Langages formels (11X003) - Automne 2025
4. Programmation dynamique (II)

Enseignant: Arnaud Casteigts (et F. Raynaud) Assistant: Brian Pulfer
Moniteurs: T. von Diring € A. Maendly

Nous avons vu la semaine derniere (Cours 9) deux exemples de problemes résolus par pro-
grammation dynamique. Cette semaine, nous allons voir d’autres exemples, certains desquels
ont des dépendances cycliques entre les sous-problemes. Commencons par un bref rappel.

10.1 Rappels

Pour concevoir un programme dynamique, il faut réussir a voir le probleme a résoudre
comme un ensemble de sous-problemes qui dépendent les uns des autres. Chaque sous-
probleme (dont le probleme d’origine est un cas particulier) est résolu en s’appuyant sur la
solution des sous-problemes dont il dépend. La complexité globale dépend alors du nombre
total de sous-problemes et du cout de chacun (en supposant les autres résolus). Le gain
est d’autant plus grand que les sous-problemes peuvent se mutualiser, leur solution étant
mémorisée pour qu’ils ne soient résolus qu’une fois chacun (principe de mémoisation).

10.1.1 Exemple 1 : Fibonacci

On veut trouver Fib(n) pour une certaine valeur de n.

e Relation entre sous-problemes : Fib(k) = Fib(k — 1) + Fib(k — 2),
e Nombre total de sous-problemes : O(n) (Fib(k) pour tout k& < n),

e Complexité de chacun d’entre eux : O(1) opérations (une somme entre deux entiers)
— Cott global : O(n) x O(1) = O(n).

10.1.2 Exemple 2 : Justification de texte
On veut décider ou couper les lignes parmis une liste de n mots.
e Relation entre sous-problemes : Résoudre le probleme pour k£ mots revient a choisir le

nombre [de mots d’une seule ligne, puis a résoudre le méme probléeme pour les k — [
mots restants.

e Nombre total de sous-problemes : O(n) (tous les suffixes possibles de la liste initiale)

e Complexité de chacun : O(n) opérations (O(n) choix possibles pour [, dont on sélectionne
le meilleur par une opération min)

— Cotit global : O(n) x O(n) = O(n?).

10.2 Chemin le plus court

Etant donné un graphe pondéré G (les arétes ont des cotits) a n sommets, et deux sommets
s et t, on cherche le chemin de cout total minimum de s a t (qu'on appelera le plus court
chemin). On supposera ici que les poids sont tous positifs (> 0) et que G est non-orienté : les
aretes fonctionnent dans les deux sens et avec le méme cotit ; cependant, la solution présentée
ici fonctionne aussi pour les graphes orientés.

Vous connaissez peut-étre déja des algorithmes pour ce probléeme (Dijkstra, par exemple).
Ici, nous allons tenter de le résoudre en utilisant de la programmation dynamique.

Notations : Pour tout sommet v, N(v) désigne les voisins de v dans G, autrement dit
les sommets u tels qu'une aréte entre u et v existe. Le cotut d'une aréte uv est noté w(u,v)
(weight, en anglais).

Comment formuler le probleme de maniere récursive 7

— Tout chemin de s & t arrive a ¢t par 'un de ses voisins v € N(t). Il suffit donc de
trouver les plus court chemin de s & v pour tout v € N(t), puis d’y ajouter I'aréte vt. Notons
W(u,v) le cout d'un plus court chemin d’un sommet u & un sommet v, on a la relation de
récurrence suivante :

W(s,t) = min,ene(W(s, v) + w(v,t)).

En cas d’égalité, on peut choisir arbitrairement. Cette relation suggere l’algorithme :

cost(s,t):
if s==t:
return 0
else:
return min,en{cost(s,v) + w(v,t)}

Avec bien str de la mémoisation pour retenir les valeurs déja calculées.

e Nombre total de sous-problemes : O(n) (cotut depuis s vers chaque autre sommet)

e Complexité de chacun : O(n) opérations (au plus n— 1 voisins a tester, puis on effectue
un minimum parmi les cotts correspondants). On considére ici qu’on peut accéder en
temps constant au poids d’une aréte.

A premiere vue, on aurait donc un programme linéaire en O(n?). Mais en fait, il y a un
gros probleme : il ne termine pas!

10.2.1 Dépendances cycliques

Le probleme vient du fait que si notre graphe G a des cycles, alors cela induira des
dépendances cycliques entre sous-problemes : un sous-probleme X dépend d'un autre, qui
dépend d'un autre, ..., qui dépend de X. On doit donc reformuler les sous-problemes de
maniere plus subtile.

Bien str, on peut étre tenté de raisonner de maniere plus globale, par exemple en inter-
disant de considérer des voisins déja présent plus haut dans ’arbre de récursion. Mais alors
on perd l'esprit de la programmation dynamique, qui est de ne-pas—+éfiéehir ne spécifier que
les relations entre un probleme et ses sous-problemes directs. Comment s’en sortir ?

Idée : si un chemin de s a t a une longueur k, alors le sous-chemin correspondant qui va
de s au voisin de ¢ a une longueur de k — 1. Notons W(u, v, k) le cout d’un plus court chemin
de longueur < k entre u et v. On a la nouvelle récurrence suivante :

W(s,t, k) = miny,eney OV (s,v,k — 1) + w(v,t)).

Et le programme correspondant :

cost(s,t,k):
if s==t:
return 0O
elif k > O:
return min,ey){cost(s,v,k-1) + w(v,t)}
else:
return +o0

On peut ensuite résoudre le probleme initial en utilisant & = n — 1, qui est une borne
supérieure sur la longueur d’un plus court chemin.

Quelle est la nouvelle complexité ?

e Nombre de sous-problemes : O(n?) chemins potentiels depuis s (essentiellement O(n)
destinations et O(n) longueurs possibles).

e Complexité de chacun : O(n) (comme précédemment)
On a donc résolu le probleme en temps O(n?). On pourrait affiner cette valeur en tenant

compte du degré maximum dans le graphe (nombre de voisins maximum), mais cela donne
une idée. En l'occurrence, Dijkstra fait mieux (mais il ne s’écrit pas 5 lignes!).

3

10.2.2 Version bottom-up ?

Nous avons présenté une version top-down ci-dessus, mais en fait, la version bottom-up
correspond & l'algorithme tres connu de Bellman-Ford, qui consiste a partir de s (plutét que
de t) et a augmenter la longueur des chemins incrémentalement.

10.2.3 Cout d’une solution versus solution elle-méme ?

Vous avez peut-étre remarqué que l'algorithme ci-dessus, de méme que celui pour le
probleme de justification de texte dans le cours précédent, ne calcule pas explicitement la
solution, ils se contentent d’en évaluer le cotit. Il est tres facile d’adapter un tel algorithme
pour calculer la solution elle-méme, il suffit pour cela de mémoriser, pour chaque sous-
probleme X, le choix du sous-probleme Y de X qui lui a apporté la meilleure solution. On
stocke généralement ces informations au méme endroit que pour la mémoisation, c’est a
dire dans un cache accessible globalement (appelée la “table DP”). Ce dernier comprend
pour chaque sous-probléme la valeur de cout (plus généralement, la qualité de la solution)
et un pointeur correspondant a un autre sous-probleme. Une fois terminé, il suffit alors de
suivre ces pointeurs pour reconstruire la solution (en temps linéaire en la taille de la solution).
Rappelons que cette mémoisation peut étre ajoutée quasi-automatiquement a n’importe quel
programme récursif.

Astuce de prog : En python, 'annotation @1lru_cache active la mémoisation. Si votre
fonction ne renvoie que le cotut, la table DP ne stockera que le cofit. Si elle renvoie aussi la
solution correspondante, la table DP stockera aussi la solution. En bref, la table DP stockera
tout ce que votre fonction renvoie.

10.3 Un probleme difficile

Les problemes que nous avons vu jusqu’a présent ont tous une complexité polynomiale
en temps. Nous allons voir comment la programmation dynamique peut aussi étre utilisée
dans la résolution de problemes difficiles. Bien entendu, cela ne va pas nous permettre de les
résoudre en temps polynomial. Mais dans certains cas, le temps de calcul ainsi obtenu sera
nettement moins mauvais qu’'une approche naive.

10.3.1 Notation O*

Lorsqu’on s’intéresse a des complexités non polynomiales, on utilise souvent la notation
O* au lieu de O. Cette notation permet d’ignorer aussi les facteurs polynomiaux (et non
plus seulement les facteurs constants et les termes dominés). Par exemple, 2" - n® = O*(2").

Cela permet d’identifier plus facilement les principaux obstacles a une résolution efficace des
problemes, notamment des problemes NP-difficiles.

10.3.2 Voyageur de commerce

Pour rappel, le voyageur de commerce (TSP) est le probléme suivant : étant donné une
ville de départ, un ensemble de n villes a visiter et un cott entre certaines paires de villes,
trouver un itinéraire (une tournée) qui passe exactement une fois par chaque ville et retourne
au point de départ, en minimisant la somme des cotits. On peut représenter une instance
comme un graphe complet G = (V, E,w) ou V est 'ensemble des villes, E ’ensemble des
arétes entre chaque paire de ville, et ou la fonction de poids w() a pour valeur co lorsque les
deux villes ne sont pas censées étre reliées.

Comme vu dans le Cours 5, une solution naive consiste a énumérer toutes les tournées
possibles et retenir la meilleure. Il y a n! tournées possibles (en fait, (n — 1)! si on réalise que
le point de départ est quelconque, mais ¢’est un détail). Pour chaque tournée, on calcule son
cout total en faisant une somme de n cotts, ce qui est polynomial. La complexité globale est
donc essentiellement celle du nombre de tournée.

Comment décomposer le probleme en sous-problemes pertinents ?

Algorithme de Held-Karp

Intuitivement, étant donné deux sous-ensembles de villes S; et S5 tels que S; C S5, on
aimerait qu’'une solution pour S; nous aide a résoudre Ss. Le probleme est que dans ce cas,
on ne veut pas forcément que la ville de départ et d’arrivée soit la méme, car une solution
partielle n’est pas un cycle mais un chemin.

Puisque le choix de la ville de départ n’est pas important, fixons cette ville une bonne
fois pour toute (disons, vg) en ne considérant que des sous-problémes qui contiennent vy. Le
probleme devient :

e TSP(S,v): Etant donné un ensemble de villes S (contenant vg) et une ville d’arrivée v,
trouver la meilleure tournée qui visite les villes de S depuis vy et termine sur v.

On peut maintenant définir les sous-problemes naturellement : une tournée optimale pour
S terminant sur v correspondant a une tournée optimale pour S \ {v} terminant sur une
autre ville u de S, auquel est ajouté le cott w(u,v). Cela donne la récurrence suivante, aussi
illustrée Figure 1 :

TSP(S,v) = minges fv,00} { TSP (S \ {v}, u) +w(u,v)}

Le cas de base de la récurrence est lorsque S ne contient plus que vy et une autre ville v,

auquel cas on renvoie w(vg, v) directement. Et pour le cas particulier du probleme de départ,
on utilise la récurrence

TSP(S) = minues\{vo}{TSP(S, U) + w(u, UO)}

/N

NS NTR)

FiGURE 1 — Relation entre sous-problemes pour le TSP

Complexité :

e Nombre de sous-problemes : Il y a 2"~! sous-ensembles de ville contenant vy et chacun
sera considéré au plus n fois (une fois pour chaque ville finale possible), donc pour faire
simple O(2" - n) sous-problémes.

e Complexité par sous-probleme : O(n) (appels de < n sous-problemes et opération

minimum dessus). Il y a aussi les opérations ensemblistes qui manipulent S, mais qui
peuvent étre effectuées en temps constant avec les bonnes structures de données.

— Complexité totale : O(2" - n - n) = O*(2").
Ainsi, pour le TSP, la programmation dynamique nous permet d’obtenir une algorithme
de complexité exponentielle plutot que factorielle, ce qui est beaucoup mieux. A ce jour, il

n’existe aucun algorithme plus rapide pour le TSP général. (Sauf pour ordinateurs quan-
tiques, en O*(1.728"), 1a aussi avec de la programmation dynamique.)

