
Langages formels (11X003) - Automne 2025

1. Algorithmes gloutons (I)

Enseignant: Arnaud Casteigts (et F. Raynaud) Assistant: Brian Pulfer
Moniteurs: T. von Düring & A. Maendly

Ces notes correspondent au premier cours sur le sujet.

2.1 Algorithme glouton

Un algorithme glouton est un algorithme qui effectue, à chaque étape, le meilleur choix
possible sur le moment, sans retour en arrière ni anticipation des étapes suivantes. On parle
aussi de choix localement optimal. Pour certains problèmes, cette stratégie fonctionne très
bien. Pour d’autres, elle fonctionne moins bien (et pour certaines, pas du tout). Mais dans
tous les cas, elle garantit un temps d’exécution rapide.

Les algorithmes gloutons s’adressent généralement aux problèmes d’optimisation, où l’on
cherche à minimiser ou maximiser un critère (p.ex. la taille ou le coût) parmi un ensemble de
solutions possibles. Nous allons voir quelques exemples. Pour chaque problème, nous appelons
OPT la valeur de la solution optimale, à laquelle nous pouvons comparer la solution trouvée.

2.2 Exemples

2.2.1 Voyageur de commerce

Voyageur de commerce (TSP, pour traveling salesperson problem en anglais) : étant
donné un ensemble de n villes, une ville de départ et un coût entre certaines paires de villes
(concrètement, étant donné un graphe pondéré), l’objectif est de trouver une tournée qui
passe une fois par chaque ville et termine au point de départ, en minimisant la somme des
coûts. Il s’agit d’un problème d’optimisation, qui s’avère être NP-difficile. Le problème de
décision associé (“existe-t-il une tournée de coût inférieur à k ?”) est NP-complet. Nous allons
nous concentrer sur la version d’optimisation.

Solution naive qui teste toutes les solutions ? Complexité factorielle. Pourquoi ?

Algorithme glouton : à chaque étape, choisir la ville non-visitée dont le coût depuis la
ville actuelle est le plus petit (l’algorithme “Nearest neighbor”).

Complexité de cet algorithme ? Clairement faisable en O(n2) : à chaque étape, on cherche
le minimum parmi les villes restantes (p.ex. en parcourant une liste). On regarde donc n fois

1



chacune des n villes dans le pire des cas (en supposant que le calcul d’une distance entre
deux villes prend un temps constant).

Qualité de la solution ? Clairement pas optimale (ex : villes sur les sommets d’un pa-
rallélogramme). En fait, cet algorithme donne une approximation qui peut être arbitraire-
ment mauvaise : pour toute constante α, il existe des instances où la qualité de la solution
est pire que α ·OPT .

2.2.2 Rendu de monnaie

Problème du rendu de monnaie (change making, en anglais) : Étant donné n pièces de
monnaies, chacune d’une valeur donnée, et une somme désirée, l’objectif est d’atteindre cette
somme en utilisant le moins de pièces possibles.

Une instance du problème peut être représentée comme un multi-ensemble de n entiers
représentant la valeur des pièces (potentiellement avec des répétitions s’il y a plusieurs pièces
de même valeur) et un entier cible (la somme à atteindre).

Un algorithme glouton correspondrait ici à sélectionner de manière répétée la plus grande
pièce possible sans dépasser la somme voulue.

Exemple 1 : Pièces {2 francs, 2 francs, 1 franc, 50 centimes, 20 centimes, 20 centimes, 10
centimes}, autrement dit {200, 200, 100, 50, 20, 20, 10} et objectif 380. L’algorithme glouton
fonctionne bien sur cet exemple et va trouver une solution à 5 pièces, {200, 100, 50, 20, 10},
ce qui est en effet optimal.

Exemple 2 : Pièces {25, 20, 20, 10, 5} (ancien système indien) et objectif 40. L’algorithme
glouton va trouver une solution à trois pièces, {25, 10, 5}. C’est bien, mais il existait une
solution à deux pièces : {20, 20} qu’une approache gloutonne va rater.

Exemple 3 : Pièces {25, 20, 20, 5} et objectif 40. Ici, l’algorithme va échouer. Il ne fallait
pas choisir 25 du tout ! L’approche gloutonne échoue donc parfois.

Morale de l’histoire : les choix effectués par l’algorithme à un instant donné peuvent
avoir une forte influence sur le futur. L’algorithme glouton fonctionne parfois très bien, mais
parfois pas. Savoir identifier les problèmes, ou les variantes de problèmes, pour lesquels il
fonctionne bien est un atout. (En l’occurence, il est optimal pour les systèmes de monnaies
dits canoniques, par exemple les systèmes CHF ou EUR avec un nombre illimité de pièces.)

2.2.3 Sac à dos

Le problème du sac à dos (knapsack, en anglais) est plus général que celui du rendu de
monnaie. Ici, une instance correspond à un ensemble de n objets qui ont chacun une valeur
et un poids. L’objectif est de trouver un sous-ensemble d’objets de valeur maximum sans

2



dépasser un poids total donné.

Une instance se présente comme ({(v1, w1), (v2, w2), . . . , (vk, wk)}, T ), où (vi, wi) corres-
pond à la valeur et au poids (weight) de l’objet i, et T est le poids total à ne pas dépasser.
Par exemple ({(100, 20), (120, 30), (10, 10), (60, 10)}, 50).

Approche näıve : essayer tous les sous-ensembles possibles. Quelle est la complexité ?
Dans l’exemple précédent, c’est faisable, mais s’il y a n objets, cela fait 2n sous-ensembles à
tester, ce qui est exponentiel... (pas terrible).

Que pourrait être une approche gloutonne à ce problème ? Il y a plusieurs possibilités.
L’une des plus naturelles consiste à choisir, à chaque étape, l’objet qui maximise le rapport
valeur/poids (la densité de l’objet) sans excéder la limite de poids. Pour faire cela, on peut
commencer par trier les objets par densité décroissante, à savoir dans notre exemple :

((60, 10), (100, 20), (120, 30), (10, 10)). (les densités respectives sont 6, 5, 4, 1)

On parcourt ensuite les éléments un à un, dans cet ordre, en les ajoutant à notre solution
tant que cela ne dépasse pas le seuil (ici 50). On ajoute donc (60, 10), puis (100, 20), puis on
ne peut plus ajouter (120, 30), on continue donc en ajoutant (10, 10). On obtient une valeur
totale de 170. Pouvait-on faire mieux ? Oui : en renonçant au meilleur élément ! En effet, la
solution {(100, 20), (120, 30)} atteint une valeur de 220 sans dépasser le seuil.

L’algorithme glouton rate donc encore l’optimum. Cependant, on peut le modifier très
légèrement de sorte à garantir une 2-approximation, c’est à dire une solution qui s’approche à
coup sûr à un facteur 2 de l’optimum (en l’occurence, une valeur totale d’au moins OPT/2).

Voici l’algorithme :

1. Trier les objets par densité décroissante (comme précédemment)

2. Prendre les objets dans l’ordre et s’arrêter dès qu’un objet i qui ne peut pas être ajouté

3. Comparer la valeur totale des objets pris jusqu’à présent à la valeur de l’objet i

4. Si i a une plus grande valeur, renvoyer i, sinon renvoyer les objets sélectionnés

Pourquoi cela donne une 2-approximation ? Appelons S l’ensemble des objets sélectionnés.
Imaginez d’abord que l’on puisse couper l’objet i pour arriver exactement à la capacité du
sac à dos. On aurait alors clairement une solution optimale, car les objets sont triés par
densité décroissante. Cela implique que la valeur optimale OPT est inférieure à v(A) + vj.
Puisqu’il y a deux termes dans cette addition, le plus grand des deux est au moins OPT/2,
cet algorithme est donc bien une 2-approximation.

3


