Langages formels (11X003) - Automne 2025
1. Algorithmes gloutons (I)

Enseignant: Arnaud Casteigts (et F. Raynaud) Assistant: Brian Pulfer
Moniteurs: T. von Diring € A. Maendly

Ces notes correspondent au premier cours sur le sujet.

2.1 Algorithme glouton

Un algorithme glouton est un algorithme qui effectue, a chaque étape, le meilleur choix
possible sur le moment, sans retour en arriere ni anticipation des étapes suivantes. On parle
aussi de choix localement optimal. Pour certains problemes, cette stratégie fonctionne tres
bien. Pour d’autres, elle fonctionne moins bien (et pour certaines, pas du tout). Mais dans
tous les cas, elle garantit un temps d’exécution rapide.

Les algorithmes gloutons s’adressent généralement aux problemes d’optimisation, ou 'on
cherche & minimiser ou maximiser un critere (p.ex. la taille ou le cotit) parmi un ensemble de
solutions possibles. Nous allons voir quelques exemples. Pour chaque probleme, nous appelons
OPT la valeur de la solution optimale, a laquelle nous pouvons comparer la solution trouvée.

2.2 Exemples
2.2.1 Voyageur de commerce

Voyageur de commerce (TSP, pour traveling salesperson problem en anglais) : étant
donné un ensemble de n villes, une ville de départ et un cout entre certaines paires de villes
(concretement, étant donné un graphe pondéré), 1'objectif est de trouver une tournée qui
passe une fois par chaque ville et termine au point de départ, en minimisant la somme des
cotuts. Il s’agit d’un probleme d’optimisation, qui s’avere étre NP-difficile. Le probleme de
décision associé (“existe-t-il une tournée de cotut inférieur a k 7”) est NP-complet. Nous allons
nous concentrer sur la version d’optimisation.

Solution naive qui teste toutes les solutions ? Complexité factorielle. Pourquoi ?

Algorithme glouton : a chaque étape, choisir la ville non-visitée dont le cout depuis la
ville actuelle est le plus petit (I’algorithme “Nearest neighbor”).

Complexité de cet algorithme ? Clairement faisable en O(n?) : & chaque étape, on cherche
le minimum parmi les villes restantes (p.ex. en parcourant une liste). On regarde donc n fois



chacune des n villes dans le pire des cas (en supposant que le calcul d’une distance entre
deux villes prend un temps constant).

Qualité de la solution? Clairement pas optimale (ex : villes sur les sommets d'un pa-
rallélogramme). En fait, cet algorithme donne une approximation qui peut étre arbitraire-
ment mauvaise : pour toute constante «, il existe des instances ou la qualité de la solution
est pire que o - OPT'.

2.2.2 Rendu de monnaie

Probléme du rendu de monnaie (change making, en anglais) : Etant donné n pieces de
monnaies, chacune d’une valeur donnée, et une somme désirée, ’objectif est d’atteindre cette
somme en utilisant le moins de pieces possibles.

Une instance du probleme peut étre représentée comme un multi-ensemble de n entiers
représentant la valeur des pieces (potentiellement avec des répétitions s’il y a plusieurs pieces
de méme valeur) et un entier cible (la somme & atteindre).

Un algorithme glouton correspondrait ici a sélectionner de maniere répétée la plus grande
piece possible sans dépasser la somme voulue.

Exemple 1 : Pieces {2 francs, 2 francs, 1 franc, 50 centimes, 20 centimes, 20 centimes, 10
centimes}, autrement dit {200,200, 100, 50, 20, 20, 10} et objectif 380. L’algorithme glouton
fonctionne bien sur cet exemple et va trouver une solution a 5 pieces, {200, 100, 50,20, 10},
ce qui est en effet optimal.

Exemple 2 : Pieces {25, 20,20, 10,5} (ancien systéme indien) et objectif 40. L’algorithme
glouton va trouver une solution & trois pieces, {25,10,5}. C’est bien, mais il existait une
solution & deux pieces : {20,20} qu'une approache gloutonne va rater.

Exemple 3 : Pieces {25, 20,20,5} et objectif 40. Ici, I'algorithme va échouer. Il ne fallait
pas choisir 25 du tout! L’approche gloutonne échoue donc parfois.

Morale de T'histoire : les choix effectués par l'algorithme a un instant donné peuvent
avoir une forte influence sur le futur. L’algorithme glouton fonctionne parfois tres bien, mais
parfois pas. Savoir identifier les problemes, ou les variantes de problemes, pour lesquels il
fonctionne bien est un atout. (En l'occurence, il est optimal pour les systemes de monnaies
dits canoniques, par exemple les systemes CHF ou EUR avec un nombre illimité de pieces.)

2.2.3 Sac a dos

Le probleme du sac a dos (knapsack, en anglais) est plus général que celui du rendu de
monnaie. Ici, une instance correspond a un ensemble de n objets qui ont chacun une valeur
et un poids. L’objectif est de trouver un sous-ensemble d’objets de valeur maximum sans



dépasser un poids total donné.

Une instance se présente comme ({(vy,wy), (v, ws), ..., (vk,wx)},T), ou (v;, w;) corres-
pond a la valeur et au poids (weight) de 1'objet i, et T" est le poids total a ne pas dépasser.
Par exemple ({(100, 20), (120, 30), (10, 10), (60, 10) }, 50).

Approche naive : essayer tous les sous-ensembles possibles. Quelle est la complexité?
Dans I'exemple précédent, c’est faisable, mais s’il y a n objets, cela fait 2" sous-ensembles a
tester, ce qui est exponentiel... (pas terrible).

Que pourrait étre une approche gloutonne a ce probleme? Il y a plusieurs possibilités.
L’une des plus naturelles consiste a choisir, a chaque étape, I'objet qui maximise le rapport
valeur/poids (la densité de 'objet) sans excéder la limite de poids. Pour faire cela, on peut
commencer par trier les objets par densité décroissante, a savoir dans notre exemple :

((60, 10), (100, 20), (120, 30), (10, 10)). (les densités respectives sont 6, 5,4, 1)

On parcourt ensuite les éléments un a un, dans cet ordre, en les ajoutant a notre solution
tant que cela ne dépasse pas le seuil (ici 50). On ajoute donc (60, 10), puis (100, 20), puis on
ne peut plus ajouter (120,30), on continue donc en ajoutant (10, 10). On obtient une valeur
totale de 170. Pouvait-on faire mieux ? Oui : en renoncant au meilleur élément! En effet, la
solution {(100, 20), (120,30)} atteint une valeur de 220 sans dépasser le seuil.

L’algorithme glouton rate donc encore 'optimum. Cependant, on peut le modifier tres
légerement de sorte a garantir une 2-approximation, c¢’est a dire une solution qui s’approche a
coup str & un facteur 2 de P'optimum (en I'occurence, une valeur totale d’au moins OPT/2).

Voici 'algorithme :

1. Trier les objets par densité décroissante (comme précédemment)
2. Prendre les objets dans 'ordre et s’arréter des qu’'un objet ¢ qui ne peut pas étre ajouté
3. Comparer la valeur totale des objets pris jusqu’a présent a la valeur de 'objet ¢

4. Si i a une plus grande valeur, renvoyer ¢, sinon renvoyer les objets sélectionnés

Pourquoi cela donne une 2-approximation ? Appelons S I'ensemble des objets sélectionnés.
Imaginez d’abord que 'on puisse couper 'objet ¢ pour arriver exactement a la capacité du
sac a dos. On aurait alors clairement une solution optimale, car les objets sont triés par
densité décroissante. Cela implique que la valeur optimale OPT est inférieure a v(A) + v;.
Puisqu’il y a deux termes dans cette addition, le plus grand des deux est au moins OPT/2,
cet algorithme est donc bien une 2-approximation.



