Langages formels (11X003) - Automne 2025
2. Algorithmes gloutons (1)

Enseignant: Arnaud Casteigts (et F. Raynaud) Assistant: Brian Pulfer
Moniteurs: T. von Diring € A. Maendly

Ces notes correspondent au deuxieme cours sur le sujet.

2.3 Arbre couvrant de poids minimum

Le probleme de 'arbre couvrant de poids minimum (MST, pour minimum spanning tree,

en anglais) est tres utilisé, notamment pour faire du routage dans les réseaux. Etant donné
un graphe pondéré (les arétes ont un poids), l'objectif est de trouver un arbre couvrant de
ce graphe (c.a.d. un sous-graphe sans cycle qui connecte tous les sommets) dont la somme
des poids est la plus petite possible.

Voici un exemple d’instance pour ce probleme :

Il existe deux algorithmes gloutons bien connus pour ce probleme : I’algorithme de Kruskal
et 'algorithme de Prim. Les deux algorithmes sont tres faciles a décrire. En revanche, le fait
qu’ils trouvent 'optimum systématiquement n’est pas évident (mais c’est bien le cas).

Algorithme de Kruskal
1. Démarrer avec un arbre vide,

2. Ajouter a I'arbre la plus petite aréte qui ne crée pas de cycle,

3. Recommencer 'étape 2 jusqu’a ce que ’arbre ait n — 1 arétes.

Notez qu’en cours d’exécution, la solution partiellement calculée jusqu’a présent n’est pas
encore un arbre couvrant, mais une forét couvrante composée de petits arbres (comme
illustré a la Figure 1). En revanche, quand l'algorithme termine, il n’y a bien qu’un seul
arbre, et magie, le poids total de cet arbre est minimum parmi tous les arbres possibles.
Nous verrons pourquoi un peu plus bas.

N

FIGURE 1 — Une forét couvrante de 4 arbres (dont un n’ayant qu'un sommet).

En attendant, quelle est la complexité de cet algorithme? Soit n le nombre de sommets
et m le nombre d’arétes. Pour implémenter concretement cet algorithme, on peut com-
mencer par trier les arétes par ordre croissant, ce calcul a une complexité en O(mlogm)
(= O(mlogn), pourquoi?). Puis les parcourir une seule fois. La difficulté principale est de
détecter si 'ajout d'une aréte candidate crée un cycle dans l'arbre (afin de la rejeter). On
peut faire cela en maintenant a jour une liste des composantes connexes de ’arbre, ce qui est
un peu plus coliteux, mais également faisable en temps O(mlogn) (en utilisant une struc-
ture de donnée union-find). L’algorithme cotite donc O(mlogn) + O(mlogn) = O(mlogn)
(pourquoi ?).

Algorithme de Prim
1. Choisir un sommet de départ (arbitraire) et le marquer comme appartenant a 'arbre,
2. Trouver la plus petite aréte dont une extrémité est marquée et 'autre non,
3. Ajouter cette aréte et marquer le sommet correspondant,
4. Recommencer les étapes 2 et 3 jusqu’a ce que tous les sommets soient marqués.

Cet algorithme est similaire a celui de Kruskal, mais il a une propriété supplémentaire tres
pratique : a tout moment, la solution partiellement calculée est connexe et nous n’avons pas
besoin de tester les cycles. Il est donc plus facile a implémenter. Par ailleurs, sa complexité
est légerement meilleure : O(m + nlogn) (dans le O, le 4+ est un max) en utilisant des tas
de Fibonacci pour trouver I'aréte la plus petite a chaque étape.

2.4 Matroides & co

Les algorithmes de Kruskal et de Prim sont gloutons : ils sélectionnent les meilleurs
éléments a chaque étape sans se soucier du résultat final. Il n’est pas évident que ces choix

“locaux” doivent conduire a un optimum “global”. Et pourtant, c¢’est bien le cas, mais pour-
quoi? Avant d’approfondir cette question, examinons de plus pres ’algorithme de Kruskal
et prouvons déja qu’il construit bien une solution optimale.

Preuve que ’arbre construit par Kruskal est optimal

Soit GG le graphe d’entrée et soit 7' C G 'arbre construit par ’algorithme de Kruskal en
sélectionnant les arétes ey, es, -+ ,e,_1 dans cet ordre.

Theoreme 2.1. Le poids total de T est bien minimum.

Démonstration. Par contradiction, supposons que 7' n’est pas minimum. Il existe alors une
aréte e; qui a été le “premier mauvais choix” de I’algo, dans le sens ou les arétes sélectionnées
avant, a savoir ey, --- , e;_1, pouvaient encore étre étendues a un arbre optimal (appelons-le
T’) mais ey, - - -, e; ne peut plus 'étre. Puisque 7" est un arbre couvrant qui ne contient pas
e;, le graphe T” + e; doit contenir un cycle impliquant e;. Réfléchissons a ce cycle. Si I'une des
autres arétes du cycle a un poids plus grand que e;, alors on peut remplacer cette aréte par
e;, ce qui contredit I'optimalité de 7" ; donc chacune de ces arétes a un poids inférieur ou égal
a e;. Par ailleurs, au moins I'une d’elles, disons f, n’appartient pas a 7' (puisque 7' n’a pas
de cycle). On a deux cas possibles : soit w(f) < w(e;), soit w(f) = w(e;). Dans le premier
cas, [aurait été sélectionnée par I'algorithme a la place de e; (contredisant le fait qu’on a
exécuté Kruskal), et dans 'autre cas 7" — f + e; est une solution optimale, contredisant le
fait que choisir e; était une erreur. O

Qu’est-ce qu’un matroide 7

La preuve ci-dessus est en réalité un cas particulier d’'un argument plus abstrait, impli-
quant une structure appelée un matroide. La littérature sur les matroides est vaste, nous
n’en dirons que quelques mots.

Etant donné un ensemble E quelconque, on peut s’intéresser a certains sous-ensembles de
E qui satisfont une certaine propriété. Ce cadre est général, on pourrait parler de n’importe
quel type d’ensemble F, appelé ici ensemble de base. Quant a I’ensemble des sous-ensembles
qui satisfont la propriété choisie, on le note généralement Z et on appelle (E,Z) une famille
d’ensembles.

Un matroide est un cas particulier de famille d’ensemble qui satisfait deux axiomes
supplémentaires :

1. (Hérédité.) Soit A C E tel que A € Z. Alors pour tout B C A, on a aussi B € .
Autrement dit, si un certain sous-ensemble de E a la propriété, alors n’importe quel
sous-ensemble de ce sous-ensemble 'a aussi.

2. (Echange.) Si A€ Z, B €T, et |A| > |B|, alors il existe un élément e € A\ B tel que
B Ue € Z. Autrement dit, on peut trouver un élément de A transférable vers B sans
contredire la propriété.

Revenons au probleme de ’arbre couvrant et interrogeons-nous : est-ce que l’ensemble
des foréts d'un graphe forment un matroide ? Autrement dit, si on considere ’ensemble F
des arétes du graphe et 'ensemble Z des sous-ensembles de E qui forment une forét (= n’ont
pas de cycles), la famille (£, Z) vérifie-t-elle les deux axiomes désirés ?

1. (Hérédité.) Si A est une forét et que 'on prend B C A, alors B est une forét.

2. (Echange.) Soient A et B deux foréts telles que |A| > |B]. Alors A a moins de compo-
santes connexes que B. Il existe donc un arbre dans la forét A qui relie des sommets
appartenant a deux composantes différentes de B, et plus précisément, il existe au
moins une aréte de cet arbre dont les deux extrémités sont dans des composantes
différentes de B. On peut alors ajouter cette aréte a B sans créer de cycle.

Conclusion : L’ensemble des foréts d'un graphe donné forme donc un matroide.

Pourquoi tous ces efforts 7 Parce que dans n’importe quel matroide, 1’algorithme glouton
est garanti de trouver le solution optimale (la preuve est analogue, bien que plus abstraite, a
celle de Kruskal). Plus précisément, soit (£, Z) un matroide, et soit w : E — R™ une fonction
de poids. Alors I'algorithme suivant trouve toujours 'optimum :

1. Initialiser la solution S a ()

2. Trouver ’élément e le plus petit (ou le plus grand, si ’on veut maximiser) tel que S+e
est dans Z, et 'ajouter a S.

3. Répéter I'étape 2 jusqu’a ce qu’aucun élément supplémentaire ne puisse étre ajouté.

Observons au passage que c’est exactement 'algorithme de Kruskal, mais formulé de
maniere plus générale.

En résumé, si 'on soupconne qu’un probleme possede une structure de matroide, la seule
chose que 'on a a faire est de montrer que la famille d’ensemble correspondante satisfait les
axiomes d’hérédité et d’échange, et cela garantit immédiatement que ’algorithme glouton
trouvera la solution optimale. Il n’y a rien d’autre a démontrer.

Autres structures similaires

Qu’en est-il de 'algorithme de Prim ? Il se trouve que ’algorithme de Prim est également
glouton, bien que ses solutions ne forment pas un matroide. Elles satisfont cependant les
axiomes d’une structure plus générale appelée greedoide, ou I’algorithme glouton est également
garanti de trouver 'optimum. Il existe de nombreux types de familles d’ensembles, avec di-
vers avantages algorithmiques, les matroides et les greedoides n’étant que les plus célebres
d’entre eux.

