
Langages formels (11X003) - Automne 2025

3. Programmation dynamique (I)

Enseignant: Arnaud Casteigts (et F. Raynaud) Assistant: Brian Pulfer
Moniteurs: T. von Düring & A. Maendly

La programmation dynamique (dynamic programming ou DP, en anglais) est une méthode al-
gorithmique pour résoudre des problèmes, le plus souvent d’optimisation, mais pas seulement.
Comme pour le paradigme “Divide and Conquer”, elle consiste à décomposer un problème
en sous-problèmes. Ici, cependant, certains sous-problèmes sont susceptibles d’être résolus de
nombreuses fois, l’idée principale est donc de mémoriser ces solutions intermédiaires pour ne
les calculer qu’une fois, ce qui s’appelle la mémöısation. Tout l’art de la programmation dy-
namique est d’organiser les traitements de sorte à exploiter au mieux ces répétitions. D’une
certaine manière, il s’agit de faire du recyclage.

9.1 Exemple 1 : Nombres de Fibonacci

Ce premier exemple n’est pas un problème d’optimisation, mais il illustre bien les concepts
de la programmation dynamique. Il s’agit de calculer le nème nombre de Fibonacci, ces
nombres étant définis inductivement comme suit :

F0 = 0;
F1 = 1;
Fn = Fn−1 + Fn−2 pour tout n ≥ 2.

On utilise souvent ces nombres pour illustrer la récursivité en programmation, avec l’al-
gorithme suivant :

Fib(k):

if k=0:

return 0

elif k=1:

return 1

else:

return Fib(k-1) + Fib(k-2)

Bien que très élégant et correspondant exactement à la définition, cet algorithme a une
complexité en temps catastrophique. Regardons les appels engendrés :

1

Fn

Fn−1 Fn−2

Fn−2 Fn−3 Fn−3 Fn−4

Fn−3 Fn−4 . . .

Clairement, les mêmes appels sont effectués de nombreuses fois. Il y a donc beaucoup à
gagner si l’on mémorise les résultats intermédiaires ! Analysons d’abord la complexité de cet
algorithme. Soit T (n) le temps requis pour calculer le terme d’ordre n. Le calcul de T (n)
correspond à la récurrence suivante :

T (n) = T (n− 1) + T (n− 2) +O(1)

où O(1) correspond au coût de la somme effectuée à chaque appel (supposé constant).
Pour simplifier, observons que T (n − 1) est au moins aussi coûteux que T (n − 2) (puisque
Fib(1) appelera Fib(2)), on a donc T (n) ≥ 2T (n− 2) et donc T (n) ≥ 2× 2× · · · × 2 = 2n/2.

La complexité en temps est donc exponentielle. Peut-on faire mieux ?

Voici le même algorithme, avec mémöısation dans une variable de type dictionnaire
(clés,valeurs), initialisée avec la valeur 0 pour la clé 0 et 1 pour la clé 1.

dict = {0: 0, 1: 1}

Fib(n):

if n not in dict:

dict[n] = Fib(n-1) + Fib(n-2)

return dict[n]

Supposons que la recherche et l’insertion dans le dictionnaire se font en temps constant.
Chaque valeur de n ne fait l’objet d’un calcul que la première fois qu’elle est demandée.
Les sous-arbres correspondant aux valeurs déjà connues ne seront donc pas explorés, ce
qui implique un temps total de O(n) (complexité linéaire). Cet exemple illustre le gain
gigantesque que l’on peut faire grâce à la mémöısation.

L’approche que nous avons utilisé ici est de type “top-down” : nous sommes partis du
problème le plus général, et en avons résolu les sous-problèmes récursivement (avec mémöısa-
tion). On peut aussi partir des plus petits sous-problèmes et remonter (sans récursion) vers
le problème général, c’est l’approche “bottom-up”, donnée par l’algorithme suivant :

2

Fib(n):

dict = {0: 0, 1: 1}
for i in range(2, n):

dict[i] ← dict[i-1] + dict[i-2]

return dict[n]

En fait, n’importe quel problème sujet à la programmation dynamique peut être résolu
des deux manières (top-down ou bottom-up), avec essentiellement la même complexité. Pour
bien comprendre cela, on peut décrire les dépendances entre sous problèmes par un graphe
orienté, dont les nœuds sont des (sous-)problèmes et les arcs sont les dépendances. Par
exemple, pour le problème de calculer Fib(8), on a le graphe suivant :

F0 F1 F2 F3 F4 F5 F6 F7 F8

L’approche bottom-up consiste alors à commencer par les sous-problèmes qui ne dépendent
de rien et de remonter progressivement jusqu’au problème de départ (qui dépend de tous
les autres). Ici, l’ordre des entiers naturels fonctionne, mais en général, cela pourrait être
plus complexe. Cependant, pour n’importe quel graphe orienté acyclique, on peut facile-
ment trouver un ordre total compatible en utilisant un algorithme de tri topologique (de
complexité linéaire). L’approche top-down, quant à elle, revient à effectuer une récursion à
partir du problème le plus général (avec de la mémöısation). In fine, les deux peuvent être vus
comme différentes manières de parcourir le graphe. Notez qu’il s’agit là d’une représentation
abstraite : en général, un tel graphe n’est pas construit explicitement, comme dans les deux
exemples de codes fournis ci-dessus, qui illustrent ces deux approches.

9.2 Remarques

Espace mémoire. Dans certains cas, on cherche aussi à économiser l’espace. C’est souvent
possible. Intuitivement, on peut ”oublier” une valeur dès que les problèmes qui en dépendent
ont été résolus. Pour Fibonacci, par exemple, on pourrait réduire la complexité en espace à
O(1), ce qui n’est pas fait dans le code ci-dessus.

Dépendances cycliques. Pour beaucoup de problèmes, une difficulté importante est
d’éviter les dépendances cycliques entre sous-problèmes. En effet, les approches décrites
ci-dessus ne marchent que si le graphe est acyclique (DAG, pour directed acyclic graph). Le
risque autrement est d’engendrer une exécution infinie. Nous en reparlerons.

3

9.3 Exemple 2 : Justification de texte

Étant donné une liste de mots qui ont vocation à être dans le même paragraphe. L’objectif
est de décider où les lignes doivent être coupées, en supposant que le texte doit être aligné
sur les deux marges (“justifié”), sauf la dernière ligne. Pour simplifier, on suppera que les
mots ne peuvent pas être coupés. Prenons par exemple le texte suivant :

texte = “xxxx xxxxxx xxxxx xx xxxxxxx xxxxxxxx xxxxxxx xx”

9.3.1 Algorithme glouton ? (mauvaise qualité)

Tant que la ligne courante ne déborde pas, ajouter des mots. Puis passer à la ligne
suivante et continuer avec le texte restant. (Cet algorithme a longtemps été utilisé par MS
Word, je ne sais pas s’il l’est toujours.)

Si la largeur disponible est de 21 caractères, par exemple. On obtient le résultat suivant :

xxxx xxxxxx xxxxx xxx|

xxxxxxx xxxxxxx|

xxxxxxx xx.

Cette solution n’est pas très esthétique. On préférerait peut-être celle-ci :

xxxx xxxxxx xxxxx|

xxx xxxxxxx xxxxxxx|

xxxxxxx xx.

Le système LATEX
1 utilise de la programmation dynamique pour trouver la meilleure

solution, en l’occurrence, la seconde (définie par des critères précis).

9.3.2 Définition plus détaillée du problème

Définissons le problème plus précisément. En entrée, nous recevons une liste de n mots
(variable mots). En sortie, on peut se contenter de d’indiquer les indices des premiers mots
de chaque ligne.

Pour juger de la qualité d’une solution, on peut utiliser une fonction de coût similaire
à celle de LATEX. À tout moment, une ligne candidate correspond à une sous-liste contigüe
de mots, noté mots[i:j] (du ième au j ème mot). Le coût qu’on lui attribue est le nombre
d’espace qu’elle utilise (+∞, si la ligne déborde), élevé à la puissance 3 pour pénaliser plus

1. Utilisé par exemple pour taper ce document, ainsi que tous les supports du cours d’algorithmique.

4

fortement les lignes qui en ont beaucoup. Le coût d’une solution complète correspond à la
somme des coûts de chaque ligne.

Dans l’exemple ci-dessus, cela donne 33 + 73 + 13 = 371 pour la solution gloutonne et
63+43+13 = 281 pour l’autre proposition. L’objectif est de minimiser la solution. La seconde
est donc meilleure.

9.3.3 Brute force ? (trop coûteux)

Une solution brute force consisterait à tester toutes les façons possibles de couper les
lignes. Autrement dit, pour chaque mot, décider s’il commence une nouvelle ligne ou non, ce
qui représente essentiellement 2n possibilités.

9.3.4 Programmation dynamique (parfait !)

On peut résoudre ce problème par un programme dynamique. La seule chose à faire est
de le formuler par une récurrence impliquant des sous-problèmes.

Le problème revient alors à :

1. Choisir les mots de la ligne courante

2. Résoudre le sous-problème correspondant au texte restant

3. Parmi ces choix, retenir celui qui minimise le coût (ligne courante + sous-problème)

Cela suggère un programme récursif simple. Mais combien coûterait-il ? En l’état, très
cher, car les mêmes sous-problèmes seront résolus de nombreuses fois. Et si l’on utilise la
mémöısation ?

Analysons la complexité avec mémöısation. Il n’y a que n sous-problèmes possibles (tous
les suffixes possibles de la liste de départ). Combien coûte la résolution de chacun si l’on
suppose les autres résolus ? À chaque étape, le travail consiste à explorer les choix possibles
pour la ligne courante, récupérer le coût du sous-problème correspondant, puis effectuer un
minimum. Le nombre de choix possibles à chaque étape étant clairement inférieur à n, ces
trois tâches prennent un temps O(n). Bilan : On a n sous-problèmes qui prennent chacun
un temps O(n), soit O(n2) au total, ce qui est beaucoup mieux ! En pratique, le nombre de
choix par ligne est assez petit, donc le temps total est quasiment linéaire.

Reconstruire la solution : Vous aurez remarqué que notre algorithme, en l’état, ne
construit pas vraiment la solution, il ne fait que calculer son coût minimum. Pour la construire
concrètement, il suffirait que chaque sous-problème mémorise le choix qui lui a coûté le moins
cher. Il suffirait alors, une fois le calcul terminé, de suivre ces choix depuis le problème initial
pour retrouver le chemin complet dans le graphe des sous-problèmes, ce chemin donnant la

5

solution en temps linéaire également (ici, la liste d’indice correspondant au premier mot de
chaque ligne).

9.3.5 Conclusion

On a réussi à résoudre le problème efficacement et (quasiment) sans réfléchir ! Le seul
effort a été de le voir comme une récurrence impliquant des sous-problèmes. En fait, tout
programme récursif peut être automatiquement converti en une version qui utilise de la
mémöısation. C’est l’un des grands avantages de la programmation dynamique. Notez qu’on
pourrait aussi écrire une version bottom-up, c’est parfois plus efficace en pratique car il
n’y a pas à exécuter les appels récursifs (bien que la complexité théorique soit la même).
Cependant, il est souvent plus naturel de procéder récursivement de manière top-down.

La semaine prochaine, nous verrons d’autres exemples, notamment des exemples où le
problème a des dépendances cycliques qui compliquent (un peu) la mise en place d’un pro-
gramme dynamique.

Subproblems = suffices words [i:]

\#subprobs: n (number of words)

\#choices: <= n-i = O(n)

recurrence: DP(i) = min(DP(j) + badness(i:j)) for j in range(i+1,n)

time/subproblem = O(n)

base case DP(n)=0

4) topological order : i = n, n-1, 0 total time : O(n**2)

5) orig. problem : DP(0)

Parent pointers : what was the value of j that gave the best min ? → parent[i]=argmin()
it is the best value.

How to reconstruct the solution itself : 0 → parent[0] → parent[parent[0]].

This is absolutly general. For any recursion algorithm, can be automatedly converted
into a DP algo.

6

