
Langages formels (11X003) - Automne 2025

4. Programmation dynamique (II)

Enseignant: Arnaud Casteigts (et F. Raynaud) Assistant: Brian Pulfer
Moniteurs: T. von Düring & A. Maendly

Nous avons vu la semaine dernière (Cours 9) deux exemples de problèmes résolus par pro-
grammation dynamique. Cette semaine, nous allons voir d’autres exemples, certains desquels
ont des dépendances cycliques entre les sous-problèmes. Commençons par un bref rappel.

10.1 Rappels

Pour concevoir un programme dynamique, il faut réussir à voir le problème à résoudre
comme un ensemble de sous-problèmes qui dépendent les uns des autres. Chaque sous-
problème (dont le problème d’origine est un cas particulier) est résolu en s’appuyant sur la
solution des sous-problèmes dont il dépend. La complexité globale dépend alors du nombre
total de sous-problèmes et du coût de chacun (en supposant les autres résolus). Le gain
est d’autant plus grand que les sous-problèmes peuvent se mutualiser, leur solution étant
mémorisée pour qu’ils ne soient résolus qu’une fois chacun (principe de mémöısation).

10.1.1 Exemple 1 : Fibonacci

On veut trouver Fib(n) pour une certaine valeur de n.

� Relation entre sous-problèmes : Fib(k) = Fib(k − 1) + Fib(k − 2),

� Nombre total de sous-problèmes : O(n) (Fib(k) pour tout k ≤ n),

� Complexité de chacun d’entre eux : O(1) opérations (une somme entre deux entiers)

→ Coût global : O(n)×O(1) = O(n).

10.1.2 Exemple 2 : Justification de texte

On veut décider où couper les lignes parmis une liste de n mots.

� Relation entre sous-problèmes : Résoudre le problème pour k mots revient à choisir le
nombre l de mots d’une seule ligne, puis à résoudre le même problème pour les k − l
mots restants.

1



� Nombre total de sous-problèmes : O(n) (tous les suffixes possibles de la liste initiale)

� Complexité de chacun :O(n) opérations (O(n) choix possibles pour l, dont on sélectionne
le meilleur par une opération min)

→ Coût global : O(n)×O(n) = O(n2).

10.2 Chemin le plus court

Étant donné un graphe pondéréG (les arêtes ont des coûts) à n sommets, et deux sommets
s et t, on cherche le chemin de coût total minimum de s à t (qu’on appelera le plus court
chemin). On supposera ici que les poids sont tous positifs (≥ 0) et que G est non-orienté : les
arêtes fonctionnent dans les deux sens et avec le même coût ; cependant, la solution présentée
ici fonctionne aussi pour les graphes orientés.

Vous connaissez peut-être déjà des algorithmes pour ce problème (Dijkstra, par exemple).
Ici, nous allons tenter de le résoudre en utilisant de la programmation dynamique.

Notations : Pour tout sommet v, N(v) désigne les voisins de v dans G, autrement dit
les sommets u tels qu’une arête entre u et v existe. Le coût d’une arête uv est noté w(u, v)
(weight, en anglais).

Comment formuler le problème de manière récursive ?

→ Tout chemin de s à t arrive à t par l’un de ses voisins v ∈ N(t). Il suffit donc de
trouver les plus court chemin de s à v pour tout v ∈ N(t), puis d’y ajouter l’arête vt. Notons
W(u, v) le coût d’un plus court chemin d’un sommet u à un sommet v, on a la relation de
récurrence suivante :

W(s, t) = minv∈N(t)(W(s, v) + w(v, t)).

En cas d’égalité, on peut choisir arbitrairement. Cette relation suggère l’algorithme :

cost(s,t):

if s==t:

return 0

else:

return minv∈N(t){cost(s,v) + w(v,t)}

Avec bien sûr de la mémöısation pour retenir les valeurs déjà calculées.

� Nombre total de sous-problèmes : O(n) (coût depuis s vers chaque autre sommet)

� Complexité de chacun : O(n) opérations (au plus n−1 voisins à tester, puis on effectue
un minimum parmi les coûts correspondants). On considère ici qu’on peut accéder en
temps constant au poids d’une arête.

2



À première vue, on aurait donc un programme linéaire en O(n2). Mais en fait, il y a un
gros problème : il ne termine pas !

10.2.1 Dépendances cycliques

Le problème vient du fait que si notre graphe G a des cycles, alors cela induira des
dépendances cycliques entre sous-problèmes : un sous-problème X dépend d’un autre, qui
dépend d’un autre, ..., qui dépend de X. On doit donc reformuler les sous-problèmes de
manière plus subtile.

Bien sûr, on peut être tenté de raisonner de manière plus globale, par exemple en inter-
disant de considérer des voisins déjà présent plus haut dans l’arbre de récursion. Mais alors
on perd l’esprit de la programmation dynamique, qui est de ne pas réfléchir ne spécifier que
les relations entre un problème et ses sous-problèmes directs. Comment s’en sortir ?

Idée : si un chemin de s à t a une longueur k, alors le sous-chemin correspondant qui va
de s au voisin de t a une longueur de k−1. Notons W(u, v, k) le coût d’un plus court chemin
de longueur ≤ k entre u et v. On a la nouvelle récurrence suivante :

W(s, t, k) = minv∈N(t)(W(s, v, k − 1) + w(v, t)).

Et le programme correspondant :

cost(s,t,k):

if s==t:

return 0

elif k > 0:

return minv∈N(t){cost(s,v,k-1) + w(v,t)}
else:

return +∞

On peut ensuite résoudre le problème initial en utilisant k = n − 1, qui est une borne
supérieure sur la longueur d’un plus court chemin.

Quelle est la nouvelle complexité ?

� Nombre de sous-problèmes : O(n2) chemins potentiels depuis s (essentiellement O(n)
destinations et O(n) longueurs possibles).

� Complexité de chacun : O(n) (comme précédemment)

On a donc résolu le problème en temps O(n3). On pourrait affiner cette valeur en tenant
compte du degré maximum dans le graphe (nombre de voisins maximum), mais cela donne
une idée. En l’occurrence, Dijkstra fait mieux (mais il ne s’écrit pas 5 lignes !).

3



10.2.2 Version bottom-up ?

Nous avons présenté une version top-down ci-dessus, mais en fait, la version bottom-up
correspond à l’algorithme très connu de Bellman-Ford, qui consiste à partir de s (plutôt que
de t) et à augmenter la longueur des chemins incrémentalement.

10.2.3 Coût d’une solution versus solution elle-même ?

Vous avez peut-être remarqué que l’algorithme ci-dessus, de même que celui pour le
problème de justification de texte dans le cours précédent, ne calcule pas explicitement la
solution, ils se contentent d’en évaluer le coût. Il est très facile d’adapter un tel algorithme
pour calculer la solution elle-même, il suffit pour cela de mémoriser, pour chaque sous-
problème X, le choix du sous-problème Y de X qui lui a apporté la meilleure solution. On
stocke généralement ces informations au même endroit que pour la mémöısation, c’est à
dire dans un cache accessible globalement (appelée la “table DP”). Ce dernier comprend
pour chaque sous-problème la valeur de coût (plus généralement, la qualité de la solution)
et un pointeur correspondant à un autre sous-problème. Une fois terminé, il suffit alors de
suivre ces pointeurs pour reconstruire la solution (en temps linéaire en la taille de la solution).
Rappelons que cette mémöısation peut être ajoutée quasi-automatiquement à n’importe quel
programme récursif.

Astuce de prog : En python, l’annotation @lru cache active la mémöısation. Si votre
fonction ne renvoie que le coût, la table DP ne stockera que le coût. Si elle renvoie aussi la
solution correspondante, la table DP stockera aussi la solution. En bref, la table DP stockera
tout ce que votre fonction renvoie.

10.3 Un problème difficile

Les problèmes que nous avons vu jusqu’à présent ont tous une complexité polynomiale
en temps. Nous allons voir comment la programmation dynamique peut aussi être utilisée
dans la résolution de problèmes difficiles. Bien entendu, cela ne va pas nous permettre de les
résoudre en temps polynomial. Mais dans certains cas, le temps de calcul ainsi obtenu sera
nettement moins mauvais qu’une approche näıve.

10.3.1 Notation O∗

Lorsqu’on s’intéresse à des complexités non polynomiales, on utilise souvent la notation
O∗ au lieu de O. Cette notation permet d’ignorer aussi les facteurs polynomiaux (et non
plus seulement les facteurs constants et les termes dominés). Par exemple, 2n · n3 = O∗(2n).

4



Cela permet d’identifier plus facilement les principaux obstacles à une résolution efficace des
problèmes, notamment des problèmes NP-difficiles.

10.3.2 Voyageur de commerce

Pour rappel, le voyageur de commerce (TSP) est le problème suivant : étant donné une
ville de départ, un ensemble de n villes à visiter et un coût entre certaines paires de villes,
trouver un itinéraire (une tournée) qui passe exactement une fois par chaque ville et retourne
au point de départ, en minimisant la somme des coûts. On peut représenter une instance
comme un graphe complet G = (V,E,w) où V est l’ensemble des villes, E l’ensemble des
arêtes entre chaque paire de ville, et où la fonction de poids w() a pour valeur ∞ lorsque les
deux villes ne sont pas censées être reliées.

Comme vu dans le Cours 5, une solution näıve consiste à énumérer toutes les tournées
possibles et retenir la meilleure. Il y a n! tournées possibles (en fait, (n− 1)! si on réalise que
le point de départ est quelconque, mais c’est un détail). Pour chaque tournée, on calcule son
coût total en faisant une somme de n coûts, ce qui est polynomial. La complexité globale est
donc essentiellement celle du nombre de tournée.

Comment décomposer le problème en sous-problèmes pertinents ?

Algorithme de Held-Karp

Intuitivement, étant donné deux sous-ensembles de villes S1 et S2 tels que S1 ⊆ S2, on
aimerait qu’une solution pour S1 nous aide à résoudre S2. Le problème est que dans ce cas,
on ne veut pas forcément que la ville de départ et d’arrivée soit la même, car une solution
partielle n’est pas un cycle mais un chemin.

Puisque le choix de la ville de départ n’est pas important, fixons cette ville une bonne
fois pour toute (disons, v0) en ne considérant que des sous-problèmes qui contiennent v0. Le
problème devient :

� TSP(S, v) : Étant donné un ensemble de villes S (contenant v0) et une ville d’arrivée v,
trouver la meilleure tournée qui visite les villes de S depuis v0 et termine sur v.

On peut maintenant définir les sous-problèmes naturellement : une tournée optimale pour
S terminant sur v correspondant à une tournée optimale pour S \ {v} terminant sur une
autre ville u de S, auquel est ajouté le coût w(u, v). Cela donne la récurrence suivante, aussi
illustrée Figure 1 :

TSP(S, v) = minu∈S\{v,v0}{TSP(S \ {v}, u) + w(u, v)}

Le cas de base de la récurrence est lorsque S ne contient plus que v0 et une autre ville v,

5



auquel cas on renvoie w(v0, v) directement. Et pour le cas particulier du problème de départ,
on utilise la récurrence

TSP(S) = minu∈S\{v0}{TSP(S, u) + w(u, v0)}

Figure 1 – Relation entre sous-problèmes pour le TSP

Complexité :

� Nombre de sous-problèmes : Il y a 2n−1 sous-ensembles de ville contenant v0 et chacun
sera considéré au plus n fois (une fois pour chaque ville finale possible), donc pour faire
simple O(2n · n) sous-problèmes.

� Complexité par sous-problème : O(n) (appels de ≤ n sous-problèmes et opération
minimum dessus). Il y a aussi les opérations ensemblistes qui manipulent S, mais qui
peuvent être effectuées en temps constant avec les bonnes structures de données.

→ Complexité totale : O(2n · n · n) = O∗(2n).

Ainsi, pour le TSP, la programmation dynamique nous permet d’obtenir une algorithme
de complexité exponentielle plutôt que factorielle, ce qui est beaucoup mieux. À ce jour, il
n’existe aucun algorithme plus rapide pour le TSP général. (Sauf pour ordinateurs quan-
tiques, en O∗(1.728n), là aussi avec de la programmation dynamique.)

6


