
Langages formels (11X003) - Automne 2025

5. Algorithmes d’approximation (I)

Enseignant: Arnaud Casteigts (et F. Raynaud) Assistant: Brian Pulfer
Moniteurs: T. von Düring & A. Maendly

Que faire lorsqu’on est confronté à un problème NP-difficile ? Plusieurs options s’offrent à
nous, parmi lesquelles : 1) le résoudre quand même optimalement, même si la complexité en
temps est exponentielle. On parle alors d’algorithme exact ; 2) restreindre le type d’instances
qu’on cherche à traiter, les cas particuliers étant parfois plus faciles ; 3) abandonner l’objectif
de trouver une solution optimale, tout en cherchant à ne pas trop s’en éloigner.

Les algorithmes d’approximation s’inscrivent dans la troisième catégorie : on veut
savoir à quel point on peut s’approcher de la solution optimale, tout en gardant une com-
plexité polynomiale en temps. Cette approche s’adresse généralement aux problèmes NP-
difficiles, même si on peut la décliner à d’autres niveaux.

La qualité que l’on peut atteindre varie selon les problèmes. Soit n la taille de l’entrée
à traiter. Supposons que l’on a affaire à un problème de minimisation et appelons OPT la
valeur de la solution optimale. Voici les trois niveaux d’approximabilité les plus classiques :

, k-approximation : la solution calculée n’excède pas k fois l’optimum. Par exemple, pour
certains problèmes, il existe des algorithmes qui garantissent au plus 2 ·OPT .

,, (1 + ϵ)-approximation : c’est le meilleur scénario. On peut s’approcher arbitrairement
près de OPT, ϵ étant un paramètre à choisir. Bien sûr, plus ϵ est petit, plus cela coûtera
cher en temps, mais l’algorithme sera toujours polynomial. Par exemple (dans l’idée),
le temps sera en O(n5) pour ϵ = 1/5, et en O(n12) pour ϵ = 1/12, etc.

/ inapproximable : c’est le pire scénario, où quel que soit k, il n’existe aucun algorithme
qui garantit une k-approximation en temps polynomial.

La même classification s’applique pour les problèmes de maximisation, en inversant le
facteur. Par exemple, une k-approximation garantit une solution de qualité OPT/k.

Il existe d’autres catégories d’approximabilité, mais celles-ci sont les principales. Classifier
les problèmes NP-difficiles en fonction de leur approximabilité est un sujet de recherche très
actif, qui a connu de nombreux développements au cours des vingts dernières années.

5.1 Deux problèmes emblématiques

Nous allons discuter de deux problèmes qui sont souvent donnés en exemples sur le sujet.
Ce sont tous deux des problèmes de graphes.

1

5.1.1 Couplages (et discussions)

Soit un graphe G = (V,E). Un couplage dans G (matching, en anglais) est un ensemble
d’arêtes M ⊆ E qui ne se touchent pas (elles ne partagent aucun sommet). Par exemple :

Note : l’ensemble M = ∅ est un couplage valide, mais pas très intéressant. On cherche
généralement à maximiser la taille d’un couplage. Il y a deux notions de maximalité qu’il
est important de distinguer : couplage maximal (pour l’inclusion) ou couplage maximum
(dans l’absolu). Autrement dit :

� Maximale = On ne peut rien lui ajouter

� Maximum = Il n’en existe pas de plus grand.

Ce n’est en effet pas pareil, par exemple, les deux solutions ci-dessus sont maximales, mais
seulement celle de droite est maximum. Ainsi, une solution maximale n’est pas forcément
maximum, mais une solution maximum est toujours aussi maximale. En l’occurrence, les
deux versions du problème (Maximal Matching et Maximum Matching) peuvent être
résolues en temps polynomial. L’algorithme pour Maximum Matching est assez célèbre et
compliqué, il fait d’ailleurs l’objet d’une séance de cours complète en master. 1. En revanche,
pour Maximal Matching, un simple algorithme glouton suffit :

Initialiser M ← ∅.
Tant qu’il existe une arête qui ne touche aucune arête de M , on l’ajoute à M .

Nous allons utiliser cet algorithme pour trouver une 2-approx◦ à un problème NP-difficile.

5.1.2 Couverture par sommets

Soit un graphe G = (V,E). Une couverture par sommets de G (vertex cover) est un
ensemble de sommets C ⊆ V qui (collectivement) touche toutes les arêtes. Par exemple :

Une solution triviale ici est C = V (pas très intéressant). En général, on cherche à
minimiser la taille d’une solution. On peut à nouveau distinguer une solution minimale (dont
on ne peut rien enlever) et une solution minimum (aucune solution plus petite n’existe), la
seconde étant à nouveau plus forte. Ici, la complexité des deux problèmes est très différente :

1. Pour les curieux : https://arnaudcasteigts.net/files/graphalgo-6.pdf

2

https://arnaudcasteigts.net/files/graphalgo-6.pdf

� Minimal Vertex Cover peut être résolu en temps polynomial

� Minimum Vertex Cover est NP-difficile !

5.2 Une 2-approximation pour la couverture minimum

Soit minimal matching() une fonction qui exécute l’algorithme glouton précédent. On peut
l’utiliser pour construire une couverture par sommet, comme suit :

vertex cover(G) :
C ← ∅
M ← minimal matching(G)
Pour chaque arête uv de M :

Ajouter u à C
Ajouter v à C

Renvoyer C

Il se trouve que cet algorithme est une 2-approximation pourMinimum Vertex Cover.
Commençons par vérifier que la solution renvoyée est une couverture valide.

Lemme 5.1. Chaque arête de G est couverte par au moins un sommet de C

Preuve. Par l’absurde, supposons qu’il existe une arête uv qui n’est pas couverte. Cela im-
plique que ni u ni v ne touche une arête du couplage utilisé (sinon, au moins l’un d’eux
aurait été sélectionné). Mais alors, on aurait pu ajouter l’arête uv à ce couplage, qui n’était
donc pas maximal (contradiction).

Notons OPT la taille d’une solution optimale pour Minimum Vertex Cover.

Lemme 5.2. |C| ≤ 2 ·OPT

Preuve. Par définition, une couverture par sommets doit couvrir toutes les arêtes de G. Elle
doit donc, en particulier, couvrir toutes les arêtes d’un couplage maximal M . Mais ces arêtes
étant disjointes, il faut au moins un sommet distinct pour couvrir chacune. Autrement dit,
|M | ≤ OPT . Via l’algorithme, on a |C| = 2 · |M | ≤ 2 ·OPT .

Conclusion : L’algorithme ci-dessus garantit donc une 2-approximation pour Minimum
Vertex Cover, alors qu’une solution exacte prend (présumément) un temps exponentiel.

Nous avons exploité ici un exemple de dualité entre deux problèmes, à savoir :

| Maximal Matching | ≤ 2× | Minimum Vertex Cover |

Beaucoup d’algorithmes d’approximation sont basées sur ce type de relations entre deux
problèmes, l’un étant facile et l’autre non. On appelle cela des relations min-max.

3

5.3 Sac à dos

Dans le problème du sac à dos (Knapsack), une instance consiste en un ensemble de
n objets qui ont chacun une valeur et un poids, ainsi qu’un poids total maximum (capacité
du sac à dos). Par exemple : {(100, 20), (120, 30), (10, 10), (60, 10)} et une capacité de 50. Le
but est de trouver un sous-ensemble de valeur totale maximum sans dépasser la capacité.

Nous avons déjà vu dans un cours précédent 2 qu’une modification légère de l’algorithme
glouton donne aussi une 2-approximation pour ce problème.

L’algorithme (pour rappel). Commencer par nettoyer l’instance de départ pour enlever
tous les objets qui dépassent à eux seuls le poids total autorisé (ces objets ne servent à rien).
On applique ensuite l’algorithme glouton comme indiqué précédemment, mais cette fois, on
s’arrête dès qu’un objet x dépasse le seuil. À ce moment là, notre solution gloutonne cumule
une certaine valeur V . L’objet refusé a lui-même une valeur vx. Si vx < V , on prend la
solution gloutonne (en l’état), sinon, on prend l’objet x seul.

5.4 Pour aller plus loin

Un algorithme qui fournit une (1+ϵ)-approximation est appelé un PTAS (polynomial-time
approximation scheme, en anglais). Si un PTAS n’existe pas mais qu’on peut garantir une
k-approximation (pour un certain k), alors le problème est dans la classe APX. Les problèmes
qui n’admettent pas de PTAS sont dit APX-hard. Autrement dit, ils sont “au moins aussi
difficiles” à approximer que n’importe quel problème dans APX.

Pour montrer qu’un problème est APX-hard, on procède généralement par réduction,
comme pour montrer qu’un problème est NP-hard. Ici, cependant, on a besoin d’une réduction
plus spécifique, qui préserve le ratio d’approximation lors de la transformation. Par exemple,
on prend une instance d’un problème X (que l’on sait APX-hard) et on la transforme en
une instance du problème Y , en montrant que si on arrive à approximer cette dernière, cela
nous donne une approximation pour la première. Pouvoir approximer Y contredirait donc
le fait que X est APX-hard, d’où le fait que Y est aussi APX-hard. Cela peut être utilisé
par exemple pour montrer que la 2-approximation connue pour Vertex Cover (présentée
plus haut) est optimale, sauf si P=NP.

Quelques exemples de problèmes inapproximables sont Clique ou Independent Set.

2. https://arnaudcasteigts.net/files/algo-glouton-1.pdf

4

https://arnaudcasteigts.net/files/algo-glouton-1.pdf

	Deux problèmes emblématiques
	Couplages (et discussions)
	Couverture par sommets

	Une 2-approximation pour la couverture minimum
	Sac à dos
	Pour aller plus loin

