
Langages formels (11X003) - Automne 2025

2. Algorithmes gloutons (II)

Enseignant: Arnaud Casteigts (et F. Raynaud) Assistant: Brian Pulfer
Moniteurs: T. von Düring & A. Maendly

Ces notes correspondent au deuxième cours sur le sujet.

2.3 Arbre couvrant de poids minimum

Le problème de l’arbre couvrant de poids minimum (MST, pour minimum spanning tree,

en anglais) est très utilisé, notamment pour faire du routage dans les réseaux. Étant donné
un graphe pondéré (les arêtes ont un poids), l’objectif est de trouver un arbre couvrant de
ce graphe (c.à.d. un sous-graphe sans cycle qui connecte tous les sommets) dont la somme
des poids est la plus petite possible.

Voici un exemple d’instance pour ce problème :

Il existe deux algorithmes gloutons bien connus pour ce problème : l’algorithme de Kruskal
et l’algorithme de Prim. Les deux algorithmes sont très faciles à décrire. En revanche, le fait
qu’ils trouvent l’optimum systématiquement n’est pas évident (mais c’est bien le cas).

Algorithme de Kruskal

1. Démarrer avec un arbre vide,

2. Ajouter à l’arbre la plus petite arête qui ne crée pas de cycle,

1



3. Recommencer l’étape 2 jusqu’à ce que l’arbre ait n− 1 arêtes.

Notez qu’en cours d’exécution, la solution partiellement calculée jusqu’à présent n’est pas
encore un arbre couvrant, mais une forêt couvrante composée de petits arbres (comme
illustré à la Figure 1). En revanche, quand l’algorithme termine, il n’y a bien qu’un seul
arbre, et magie, le poids total de cet arbre est minimum parmi tous les arbres possibles.
Nous verrons pourquoi un peu plus bas.

Figure 1 – Une forêt couvrante de 4 arbres (dont un n’ayant qu’un sommet).

En attendant, quelle est la complexité de cet algorithme ? Soit n le nombre de sommets
et m le nombre d’arêtes. Pour implémenter concrètement cet algorithme, on peut com-
mencer par trier les arêtes par ordre croissant, ce calcul a une complexité en O(m logm)
(= O(m log n), pourquoi ?). Puis les parcourir une seule fois. La difficulté principale est de
détecter si l’ajout d’une arête candidate crée un cycle dans l’arbre (afin de la rejeter). On
peut faire cela en maintenant à jour une liste des composantes connexes de l’arbre, ce qui est
un peu plus coûteux, mais également faisable en temps O(m log n) (en utilisant une struc-
ture de donnée union-find). L’algorithme coûte donc O(m log n) + O(m log n) = O(m log n)
(pourquoi ?).

Algorithme de Prim

1. Choisir un sommet de départ (arbitraire) et le marquer comme appartenant à l’arbre,

2. Trouver la plus petite arête dont une extrémité est marquée et l’autre non,

3. Ajouter cette arête et marquer le sommet correspondant,

4. Recommencer les étapes 2 et 3 jusqu’à ce que tous les sommets soient marqués.

Cet algorithme est similaire à celui de Kruskal, mais il a une propriété supplémentaire très
pratique : à tout moment, la solution partiellement calculée est connexe et nous n’avons pas
besoin de tester les cycles. Il est donc plus facile à implémenter. Par ailleurs, sa complexité
est légèrement meilleure : O(m + n log n) (dans le O, le + est un max) en utilisant des tas
de Fibonacci pour trouver l’arête la plus petite à chaque étape.

2.4 Matröıdes & co

Les algorithmes de Kruskal et de Prim sont gloutons : ils sélectionnent les meilleurs
éléments à chaque étape sans se soucier du résultat final. Il n’est pas évident que ces choix

2



“locaux” doivent conduire à un optimum “global”. Et pourtant, c’est bien le cas, mais pour-
quoi ? Avant d’approfondir cette question, examinons de plus près l’algorithme de Kruskal
et prouvons déjà qu’il construit bien une solution optimale.

Preuve que l’arbre construit par Kruskal est optimal

Soit G le graphe d’entrée et soit T ⊆ G l’arbre construit par l’algorithme de Kruskal en
sélectionnant les arêtes e1, e2, · · · , en−1 dans cet ordre.

Theorème 2.1. Le poids total de T est bien minimum.

Démonstration. Par contradiction, supposons que T n’est pas minimum. Il existe alors une
arête ei qui a été le “premier mauvais choix” de l’algo, dans le sens où les arêtes sélectionnées
avant, à savoir e1, · · · , ei−1, pouvaient encore être étendues à un arbre optimal (appelons-le
T ′) mais e1, · · · , ei ne peut plus l’être. Puisque T ′ est un arbre couvrant qui ne contient pas
ei, le graphe T

′+ei doit contenir un cycle impliquant ei. Réfléchissons à ce cycle. Si l’une des
autres arêtes du cycle a un poids plus grand que ei, alors on peut remplacer cette arête par
ei, ce qui contredit l’optimalité de T ′ ; donc chacune de ces arêtes a un poids inférieur ou égal
à ei. Par ailleurs, au moins l’une d’elles, disons f , n’appartient pas à T (puisque T n’a pas
de cycle). On a deux cas possibles : soit w(f) < w(ei), soit w(f) = w(ei). Dans le premier
cas, f aurait été sélectionnée par l’algorithme à la place de ei (contredisant le fait qu’on a
exécuté Kruskal), et dans l’autre cas T ′ − f + ei est une solution optimale, contredisant le
fait que choisir ei était une erreur.

Qu’est-ce qu’un matröıde ?

La preuve ci-dessus est en réalité un cas particulier d’un argument plus abstrait, impli-
quant une structure appelée un matröıde. La littérature sur les matröıdes est vaste, nous
n’en dirons que quelques mots.

Étant donné un ensemble E quelconque, on peut s’intéresser à certains sous-ensembles de
E qui satisfont une certaine propriété. Ce cadre est général, on pourrait parler de n’importe
quel type d’ensemble E, appelé ici ensemble de base. Quant à l’ensemble des sous-ensembles
qui satisfont la propriété choisie, on le note généralement I et on appelle (E, I) une famille
d’ensembles.

Un matröıde est un cas particulier de famille d’ensemble qui satisfait deux axiomes
supplémentaires :

1. (Hérédité.) Soit A ⊆ E tel que A ∈ I. Alors pour tout B ⊆ A, on a aussi B ∈ I.
Autrement dit, si un certain sous-ensemble de E a la propriété, alors n’importe quel
sous-ensemble de ce sous-ensemble l’a aussi.

3



2. (Échange.) Si A ∈ I, B ∈ I, et |A| > |B|, alors il existe un élément e ∈ A \ B tel que
B ∪ e ∈ I. Autrement dit, on peut trouver un élément de A transférable vers B sans
contredire la propriété.

Revenons au problème de l’arbre couvrant et interrogeons-nous : est-ce que l’ensemble
des forêts d’un graphe forment un matröıde ? Autrement dit, si on considère l’ensemble E
des arêtes du graphe et l’ensemble I des sous-ensembles de E qui forment une forêt (= n’ont
pas de cycles), la famille (E, I) vérifie-t-elle les deux axiomes désirés ?

1. (Hérédité.) Si A est une forêt et que l’on prend B ⊆ A, alors B est une forêt.

2. (Échange.) Soient A et B deux forêts telles que |A| > |B|. Alors A a moins de compo-
santes connexes que B. Il existe donc un arbre dans la forêt A qui relie des sommets
appartenant à deux composantes différentes de B, et plus précisément, il existe au
moins une arête de cet arbre dont les deux extrémités sont dans des composantes
différentes de B. On peut alors ajouter cette arête à B sans créer de cycle.

Conclusion : L’ensemble des forêts d’un graphe donné forme donc un matröıde.

Pourquoi tous ces efforts ? Parce que dans n’importe quel matröıde, l’algorithme glouton
est garanti de trouver le solution optimale (la preuve est analogue, bien que plus abstraite, à
celle de Kruskal). Plus précisément, soit (E, I) un matröıde, et soit w : E → R+ une fonction
de poids. Alors l’algorithme suivant trouve toujours l’optimum :

1. Initialiser la solution S à ∅
2. Trouver l’élément e le plus petit (ou le plus grand, si l’on veut maximiser) tel que S+e

est dans I, et l’ajouter à S.

3. Répéter l’étape 2 jusqu’à ce qu’aucun élément supplémentaire ne puisse être ajouté.

Observons au passage que c’est exactement l’algorithme de Kruskal, mais formulé de
manière plus générale.

En résumé, si l’on soupçonne qu’un problème possède une structure de matröıde, la seule
chose que l’on a à faire est de montrer que la famille d’ensemble correspondante satisfait les
axiomes d’hérédité et d’échange, et cela garantit immédiatement que l’algorithme glouton
trouvera la solution optimale. Il n’y a rien d’autre à démontrer.

Autres structures similaires

Qu’en est-il de l’algorithme de Prim ? Il se trouve que l’algorithme de Prim est également
glouton, bien que ses solutions ne forment pas un matröıde. Elles satisfont cependant les
axiomes d’une structure plus générale appelée greedöıde, où l’algorithme glouton est également
garanti de trouver l’optimum. Il existe de nombreux types de familles d’ensembles, avec di-
vers avantages algorithmiques, les matröıdes et les greedöıdes n’étant que les plus célèbres
d’entre eux.

4


