Langages formels (11X003) - Automne 2025
3. Programmation dynamique (I)

Enseignant: Arnaud Casteigts (et F. Raynaud) Assistant: Brian Pulfer
Moniteurs: T. von Diring € A. Maendly

La programmation dynamique (dynamic programming ou DP, en anglais) est une méthode al-
gorithmique pour résoudre des problemes, le plus souvent d’optimisation, mais pas seulement.
Comme pour le paradigme “Divide and Conquer”, elle consiste a décomposer un probléeme
en sous-problemes. Ici, cependant, certains sous-problemes sont susceptibles d’étre résolus de
nombreuses fois, I'idée principale est donc de mémoriser ces solutions intermédiaires pour ne
les calculer qu’une fois, ce qui s’appelle la mémoisation. Tout 'art de la programmation dy-
namique est d’organiser les traitements de sorte a exploiter au mieux ces répétitions. D’une
certaine maniere, il s’agit de faire du recyclage.

9.1 Exemple 1 : Nombres de Fibonacci

Ce premier exemple n’est pas un probleme d’optimisation, mais il illustre bien les concepts
de la programmation dynamique. Il s’agit de calculer le n®™¢ nombre de Fibonacci, ces
nombres étant définis inductivement comme suit :

FO = 07
F1 = 17
EF, = F,_1 + F,_5 pour tout n > 2.

On utilise souvent ces nombres pour illustrer la récursivité en programmation, avec 1’al-
gorithme suivant :

Fib(k):
if k=0:
return O
elif k=1:
return 1
else:
return Fib(k-1) + Fib(k-2)

Bien que tres élégant et correspondant exactement a la définition, cet algorithme a une
complexité en temps catastrophique. Regardons les appels engendrés :

Fn—l anZ
VRN SN
Fn—2 Fn—3 Fn,—B Fn—4
VRN
Fn,—3 Fn—4

Clairement, les mémes appels sont effectués de nombreuses fois. Il y a donc beaucoup a
gagner si 'on mémorise les résultats intermédiaires ! Analysons d’abord la complexité de cet
algorithme. Soit T'(n) le temps requis pour calculer le terme d’ordre n. Le calcul de T'(n)
correspond a la récurrence suivante :

Tn)=Tn—-1)+T(n—-2)+0(1)

ou O(1) correspond au cout de la somme effectuée a chaque appel (supposé constant).
Pour simplifier, observons que T'(n — 1) est au moins aussi cotuteux que T'(n — 2) (puisque
Fib(1) appelera Fib(2)), on a donc T'(n) > 2T (n — 2) et donc T(n) > 2x 2 x - x 2 = 272,

La complexité en temps est donc exponentielle. Peut-on faire mieux ?

Voici le méme algorithme, avec mémoisation dans une variable de type dictionnaire
(clés,valeurs), initialisée avec la valeur 0 pour la clé 0 et 1 pour la clé 1.

dict = {0: 0, 1: 1}

Fib(n):
if n not in dict:
dict[n] = Fib(n-1) + Fib(n-2)
return dict[n]

Supposons que la recherche et I'insertion dans le dictionnaire se font en temps constant.
Chaque valeur de n ne fait I'objet d’un calcul que la premiere fois qu’elle est demandée.
Les sous-arbres correspondant aux valeurs déja connues ne seront donc pas explorés, ce
qui implique un temps total de O(n) (complexité linéaire). Cet exemple illustre le gain
gigantesque que 1’on peut faire grace a la mémoisation.

L’approche que nous avons utilisé ici est de type “top-down” : nous sommes partis du
probleme le plus général, et en avons résolu les sous-problemes récursivement (avec mémoisa-
tion). On peut aussi partir des plus petits sous-problemes et remonter (sans récursion) vers
le probleme général, c’est ’approche “bottom-up”, donnée par I'algorithme suivant :

Fib(n):
dict = {0: 0, 1: 1}
for i in range(2, n):
dict[i] < dict[i-1] + dict[i-2]
return dict[n]

En fait, n’importe quel probleme sujet a la programmation dynamique peut étre résolu
des deux manieres (top-down ou bottom-up), avec essentiellement la méme complexité. Pour
bien comprendre cela, on peut décrire les dépendances entre sous problemes par un graphe
orienté, dont les noeuds sont des (sous-)problemes et les arcs sont les dépendances. Par
exemple, pour le probleme de calculer Fib(8), on a le graphe suivant :

L’approche bottom-up consiste alors a commencer par les sous-problemes qui ne dépendent
de rien et de remonter progressivement jusqu’au probleme de départ (qui dépend de tous
les autres). Ici, I'ordre des entiers naturels fonctionne, mais en général, cela pourrait étre
plus complexe. Cependant, pour n’importe quel graphe orienté acyclique, on peut facile-
ment trouver un ordre total compatible en utilisant un algorithme de tri topologique (de
complexité linéaire). L’approche top-down, quant a elle, revient & effectuer une récursion a
partir du probléeme le plus général (avec de la mémoisation). In fine, les deux peuvent étre vus
comme différentes manieres de parcourir le graphe. Notez qu’il s’agit la d’une représentation
abstraite : en général, un tel graphe n’est pas construit explicitement, comme dans les deux
exemples de codes fournis ci-dessus, qui illustrent ces deux approches.

9.2 Remarques

Espace mémoire. Dans certains cas, on cherche aussi a économiser ’espace. C’est souvent
possible. Intuitivement, on peut ”oublier” une valeur des que les problemes qui en dépendent
ont été résolus. Pour Fibonacci, par exemple, on pourrait réduire la complexité en espace a
O(1), ce qui n’est pas fait dans le code ci-dessus.

Dépendances cycliques. Pour beaucoup de problemes, une difficulté importante est
d’éviter les dépendances cycliques entre sous-problemes. En effet, les approches décrites
ci-dessus ne marchent que si le graphe est acyclique (DAG, pour directed acyclic graph). Le
risque autrement est d’engendrer une exécution infinie. Nous en reparlerons.

9.3 Exemple 2 : Justification de texte

Etant donné une liste de mots qui ont vocation a étre dans le méme paragraphe. L’objectif
est de décider ou les lignes doivent étre coupées, en supposant que le texte doit étre aligné
sur les deux marges (“justifié”), sauf la derniere ligne. Pour simplifier, on suppera que les
mots ne peuvent pas étre coupés. Prenons par exemple le texte suivant :

texte = “XXXX XXXXXX XXXXX XX XXXXXXX XXXXXXXX XXXXXXX XX

9.3.1 Algorithme glouton ? (mauvaise qualité)

Tant que la ligne courante ne déborde pas, ajouter des mots. Puis passer a la ligne
suivante et continuer avec le texte restant. (Cet algorithme a longtemps été utilisé par MS
Word, je ne sais pas s'il I'est toujours.)

Si la largeur disponible est de 21 caracteres, par exemple. On obtient le résultat suivant :

XXXX XXXXXX XXXXX XXX |
XXXXXXX XXXXXXX |
XXXXXXX XX.

Cette solution n’est pas tres esthétique. On préférerait peut-étre celle-ci :

XXXX XXXXXX XXXXX |
XXX XXXXXXX XXXXXXX |
XXXXXXX XX.

Le systéme IXTEX! utilise de la programmation dynamique pour trouver la meilleure
solution, en l'occurrence, la seconde (définie par des critéres précis).

9.3.2 Définition plus détaillée du probleme

Définissons le probleme plus précisément. En entrée, nous recevons une liste de n mots
(variable mots). En sortie, on peut se contenter de d’indiquer les indices des premiers mots
de chaque ligne.

Pour juger de la qualité d’une solution, on peut utiliser une fonction de cott similaire
a celle de ITEX. A tout moment, une ligne candidate correspond a une sous-liste contigiie
de mots, noté mots[i:j] (du i€ au j*™° mot). Le colit qu’on lui attribue est le nombre
d’espace qu’elle utilise (400, si la ligne déborde), élevé a la puissance 3 pour pénaliser plus

1. Utilisé par exemple pour taper ce document, ainsi que tous les supports du cours d’algorithmique.

4

fortement les lignes qui en ont beaucoup. Le cotuit d'une solution complete correspond a la
somme des cotuits de chaque ligne.

Dans I'exemple ci-dessus, cela donne 3% + 73 + 12 = 371 pour la solution gloutonne et
6% 443 +13 = 281 pour I'autre proposition. L’objectif est de minimiser la solution. La seconde
est donc meilleure.

9.3.3 Brute force ? (trop coiiteux)

Une solution brute force consisterait a tester toutes les fagons possibles de couper les
lignes. Autrement dit, pour chaque mot, décider s’il commence une nouvelle ligne ou non, ce
qui représente essentiellement 2" possibilités.

9.3.4 Programmation dynamique (parfait!)

On peut résoudre ce probleme par un programme dynamique. La seule chose a faire est
de le formuler par une récurrence impliquant des sous-problemes.

Le probleme revient alors a :
1. Choisir les mots de la ligne courante
2. Résoudre le sous-probléeme correspondant au texte restant

3. Parmi ces choix, retenir celui qui minimise le cout (ligne courante + sous-probléme)

Cela suggere un programme récursif simple. Mais combien couterait-il? En 1’état, tres
cher, car les mémes sous-problemes seront résolus de nombreuses fois. Et si I'on utilise la
mémoisation ?

Analysons la complexité avec mémoisation. Il n’y a que n sous-problemes possibles (tous
les suffixes possibles de la liste de départ). Combien cotte la résolution de chacun si 'on
suppose les autres résolus ? A chaque étape, le travail consiste a explorer les choix possibles
pour la ligne courante, récupérer le cotit du sous-probleme correspondant, puis effectuer un
minimum. Le nombre de choix possibles a chaque étape étant clairement inférieur a n, ces
trois taches prennent un temps O(n). Bilan : On a n sous-problemes qui prennent chacun
un temps O(n), soit O(n?) au total, ce qui est beaucoup mieux! En pratique, le nombre de
choix par ligne est assez petit, donc le temps total est quasiment linéaire.

Reconstruire la solution : Vous aurez remarqué que notre algorithme, en 1’état, ne
construit pas vraiment la solution, il ne fait que calculer son cotit minimum. Pour la construire
concretement, il suffirait que chaque sous-probléeme mémorise le choix qui lui a couté le moins
cher. Il suffirait alors, une fois le calcul terminé, de suivre ces choix depuis le probleme initial
pour retrouver le chemin complet dans le graphe des sous-problemes, ce chemin donnant la

solution en temps linéaire également (ici, la liste d’indice correspondant au premier mot de
chaque ligne).

9.3.5 Conclusion

On a réussi a résoudre le probleme efficacement et (quasiment) sans réfléchir! Le seul
effort a été de le voir comme une récurrence impliquant des sous-problemes. En fait, tout
programme récursif peut étre automatiquement converti en une version qui utilise de la
mémoisation. C’est I'un des grands avantages de la programmation dynamique. Notez qu’on
pourrait aussi écrire une version bottom-up, c¢’est parfois plus efficace en pratique car il
n'y a pas a exécuter les appels récursifs (bien que la complexité théorique soit la méme).
Cependant, il est souvent plus naturel de procéder récursivement de maniere top-down.

La semaine prochaine, nous verrons d’autres exemples, notamment des exemples ou le
probleme a des dépendances cycliques qui compliquent (un peu) la mise en place d'un pro-
gramme dynamique.

Subproblems = suffices words [i:]

\#subprobs: n (number of words)

\#choices: <= n-i = 0(n)

recurrence: DP(i) = min(DP(j) + badness(i:j)) for j in range(i+l,n)
time/subproblem = 0(n)

base case DP(n)=0

4) topological order : i = n, n-1, 0 total time : O(n**2)
5) orig. problem : DP(0)

Parent pointers : what was the value of j that gave the best min? — parent|ij=argmin()
it is the best value.

How to reconstruct the solution itself : 0 — parent[0] — parent|parent|[0]].

This is absolutly general. For any recursion algorithm, can be automatedly converted
into a DP algo.

