Langages formels (11X003) - Automne 2025
5. Algorithmes d’approximation (I)

Enseignant: Arnaud Casteigts (et F. Raynaud) Assistant: Brian Pulfer
Moniteurs: T. von Diring € A. Maendly

Que faire lorsqu’on est confronté a un probleme NP-difficile 7 Plusieurs options s’offrent a
nous, parmi lesquelles : 1) le résoudre quand méme optimalement, méme si la complexité en
temps est exponentielle. On parle alors d’algorithme exact ; 2) restreindre le type d’instances
qu’on cherche a traiter, les cas particuliers étant parfois plus faciles; 3) abandonner I'objectif
de trouver une solution optimale, tout en cherchant a ne pas trop s’en éloigner.

Les algorithmes d’approximation s’inscrivent dans la troisieme catégorie : on veut
savoir a quel point on peut s’approcher de la solution optimale, tout en gardant une com-
plexité polynomiale en temps. Cette approche s’adresse généralement aux problemes NP-
difficiles, méme si on peut la décliner a d’autres niveaux.

La qualité que l'on peut atteindre varie selon les problemes. Soit n la taille de I'entrée
a traiter. Supposons que l'on a affaire & un probleme de minimisation et appelons OPT la
valeur de la solution optimale. Voici les trois niveaux d’approximabilité les plus classiques :

© Ek-approximation : la solution calculée n’excede pas k fois 'optimum. Par exemple, pour
certains problemes, il existe des algorithmes qui garantissent au plus 2 - OPT'.

©® (1 + e)-approximation : ¢’est le meilleur scénario. On peut s’approcher arbitrairement
pres de OPT, € étant un parametre a choisir. Bien str, plus € est petit, plus cela coutera
cher en temps, mais I'algorithme sera toujours polynomial. Par exemple (dans 'idée),
le temps sera en O(n®) pour € = 1/5, et en O(n'?) pour € = 1/12, etc.

® inapproximable : c’est le pire scénario, ot quel que soit &, il n’existe aucun algorithme
qui garantit une k-approximation en temps polynomial.

La meme classification s’applique pour les problemes de maximisation, en inversant le

facteur. Par exemple, une k-approximation garantit une solution de qualité OPT /k.

Il existe d’autres catégories d’approximabilité, mais celles-ci sont les principales. Classifier
les problemes NP-difficiles en fonction de leur approximabilité est un sujet de recherche tres
actif, qui a connu de nombreux développements au cours des vingts dernieres années.

5.1 Deux problemes emblématiques

Nous allons discuter de deux problemes qui sont souvent donnés en exemples sur le sujet.
Ce sont tous deux des problemes de graphes.

5.1.1 Couplages (et discussions)

Soit un graphe G = (V, E'). Un couplage dans G (matching, en anglais) est un ensemble
d’arétes M C E qui ne se touchent pas (elles ne partagent aucun sommet). Par exemple :

0 <1

Note : 'ensemble M = () est un couplage valide, mais pas tres intéressant. On cherche
généralement a maximiser la taille d'un couplage. Il y a deux notions de maximalité qu’il
est important de distinguer : couplage maximal (pour Iinclusion) ou couplage maximum
(dans I'absolu). Autrement dit :

e Maximale = On ne peut rien lui ajouter

e Maximum = Il n’en existe pas de plus grand.

Ce n’est en effet pas pareil, par exemple, les deux solutions ci-dessus sont maximales, mais
seulement celle de droite est maximum. Ainsi, une solution maximale n’est pas forcément
maximum, mais une solution maximum est toujours aussi maximale. En 'occurrence, les
deux versions du probleme (MAXIMAL MATCHING et MAXIMUM MATCHING) peuvent étre
résolues en temps polynomial. L’algorithme pour MAXIMUM MATCHING est assez célebre et
compliqué, il fait d’ailleurs I’objet d'une séance de cours compléte en master. !. En revanche,
pour MAXIMAL MATCHING, un simple algorithme glouton suffit :

Initialiser M < 0.
Tant qu’il existe une aréte qui ne touche aucune aréte de M, on 'ajoute a M.

Nous allons utiliser cet algorithme pour trouver une 2-approx® a un probleme NP-difficile.

5.1.2 Couverture par sommets

Soit un graphe G = (V, E). Une couverture par sommets de G (vertex cover) est un
ensemble de sommets C' C V' qui (collectivement) touche toutes les arétes. Par exemple :

<1 <

Une solution triviale ici est C = V (pas tres intéressant). En général, on cherche a
minimiser la taille d’une solution. On peut & nouveau distinguer une solution minimale (dont
on ne peut rien enlever) et une solution minimum (aucune solution plus petite n’existe), la
seconde étant a nouveau plus forte. Ici, la complexité des deux problemes est tres différente :

1. Pour les curieux : https://arnaudcasteigts.net/files/graphalgo-6.pdf

https://arnaudcasteigts.net/files/graphalgo-6.pdf

e MINIMAL VERTEX COVER peut étre résolu en temps polynomial
e MINIMUM VERTEX COVER est NP-difficile!

5.2 Une 2-approximation pour la couverture minimum

Soit minimal matching() une fonction qui exécute l'algorithme glouton précédent. On peut
I'utiliser pour construire une couverture par sommet, comme suit :

vertex_cover(G) :
C+0
M < minimal matching(G)
Pour chaque aréte uv de M
Ajouter u a C'
Ajouter v a C
Renvoyer C'

Il se trouve que cet algorithme est une 2-approximation pour MINIMUM VERTEX COVER.
Commencons par vérifier que la solution renvoyée est une couverture valide.

Lemme 5.1. Chaque aréte de G est couverte par au moins un sommet de C'

Preuve. Par I'absurde, supposons qu’il existe une aréte uv qui n’est pas couverte. Cela im-
plique que ni u ni v ne touche une aréte du couplage utilisé (sinon, au moins I'un d’eux
aurait été sélectionné). Mais alors, on aurait pu ajouter I'aréte uv a ce couplage, qui n’était
donc pas maximal (contradiction). O

Notons OPT la taille d'une solution optimale pour MINIMUM VERTEX COVER.
Lemme 5.2. |C| <2-OPT

Preuve. Par définition, une couverture par sommets doit couvrir toutes les arétes de G. Elle
doit donc, en particulier, couvrir toutes les arétes d'un couplage maximal M. Mais ces arétes
étant disjointes, il faut au moins un sommet distinct pour couvrir chacune. Autrement dit,
|M| < OPT'. Via l'algorithme, on a |C| =2+ |M| <2-OPT. O

Conclusion : L’algorithme ci-dessus garantit donc une 2-approximation pour MINIMUM
VERTEX COVER, alors qu’une solution exacte prend (présumément) un temps exponentiel.

Nous avons exploité ici un exemple de dualité entre deux problemes, a savoir :
| Maximal Matching | < 2x |Minimum Vertex Cover |

Beaucoup d’algorithmes d’approximation sont basées sur ce type de relations entre deux
problemes, I'un étant facile et 'autre non. On appelle cela des relations min-max.

5.3 Sac a dos

Dans le probleme du sac a dos (KNAPSACK), une instance consiste en un ensemble de
n objets qui ont chacun une valeur et un poids, ainsi qu'un poids total maximum (capacité
du sac a dos). Par exemple : {(100,20), (120, 30), (10, 10), (60, 10)} et une capacité de 50. Le
but est de trouver un sous-ensemble de valeur totale maximum sans dépasser la capacité.

Nous avons déja vu dans un cours précédent ? qu'une modification légere de I’algorithme
glouton donne aussi une 2-approximation pour ce probleme.

L’algorithme (pour rappel). Commencer par nettoyer I'instance de départ pour enlever
tous les objets qui dépassent a eux seuls le poids total autorisé (ces objets ne servent a rien).
On applique ensuite ’algorithme glouton comme indiqué précédemment, mais cette fois, on
s’arréte des qu'un objet x dépasse le seuil. A ce moment 13, notre solution gloutonne cumule
une certaine valeur V. L’objet refusé a lui-méme une valeur v,. Si v, < V, on prend la
solution gloutonne (en 1’état), sinon, on prend 1'objet z seul.

5.4 Pour aller plus loin

Un algorithme qui fournit une (1+¢€)-approximation est appelé un PTAS (polynomial-time
approximation scheme, en anglais). Si un PTAS n’existe pas mais qu’on peut garantir une
k-approximation (pour un certain k), alors le probleme est dans la classe APX. Les problemes
qui n’admettent pas de PTAS sont dit APX-hard. Autrement dit, ils sont “au moins aussi
difficiles” a approximer que n’importe quel probleme dans APX.

Pour montrer qu'un probleme est APX-hard, on procede généralement par réduction,
comme pour montrer qu’un probleme est NP-hard. Ici, cependant, on a besoin d'une réduction
plus spécifique, qui préserve le ratio d’approximation lors de la transformation. Par exemple,
on prend une instance d'un probleme X (que l'on sait APX-hard) et on la transforme en
une instance du probleme Y, en montrant que si on arrive a approximer cette derniere, cela
nous donne une approximation pour la premiere. Pouvoir approximer Y contredirait donc
le fait que X est APX-hard, d’ou le fait que Y est aussi APX-hard. Cela peut étre utilisé
par exemple pour montrer que la 2-approximation connue pour VERTEX COVER (présentée
plus haut) est optimale, sauf si P=NP.

Quelques exemples de problemes inapproximables sont CLIQUE ou INDEPENDENT SET.

2. https://arnaudcasteigts.net/files/algo-glouton-1.pdf

4

https://arnaudcasteigts.net/files/algo-glouton-1.pdf

	Deux problèmes emblématiques
	Couplages (et discussions)
	Couverture par sommets

	Une 2-approximation pour la couverture minimum
	Sac à dos
	Pour aller plus loin

