
Langages formels (11X003) - Automne 2025

6. Algorithmes d’approximation (II)

Enseignant: Arnaud Casteigts (et F. Raynaud) Assistant: Brian Pulfer
Moniteurs: T. von Düring & A. Maendly

Dans ce cours, nous allons voir des exemples de problèmes pour chaque catégorie d’ap-
proximation. En fait, il s’agit de plusieurs versions d’un problème que vous connaissez bien,
le voyageur de commerce (TSP). Nous avons déjà parlé de ce problème pour illustrer l’ap-
proche gloutonne et la programmation dynamique. Voyons à quel degré plusieurs versions
du problème sont approximables.

6.1 Trois versions du TSP

Pour rappel, une instance du TSP peut être représentée par un graphe pondéré G =
(V,E,w) dont les sommets V correspondent aux n villes à visiter, les arêtes E représentent
les transitions possibles d’une ville à l’autre et la fonction de poids w : E → R indique le
coût de chacune de ces transitions (quand elles existent). Le problème consiste à trouver une
tournée optimale – techniquement, un cycle de poids total minimum – qui visite chaque ville
exactement une fois et revient au point de départ.

� TSP général (General TSP) : Le graphe d’entrée et les poids sont quelconques.

� TSP métrique (Metric TSP) : Il y a plusieurs définitions équivalentes. On utilisera
celle où le graphe d’entrée est un graphe complet dont les coût satisfont l’inégalité
triangulaire : pour tout x, y, z ∈ V , on a la garantie que w(x, z) ≤ w(x, y) + w(y, z).
Autrement dit, il n’est jamais plus cher d’aller quelque part directement que d’y aller
en passant par une ville intermédiaire, ce qui est souvent une hypothèse réaliste.

� TSP euclidien (Euclidean TSP) : Le graphe d’entrée est un graphe complet dont les
coûts correspondent aux distances euclidiennes entre les villes, que l’on suppose placées
dans le plan (deux dimensions).

Le TSP euclidien est un cas particulier de TSP métrique, qui est un cas particulier de
TSP général. Les trois versions sont NP-difficiles, mais nous allons voir dans ce cours qu’elles
s’approximent à différents niveaux.

General TSP inapproximable

Metric TSP 1.5-approximable

Euclidean TSP (1 + ϵ)-approximable

1



6.2 TSP général

Dans le cas général, le TSP est inapproximable : il n’existe pas de constante k telle que le
problème est k-approximable (sauf si P = NP). On peut le montrer par l’absurde, en utilisant
une réduction depuis le problème Hamiltonian Cycle, qui est NP-difficile. Pour rappel,
ce problème consiste à décider si un graphe donné admet un cycle hamiltonien (cycle qui
passe exactement une fois par chaque sommet). Voici le raisonnement :

Supposons qu’il existe un algorithme de k-approximation pour General TSP, pour un
certain k. Étant donné un grapheH = (V,EH) dont on veut savoir s’il a un cycle hamiltonien,
on créé un graphe complet et pondéré G = (V,E,w) tel que pour toute arête e ∈ EH ,
w(e) = 1 et pour toute arête e ∈ E \ EH , w(e) > kn (n’importe quelle valeur convient). On
utilise alors notre algorithme pour trouver une solution S de coût ≤ k ·OPT .

Observons maintenant que si un cycle hamiltonien existe, alors OPT = n (il y a n arêtes
dans un cycle hamiltonien et chacune a un poids égal à 1). Sinon, OPT > kn. On a donc
la propriété que cost(S) ≤ kn si et seulement si un cycle hamiltonien existe. Autrement dit,
en examinant cost(S), on peut déterminer si H admet un cycle hamiltonien. En supposant
P ̸= NP, un tel algorithme ne peut donc pas exister.

6.3 TSP métrique

Le TSP métrique admet une 1.5-approximation en temps polynomial. Avant de la présenter,
voyons d’abord une 2-approximation plus simple (que l’on étendra ensuite pour obtenir 1.5).

6.3.1 Algorithme de 2-approximation

1. Calculer un arbre couvrant T de poids minimum (MST)

2. Effectuer un parcours en profondeur de T en sautant les villes déjà rencontrées

Appelons S la solution ainsi obtenue. Clairement, S est bien une tournée et son calcul
prend un temps polynomial (par exemple, en utilisant l’algorithme Kruskal pour le MST,
c.f. Cours 6). Il nous reste donc à vérifier qu’il s’agit bien d’une 2-approximation. Quel est
le coût total de S ? Un parcours en profondeur traverse chaque arête de l’arbre deux fois
et les raccourcis que nous prenons ne peuvent pas détériorer ce coût (grâce à l’inégalité
triangulaire). Nous avons donc :

cost(S) ≤ 2 · cost(MST ) (1)

Par ailleurs, on peut montrer que le poids total de l’arbre (en comptant une seule fois
chaque arête) ne dépasse jamais le coût OPT d’une tournée optimale.

2



Lemme 6.1. cost(MST ) ≤ OPT (un arbre couvrant de poids minimum ne pèse jamais
plus qu’une tournée)

Preuve. Soit T un MST. Par l’absurde, s’il existe une tournée dont le poids est strictement
inférieur à T , alors on peut enlever une arête à cette tournée et obtenir un nouvel arbre T ′

qui est encore moins cher que T , contredisant l’optimalité de T .

En combinant (1) et le lemme 6.1, on obtient bien :

S ≤ 2 · cost(MST ) ≤ 2 ·OPT

6.3.2 Algorithme de 1.5-approximation (Christofides, 1976)

L’algorithme suit la même stratégie que précédemment, mais en ajoutant des étapes qui
utilisent les concepts additionnels en théorie des graphes : les couplages parfaits minimums
et les cycles eulériens. Commençons par discuter de ces deux notions.

Couplage parfait minimum. Un couplage (ou matching, déjà vu au cours précédent)
est un ensemble d’arêtes qui ne se touchent pas. Un couplage est parfait si il touche tous
les sommets. L’existence de couplages parfaits n’est pas garantie en général, mais elle est
garantie dans les graphes complets qui ont un nombre pair de sommets (voir ci-dessous). Par
ailleurs, on peut trouver en temps polynomial un couplage parfait de poids total minimum
(non décrit ici).

Cycle eulérien. Un cycle eulérien est un cycle qui passe exactement une fois par chaque
arête du graphe. Attention, ce n’est pas pareil qu’un cycle hamiltonien (qui passe exactement
une fois par chaque sommet). Le problème du cycle hamiltonien est difficile, mais le problème
du cycle eulérien est facile : un tel cycle existe si et seulement si le graphe est connexe et
tous les sommets ont un degré pair (nombre de voisins). Si ces conditions sont vérifiées, il
est également facile de trouver un tel cycle (non décrit ici).

L’algorithme de Christofides utilise ces deux notions dans certains sous-graphes particu-
liers du graphe d’entrée.

3



L’algorithme de Christofides

1. Calculer un arbre couvrant T de coût minimum (MST)

2. Le nombre de sommets de degré impair dans T doit être pair. On peut donc calculer
un couplage parfait minimum M entre ces sommets dans le graphe d’origine.

3. Faire l’union de M et T (ayant potentiellement deux fois certaines arêtes)

4. Trouver un cycle eulérien dans cette union, qui n’a que des degrés pairs

5. Parcourir le cycle obtenu en sautant les sommets déjà visités.

Explications. Dans tout graphe (et à fortiori, dans T ), le nombre de sommets de degré
impair est forcément pair (lemme des “poignées de main”). Le sous-graphe induit par ces
sommets dans le graphe d’origine est donc un graphe complet ayant un nombre pair de
sommets, on peut donc trouver un couplage parfait minimum M entre ces sommets. Si on
fait l’union T ∪ M , tous les sommets auront alors un degré pair dans cette union (soit ils
avaient déjà un degré pair dans T , soit leur degré est devenu pair grâce à l’ajout du couplage).
Il existe donc forcément un cycle eulérien dans T ∪M .

Facteur d’approximation de 1.5. La tournée finale S consiste à parcourir le cycle
eulérien trouvé dans T ∪ M , en sautant les sommets déjà visités. Grâce à l’inégalité tri-
angulaire, ces raccourcis ne peuvent pas augmenter le coût total. On a donc :

cost(S) ≤ cost(T ∪M) ≤ cost(T ) + cost(M) (2)

On sait déjà que cost(T ) ≤ OPT (Lemme 6.1). Il suffit donc pour conclure de montrer
que le coût de M est inférieur à 0.5 · OPT . Cela se fait en deux temps. Tout d’abord, on
considère le sous-graphe complet G′ induit par les sommets impliqués dans M . Une tournée
optimale dans ce graphe aurait un coût OPT ′ ≤ OPT (grâce à l’inégalité triangulaire, une
tournée visitant seulement un sous-ensemble de villes ne peut pas être plus coûteuse qu’une
tournée visitant toutes les villes). On montre ensuite :

Lemme 6.2. cost(M) ≤ 0.5 ·OPT ′

Preuve. Toute tournée optimale définit elle-même un couplage parfait (pas forcément mini-
mum), en prenant une arête sur deux le long de la tournée. Elle en définit un autre : les
autres arêtes de la tournée. La somme des coûts de ces deux couplages parfaits est exacte-
ment égale à OPT’, donc l’un des deux ne dépasse pas la moitié, et à fortiori, un couplage
parfait minimum entre ces sommets (qui ne peut pas être plus coûteux) non plus.

En résumé, on a :

cost(S) ≤ cost(T ∪M) ≤ cost(T ) + cost(M) ≤ OPT + 0.5 ·OPT ′ ≤ 1.5 ·OPT (3)

4



Mais que c’est beau ! :-D

6.4 TSP euclidien

Le TSP euclidien admet une (1+ϵ)-approximation, ce qui signifie qu’on peut s’approcher
autant qu’on veut de la solution optimale, en payant un temps de calcul qui reste polyno-
mial en n, mais qui augmente en fonction de l’erreur ϵ souhaitée. Un exemple classique est
l’algorithme d’Arora (1996), qui permet cela en temps nO(1/ϵ) pour des instances en deux
dimensions (l’algorithme se généralise en payant un peu plus en dimensions supérieures).

L’idée générale est de décomposer l’espace récursivement en petites sections résolues
séparément, puis recollées par de la programmation dynamique. Cet algorithme n’est pas au
programme, mais c’est un classique des algorithmes d’approximation. Vous pouvez le trouver
dans le cours de Michel Goemans : https://share.google/rtk6WC5GUqRjB8gyQ

5

https://share.google/rtk6WC5GUqRjB8gyQ

	Trois versions du TSP
	TSP général
	TSP métrique
	Algorithme de 2-approximation
	Algorithme de 1.5-approximation (Christofides, 1976)

	TSP euclidien

