executed. Interestingly, such a simple rule can improve
the properties of the scatternet significantly, as shown by the
simulation results in Section 6.

6 Simulation experiments

We study the performance of our algorithm with simula-
tion experiments. We compare BSF-UED against BlueStars,
BlueMesh, BlueMIS I and BlueMIS II which are consid-
ered as the reference BSF algorithms from the literature. The
performance metrics we consider are: 1) execution time, 2)
maximum piconet size (or maximum outdegree), 3) average
piconet size, 4) number of piconets (masters), 5) number of
M/S bridges, 6) number of S/S bridges and 7) average num-
ber of role per node.

Our simulation experiments are conducted with the
UCBT (University of Cincinnati BlueTooth) simulator [39],
which is an NS-2 [40] based library for Bluetooth networks
simulation. The networks are modeled as unit disk graphs.
Each graph is constructed by placing points uniformly at
random in a30× 30m2 plane. An edge connects two points
if the euclidean distance between them is less than a thresh-
old t set to 10 m, which is generally taken as the radio range
of Bluetooth. A graph is considered for experiment only if it
was connected. We form five sets of graphs, each with a dif-
ferent size (30, 50, 70, 90 and 110 nodes). Each set consists
of 1000 graphs. Unfortunately, theoretical analysis is hard
in the case of BSF-UED as it is in most BSF algorithms in
literature.

Our findings show that BSF-UED is a time-efficient BSF
algorithm. It has a similar execution time to BlueMIS I and

about 1/3 the execution time of BlueMesh. Algorithms BlueS-
tars cannot be compared with the other algorithms because
BlueStars does not guarantee outdegree limitation, which
as a result significantly simplifies the algorithm design. We
include BlueStars in our comparison study a a benchmark.
In term of other performance metrics, our results show that
BSF-UED is always considered among the best algorithms.
In term of outdegree limitation, most of the scatternets BSF-
UED forms are outdegree limited to 7. Only one experiment
among 5000 generated a scatternet that is not outdegree lim-
ited. In our analysis, any node considering itself a master
without having any slaves is treated as a non-master. This is
applied to all algorithms. All figures are represented as bars
plots. Deviation from the mean value is shown with error
bars that represents the standard deviation.

6.1 Execution time

Figure 3 shows a comparison of the execution time of the
algorithms in hand. BlueStars outperforms the other algo-
rithms because of its simplicity. This is obtained with the
cost of having piconets with very large size. The execution
time of BSF-UED is about 1/3 of that of BlueMesh. BSF-
UED and BlueMIS I have similar execution times. How-
ever, note that this is an optimized version of BlueMIS I
which we introduced in [9]. The execution time of the origi-
nal BlueMIS I is about 2 times what is indicated in Figure 3.
This difference should be taken into consideration when an-
alyzing BlueMIS II since it runs on top of BlueMIS I. In
fact, we introduced in [9] algorithm Eliminate which forms
scatternets that have very similar properties to those formed
by BlueMIS but with an execution time significantly shorter
than that of the optimized version of BlueMIS I.

The simulation experiments show an interesting prop-
erty of Bluetooth networks. First, note that the time com-
plexity of algorithm BlueMIS (I and II) isO(1) whereas the
time complexity of the other algorithms isO(n) on aver-
age. A detailed analysis is given in Appendix A. This anal-
ysis states that in large sized networks, it is expected that
BlueMIS outperforms the other algorithms in term of exe-
cution time. Yet, this is not the case in our simulation exper-
iments. This phenomenon is related to another result stud-
ied in [10]. We argued in [10] that the implementation of
communication rounds in Bluetooth networks affect signif-
icantly the execution time of BSF algorithms. We define a
communication round as a period of time in which each node
sends and receives a message to and from all its neighbors.
The link establishment procedures of Bluetooth complicates
the implementation of communication rounds. We studied
two implementations: RandomExchange and
OrderedExchange. In RandomExchange, each node
randomly alternates between the PAGE (i.e., establishing a
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Fig. 3: Comparison of the execution time

connection) and PAGE SCAN (i.e., listening to a connec-
tion) states and during this time the node attempts to contact
all its neighbors. The alternation is required since a node
cannot be in both states at the same time. In OrderedEx-
change, the communication round is initiated by the nodes
which have the largest identifiers among their neighbors.
These nodes send messages to all their smaller neighbors
(with respect to identifier). If a node receives a message from
every larger neighbor, the node starts sending messages to
all its smaller neighbors. This guarantees that every edge in
the network is visited exactly once. We found that Ordere-
dExchange is significantly faster than RandomExchange in
relatively small networks, which is typical to Bluetooth net-
works, although RandomExchange is theoretically better.

BlueStars and BlueMesh use a maximal independent set
algorithm that, by its nature, uses OrderedExchange. BlueS-
tars requires three communication rounds for 1) forming the
piconets, 2) identifying the neighbor piconets, and 3) inter-
connecting the neighbor piconets. On the other hand, each
phase of BlueMesh requires four rounds: 1) a communi-
cation round to exchange the 1-hop neighborhood relation-
ship between neighbor nodes in order to construct the 2-hop
neighborhood relationships, 2) a communication round to
form outdegree limited piconets, 3) a communication round
for masters to discover their neighboring piconets (i.e. slaves
sends information about their neighbors to their masters),
and 4) a communication round for each node surviving the
current phase to find its neighbors in the next phase (i.e. its
neighbors inGi wherei is the number of the next phase).
Therefore, BlueStars requires less communication rounds.
This explains why BlueStars is fast, whereas BlueMesh is
not. We suggest therefore that calculating the number of
communication rounds required by a certain algorithm gives
a good indication of its empirical execution time.

BlueMIS I originally uses RandomExchange. We im-
plemented it using OrderedExchange. More details can be
found in [9]. The OrderedExchange BlueMIS implementa-

tion requires two communication rounds (see Appendix A).
This is equivalent to BlueStars. Nevertheless, simulationex-
periments show that BlueStars is faster. The main reason
behind this is that, in BlueMIS, a node is required to visit
its neighbors in order from the smallest to largest neigh-
bors. This order causes an increased delay, since the prob-
ability of contacting a node that is busy is higher, where
a busy node is a node that is in communication with an-
other node. For example, assume a network where nodes
v10 (i.e. with identifier 10) andv9 share the neighborhood of
nodev1. Assume thatv10 andv9 have other different smaller
neighbors all with identifier larger thanv1. In BlueMIS, both
v10 and v9 must first contactv1, but v1 can be contacted
by one node at the same time. Therefore, one of the nodes
v9 or v10 is delayed untilv1 is free. This causes an ex-
tended time execution. BlueStars does not have this order.
BlueMIS II is analyzed using the same principles mentioned
above. A BSF-UED node, on the other hand, requires some-
times an order of contacting its neighbors (such in line 3,
capture() in Algorithm 2), while in other cases this or-
der is not required. Also, BSF-UED requires only 3 com-
munication rounds, similar to BlueStars (See Appendix A
for more details).

6.2 Number and size of piconets

We study the number of piconets in the formed scatternets.
This is shown in Figure 4. BlueStars outperforms all the
other algorithms in this metric. However, this is a trade-off
with the number of outdegree unlimited piconets. We per-
formed the following experiment in order to study this trade-
off. Essentially, each master node in BlueStars becomes a
slave and each slave node becomes a master. This led to a
significant increase in the number of masters in BlueStars
and to heuristically limiting the size of BlueStars piconets
to about 3 slaves per piconet at the most. BlueMIS I is the
worst algorithm in term of the number of piconets. This is
because all nodes initially consider themselves masters in
BlueMIS I. A nodeu becomes slave only in one case; which
occurs if each slavev of u has larger identifier and has also
consideredu as a slave. In such case, each slavev becomes
the master ofu and thusu is left with no slaves. Whence,
u become a slave only with no master role. The rules of
BlueMIS II significantly decreases the number of piconets
of BlueMIS I. We should note, however, that this signifi-
cant decrease caused the piconets of BlueMIS II to be not
limited to 7 slaves. BlueMesh forms scatternets with a logi-
cal number of piconets (about50%). This number increases
as the number of nodes increases. BSF-UED and BSF-UED
H1 have approximately similar results to BlueMesh. Heuris-
tic H1 causes an increase in the number of piconets as the
number of nodes increases.
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We study the maximum size of piconets. We compute
the average maximum outdegree of the formed scatternets.
Note that BlueMIS II and BlueStars are the worst algorithms
with respect of this metric as shown in Table 1. This is a sig-
nificant weakness of these algorithms since a piconet with
more than 7 slaves introduces a penalty in its throughput
and the throughput of the scatternet in general. This is be-
cause a master with more than 7 slaves must park all of them
except 7 of them. Parked nodes are part of the piconet but
do not collaborate in its activities and do not send or receive
messages within the piconet. Outdegree limitation is one of
the most important quality metrics. This is why it has been
the main concern of many BSF algorithms (see Section 1,
Section 4 or [11]).

BlueMIS I forms scatternets with the smallest average
maximum piconet size. This is because the slaves of a master
in BlueMIS I is a maximal independent set of its neighbors,
which is of size at most 5 in unit disk graph and in average
is less. BlueMesh on average forms scatternets of at most
7. For BSF-UED, the average maximum size of piconet can
reach 14.37 slaves. Piconets with such large size are few. For
instance, our simulation analysis show that only 4 piconets
out of 66 piconets have more than 7 slaves in the case of
networks with 110 nodes networks. Table 2 shows that a pi-
conet on average has 2.4 slaves in BSF-UED. When apply-
ing the heuristics H1, we find that most scatternets formed
are outdegree limited. In fact, in our experiments, we find
that only one scatternet (out of 5000 experiments) was out-
degree unlimited (with maximal degree 8!). BSF-UED is
therefore very close to the optimum, which makes us be-
lieve the heuristics could be further improved to achieve this
deterministically. Regarding the average piconet size, BSF-
UED is only outperformed by BlueMIS I. This is one of the
advantages of BSF-UED.

 0

 1

 2

 3

 4

 5

n = 30

n = 50

n = 70

n = 90

n = 110

N
um

be
r o

f r
ol

es

Number of nodes

BlueStars
BlueMesh
BlueMIS I
BlueMIS II
BSF-UED

BSF-UED H1

Fig. 5: Comparison of the average role per node

6.3 Average number of roles per node

The number of roles of a node is the number of piconets it
belongs to. The average number of roles per node is the sum
of number of roles among all nodes divided by the num-
ber of nodes. The results are shown in Figure 5. First, note
that heuristics H1 of BSF-UED does not change the average
number of role per node significantly. We see that BlueS-
tars outperforms all other algorithms in this metrics. The
superiority of BlueStars is caused by the small number of
piconets, the large size of piconets and the condition that
phase 1 forms disjoint piconets. The second best algorithm
is BSF-UED.

6.4 Number of bridges

We study in this section the number of bridges and M/S
bridges in the formed scatternets. The results are given in
Figure 6 and Figure 7. One of the main weaknesses of BSF-
UED is the number of M/S bridges. BlueStars and BlueMesh
outperforms BSF-UED in this metric. We relate this result
to the delegation process followed by BSF-UED. That is,
1) the procedureFindCommonNeighbors() and 2) the
fact that nodes cannot be captured twice. This delegation
process generates a large number of piconets that shall be
interconnected. On the other hand, the same delegation pro-
cess improves the average size of the piconets. Moreover,
BSF-UED interconnection rules (see Section 5.3.2) give pri-
orities to rules that generates new M/S bridges. On the other
hand, the priorities order of these rules improve the execu-
tion time of BSF-UED. For instance, note that a masterm,
and not one of its slaves, may be involved in the intercon-
nection ruleI-Rule 2b andI-Rule 2c. That is, assume that
m is waiting for a message from a gateway of a neighbor
piconet to be interconnected via one of these rules. In such
case,m is blocked until the interconnection occurs. Mean-
while, all slaves ofm waits for messages fromm that inform
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Table 1: Comparison of the average maximum piconet size with standard deviation (in brackets)
Number of nodes BlueStars BlueMesh BlueMIS I BlueMIS II BSF-UED BSF-UED H1

30 8.64 (1.70) 6.90 (0.25) 3.02 (0.31) 8.21 (1.6) 5.99 (0.76) 5.99 (0.76)
50 13.28 (2.38) 7.00 (0) 3.48 (0.49) 12.86 (3.04) 6.39 (0.54) 6.38 (0.52)
70 18.42 (3.55) 7.00 (0) 3.79 (0.40) 18.06 (4.40) 6.94 (1.37) 6.51 (0.49)
90 23.37 (3.76) 7.00 (0) 3.94 (0.23) 22.06 (4.90) 10.16 (2.87) 6.91 (0.27)
110 27.87 (4.09) 7.00 (0) 3.98 (0.18) 27.62 (6.33) 14.56 (3.58) 7 (0.03)

Table 2: Comparison of the average piconet size with standard deviation (in brackets)
Number of nodes BlueStars BlueMesh BlueMIS I BlueMIS II BSF-UED BSF-UED H1

30 3.92 (0.57) 2.36 (0.48) 1.71 (0.12) 3.46 (0.54) 2.28 (0.32) 2.28 (0.320)
50 5.56 (0.97) 3.54 (0.29) 1.93 (0.13) 4.18 (0.75) 2.13 (0.18) 2.13 (0.18)
70 7.13 (1.27) 3.42 (0.52) 2.12 (0.12) 4.99 (1.03) 2.17 (0.18) 2.14 (0.16)
90 8.78 (1.40) 3.78 (0.27) 2.21 (0.12) 5.21 (1.17) 2.52 (0.22) 2.37 (0.15)
110 10.41 (1.73) 3.92 (0.21) 2.31 (0.11) 5.72 (1.40) 2.96 (0.30) 2.53 (0.19)

them to become gateways or not. This causes a higher exe-
cution time in general. The high number of M/S bridges is
the cost of achieving heuristically outdegree limited scatter-
nets in short execution time which was our main objective
when designing BSF-UED.At the same time, we believe
that this result is acceptable given that BSF-UED forms pi-
conets with fewer number of slaves on average (see Table 2)
and the nodes have less roles on average (see Figure 5). As a
result, an M/S bridge can achieve a balance between the role
of being a master and the role of being a slave. Also, many
of these slaves that are mastered by an M/S bridge will not
be significantly affected when their masters works as a slave.
That is, let assume thatv is an M/S bridge and it hasu as its
slave andw as its master. Whenv is active in the piconet
of its masterw, the slaves of piconetv (includingu) are set
to inactive in the piconet ofv. This is because the masterv

controls the flow of packets in its piconet. However, because
there is a large number of M/S bridges, it is possible that
the slaveu belongs also to another piconet. Therefore,u is
active in a piconet other that ofv while its masterv is not
active in its own piconet.

BlueMIS I does not suffer from a large number of M/S
bridges despite the significantly large number of piconets in
its scatternets. This is because there are some nodes in the
scatternet that have many masters (i.e. very high indegree).
Such nodes may cause bottleneck in the scatternet. The in-
volvement of these nodes as bridges to multiple piconets at
the same time may delay the transmission of messages be-
tween these piconets, causing thus issues in the scatternet
throughput.

6.5 Average shortest path

Figure 9 shows the results of the average shortest paths of
the formed scatternets. The measure gives an indication of
the cost of routing in networks, in general. It is calculatedby
the minimum number of hops between every pair of nodes
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on average. In Bluetooth scatternets, the path connecting
two nodes is not affected only by the number of hops, but
also by the properties of the path nodes (e.g., masters, slaves,
bridges, average role per node and number of slaves per
master). We see that BlueMIS outperforms the other algo-
rithm in this measure. BSF-UED and BlueStars have ap-
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proximately similar measurements. For BSF-UED, this is a
direct result of deleting the unnecessary edges in BSF-UED.
We may improve this measure by increasing the number of
edges in the scatternet. For instance, masters that do not have
their piconets filled with 7 slaves may slave random neigh-
bors. Note however that the difference between BSF-UED
and the best algorithm with respect to this metric is about 1
to 1.5 hops on average. This difference is not significant in
our opinion.

6.6 Number of messages

We study the number of messages sent by all the network
nodes. This is an approximative measure of the energy con-
sumed by the networkduring the execution ofthe algorithm.
Note however that the study of the energy consumption of
the algorithms may be more accurate if a detailed energy
model of Bluetooth is used. Moreover, this measure is com-
mon to asynchronous distributed algorithms. The results are
listed in Figure 10. A theoretical analysis shows that the
number of messages in each of the algorithms is within a
constant to the number of edges of the network. We find
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algorithm BSF-UED significantly outperforms algorithms
BlueMesh, BlueMIS I and BlueMIS II. This is one of the
advantages of BSF-UED.

7 Conclusion and Future Work

We introduced in this paper a comparative study of some of
the major algorithms in the literature.We also introduced
algorithm BSF-UED, which is a time-efficient algorithm for
the Bluetooth Scatternet Formation problem. The algorithm
forms connected scatternets deterministically, and outdegree
limited scatternets heuristically. The algorithm can be seen
as a modification of BlueStars, BlueMesh and BlueMIS in
order to form outdegree limited scatternets. BSF-UED was
compared against BlueStars, BlueMesh, BlueMIS I
and BlueMIS II. Our algorithm outperformed the other al-
gorithms in a number of important performance metrics. Of
particular significance is the fact that BSF-UED outperforms
BlueMesh in the average piconet size, average role per node
and number of messages; it is also about 3 times faster in ex-
ecution time. The main weakness of BSF-UED is the high
number of M/S bridges.This weakness is tolerable to some
degree as we explained in Section 6.4, especially as the av-
erage number of slave per piconet and the average roles
per node are low.. In term of other metrics, BSF-UED and
BlueMesh generate similar results to a certain degree. A fu-
ture research direction is to solve the issues of BSF-UED,
and to adapt it to mobile scenarios.

The comparative study that we performed in this paper
shows that it is a challenging task to achieve a perfect bal-
ance between the many performance metrics of Bluetooth
scatternets. Every algorithm that we studied is found to suf-
fer from at least one weakness with respect to a certain per-
formance metric. In order to solve this issue, we suggest
forming scatternets by using simple heuristics. These heuris-
tics shall take into account the execution time as a main
priority. This approach leads in general to faster BSF al-
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gorithms as it is the case of BlueStars and BSF-UED. We
believe that more work should be done in the field of BSF as
the results of this comparative study show that many issues
shall be addressed despite the numerous studies in the field.

We suggest a change in the specifications of Bluetooth
in order to make it more suitable for ad-hoc networking. A
change in the link establishment procedures is necessary in
order to achieve faster BSF algorithms. We also suggest that
the restriction of outdegree limited piconets shall be relaxed.
We believe that more focus shall be given to inter-piconet
and intra-piconet scheduling algorithms.

The nature of Bluetooth scatternets led to the adoption
of quality metrics that are different than those used in non-
Bluetooth networks. However, the large number of quality
metrics of Bluetooth scatternets complicates the study of
the scatternet performance. Therefore, we see that a set of
new generalized quality metrics to study the performance
of Bluetooth scatternets must be introduced in future work.
These quality metrics shall be few in number, be easy to
implement, and give a good indication of the scatternet per-
formance7. We believe that such generalized quality met-
rics shall take into consideration the inter-piconet and intra-
piconet scheduling in the scatternets. Solving this problem
would simplify the design of new BSF algorithms and leads
to the introduction of more efficient BSF algorithms.
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A Appendix 1: Time complexity analysis

In this section, we study the time complexity of BlueStars, BlueMesh,
BlueMIS and BSF-UED. We start with BlueStars.

Theorem 6 The time complexity of BlueStars isO(n) wheren is the
number of nodes in the network.

Proof The most expensive procedure in BlueStars is the procedure of
forming disjoint piconets (i.e. the first phase). A nodevi with identifier
i starts executing this phase if all its larger neighbors (i.e. with larger
identifiers) sent a message tovi. We sayvi waits forvj if vj is a larger
neighbor ofvi. According to this definition,vi may wait forvk where
vk is a larger neighbor ofvj . We may construct thus a chainv1, ,̇vn of
lengthn such thatvi waits forvj if i > j. Therefore, a nodevi waits
for all the larger nodes in the network, and respectively the smallest
nodev1 waits for all the other nodes. Therefore, the time complex-
ity of this phase isO(n). In the second phase of BlueStars, there is a
message exchange between 1) the slaves and masters (in order for the
masters to identify the neighbor piconets), 2) the masters and gateways
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Fig. 11: An example scenario with Bluemesh.

(to inform the gateways which piconets they must interconnect), and
3) the gateways and neighbor gateways (to interconnect the neighbor
piconets). This requiresO(1) time complexity, and therefore the time
complexity of BlueStars isO(n).

BlueMesh runs in iterations (as explained in Section 4.4). Each it-
eration is similar with respect to time complexity to BlueStars, since
both constructs a maximal independent set in a similar manner. There-
fore, each iteration requiresO(n). In the following, we analyzes the
worst case number of iterations of BlueMesh.

Theorem 7 The number of iterations run by BlueMesh is in the worst
caseO(logn) in arbitrary graphs andO(1) in unit disk graphs, where
n is the number of nodes in the network.

Proof We build the worst case scenario as follows. We start with the
simple graph of two nodesu andv linked by the edge(u, v). Let’s
assume that nodesu andv are the last surviving nodes in iterationk,
wherek is the index of the last phase of the algorithm. Note that if a
nodeu survived iterationk − 1 and moved to iterationk, then it must
have a larger neighboru′. This means that there is at least 4 nodesu,
u′, v andv′ in iterationk − 1. Therefore, the maximum number of
nodes that move to iterationi is |Pi−1|/2 where|Pi| is the number of
nodes in iterationi. Therefore, the maximum number of phases is at
O(logn). The worst case scenario of BlueMesh is shown in Figure 11.

Note that if a node has more than 5 neighbors in a unit disk graph
then at least two of them are also neighbors. Following the previous
argument, if a node survivedk iterations then it must have at leastk

largest neighbors that are not neighbors to each other. This means that
k is at most 5 in unit disk graphs. Therefore, the maximum number of
BlueMesh iterations if run over unit disk graphs isO(1).

The result of Theorem 7 matches simulation results in this paper
and in [6], whereas a theoretical analysis of this aspect of BlueMesh is
first studied here.

Therefore, the time complexity of BlueMesh in unit disk graphs is
O(n). In arbitrary graphs it is in the worst caseO(n logn).

BlueMIS I complexity is straightforward. Each node exchangesits
neighbors list with all its neighbors in a first round. In a secondround,
each nodeu sends to all its neighbors the setS(u) which is the set
of nodes thatu may be master to. Therefore, the time complexity of
BlueMIS I is O(1). Thus, BlueMIS I is a local distributed algorithm.
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Fig. 12: Flow diagrams of Phase 1 of BSF-UED

Local distributed algorithms has the advantage that their execution time
does not depends on the size of the input network, making them suit-
able to solve scalability issues. The case is different in BlueMIS II. To
achieve the exact same results given in [7], BlueMIS II time complex-
ity may be at least inO(n). This is because, in order to avoid certain
worst-case conflicting scenarios, each node must execute the rulesof
BlueMIS II while every other is waiting (that is, in a sequential man-
ner). This is one of the major issues in BlueMIS II. In our implemen-
tation, every node executes its rules locally after collecting sufficient
neighborhood information. Therefore, we assumed that the time com-
plexity of BlueMIS II remainsO(1).

BSF-UED time complexity is similar to that of BlueStars. The first
phase is similar to the first phase of BlueStars and thus hasO(n) time
complexity. In the second phase of BSF-UED, there is a communica-
tion exchange between, 1) slaves and masters, 2) masters and gateways,
and 3) gateways and gateways from neighbor piconets. Therefore, the
time complexity of BSF-UED isO(n).

B Appendix 2: Flow Diagrams of BSF-UED

In this appendix section, we present the flow diagrams of our algorithm
BSF-UED without the heuristics. We believe that this simplifies the
understanding of our algorithm and its pseudocode.
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