Efficiently Testing T-Interval Connectivity in Dynamic Graphs

A. Casteigts ${ }^{1}$, R. Klasing ${ }^{1}$, Y. M. Neggaz ${ }^{1}$, J. G. Peters ${ }^{2}$
${ }^{1}$ LaBRI, CNRS, University of Bordeaux, France
${ }^{2}$ School of Computing Science, Simon Fraser University, Burnaby, BC, Canada

AlgoTel 2015

June 02, 2015

Overview

Dynamic Networks

Highly dynamic networks.

Dynamic Networks

Highly dynamic networks.

How changes are perceived?

- Faults and Failures?
- Nature of the system. Change is normal.

Dynamic Networks

Highly dynamic networks.

How changes are perceived?

- Faults and Failures?
- Nature of the system. Change is normal.

Example scenario

Dynamic Networks

Highly dynamic networks.

How changes are perceived?

- Faults and Failures?
- Nature of the system. Change is normal.

Example scenario

Dynamic Networks

Highly dynamic networks.

How changes are perceived?

- Faults and Failures?
- Nature of the system. Change is normal.

Example scenario

Dynamic Networks

Highly dynamic networks.

How changes are perceived?

- Faults and Failures?
- Nature of the system. Change is normal.

Example scenario

Dynamic Networks

Highly dynamic networks.

How changes are perceived?

- Faults and Failures?
- Nature of the system. Change is normal.

Example scenario

Dynamic Networks

Highly dynamic networks.

How changes are perceived?

- Faults and Failures?
- Nature of the system. Change is normal.

Example scenario

Dynamic Networks

Highly dynamic networks.

How changes are perceived?

- Faults and Failures?
- Nature of the system. Change is normal.

Example scenario

Dynamic Graphs

Dynamic graphs:

Various forms: TVG, Evolving graphs

Dynamic Graphs

Dynamic graphs :

Various forms: TVG, Evolving graphs

G_{3}

G_{4}

Dynamic graphs classes : [Casteigts, Flocchini, Quattrociocchi et Santoro, 2011]

Dynamic Graphs Classification

- Testing Temporal Connectivity in Sparse Dynamic Graphs [Barjon, Casteigts, Chaumette, Johnen, Neggaz, Algotel 2014]
- Transitive closure of journeys

Dynamic graphs classes : [Casteigts, Flocchini, Quattrociocchi et Santoro, 2011]

Dynamic Graphs Classification

- Testing Temporal Connectivity in Sparse Dynamic Graphs [Barjon, Casteigts, Chaumette, Johnen, Neggaz, Algotel 2014]
- Transitive closure of journeys

Dynamic graphs classes : [Casteigts, Flocchini, Quattrociocchi et Santoro, 2011]

Dynamic Graphs Classification

- Testing Temporal Connectivity in Sparse Dynamic Graphs [Barjon, Casteigts, Chaumette, Johnen, Neggaz, Algotel 2014]
- Transitive closure of journeys
- Shortest, Fastest, and Foremost Broadcast in Dynamic Networks [Casteigts, Flocchini, Mans, Santoro, IJFCS 2015]
- Feasibility requires distinct features on the evolution
- Re-appearance of edges : recurrent, bounded-recurrent, periodic

Dynamic graphs classes: [Casteigts, Flocchini, Quattrociocchi et Santoro, 2011]

Dynamic Graphs Classification

- Testing Temporal Connectivity in Sparse Dynamic Graphs [Barjon, Casteigts, Chaumette, Johnen, Neggaz, Algotel 2014]
- Transitive closure of journeys
- Shortest, Fastest, and Foremost Broadcast in Dynamic Networks [Casteigts, Flocchini, Mans, Santoro, IJFCS 2015]
- Feasibility requires distinct features on the evolution
- Re-appearance of edges : recurrent, bounded-recurrent, periodic

Dynamic graphs classes : [Casteigts, Flocchini, Quattrociocchi et Santoro, 2011]

T-interval Connectivity

- In this work : Testing T-Interval Connectivity in Dynamic Graphs

Dynamic graphs classes : [Casteigts, Flocchini, Quattrociocchi et Santoro, 2011]

T-interval Connectivity

- In this work : Testing T-Interval Connectivity in Dynamic Graphs

Definition : T-interval connectivity

A dynamic graph \mathcal{G} of length δ is T-interval connected if and only if every T length sequence of graphs has a common connected spanning sub-graph.

Dynamic graphs classes : [Casteigts, Flocchini, Quattrociocchi et Santoro, 2011]

T-interval Connectivity

- In this work : Testing T-Interval Connectivity in Dynamic Graphs

Definition: T-interval connectivity

A dynamic graph \mathcal{G} of length δ is T-interval connected if and only if every T length sequence of graphs has a common connected spanning sub-graph.

T-interval Connectivity

- In this work : Testing T-Interval Connectivity in Dynamic Graphs

Definition: T-interval connectivity

A dynamic graph \mathcal{G} of length δ is T-interval connected if and only if every T length sequence of graphs has a common connected spanning sub-graph.

$$
\mathcal{G}
$$

T-interval Connectivity

- In this work : Testing T-Interval Connectivity in Dynamic Graphs

Definition: T-interval connectivity

A dynamic graph \mathcal{G} of length δ is T-interval connected if and only if every T length sequence of graphs has a common connected spanning sub-graph.

$$
\begin{aligned}
& \mathcal{C}^{2} \text { 路 }
\end{aligned}
$$

T-interval Connectivity

- In this work : Testing T-Interval Connectivity in Dynamic Graphs

Definition: T-interval connectivity

A dynamic graph \mathcal{G} of length δ is T-interval connected if and only if every T length sequence of graphs has a common connected spanning sub-graph.

T-interval Connectivity

- In this work : Testing T-Interval Connectivity in Dynamic Graphs

Definition: T-interval connectivity

A dynamic graph \mathcal{G} of length δ is T-interval connected if and only if every T length sequence of graphs has a common connected spanning sub-graph.

$$
A_{1}=9
$$

T-interval Connectivity

- In this work : Testing T-Interval Connectivity in Dynamic Graphs

Definition: T-interval connectivity

A dynamic graph \mathcal{G} of length δ is T-interval connected if and only if every T length sequence of graphs has a common connected spanning sub-graph.

- T-Interval-Connectivity : Test whether a dynamic graph isT-interval connected for a given T
- Interval-Connectivity : Find the largest T for which a given dynamic graph is T-interval connected

$$
\begin{aligned}
& \mathcal{G}^{2} \underbrace{\circ}
\end{aligned}
$$

- Our approach :
- High-level strategies that work directly at the graph level
- Two elementary graph-level operations : Binary intersection and Connectivity testing (comparable costs)

$$
\begin{aligned}
& \mathcal{G}^{1}=\mathcal{G} \text { Ois }
\end{aligned}
$$

Lower Bound

Lower Bound (by contradiction)

- Let A be an algorithm that decides if \mathcal{G} is T-interval connected in $\delta-1$
\Rightarrow At least one graph $G \in \mathcal{G}$ is never accessed by A
- G could be connected or disconnected

$$
\begin{aligned}
& \mathcal{G}^{3}{ }^{-0} \\
& \mathcal{G}^{2} \text { Kin Mo } \\
& \mathcal{G}^{1}=\boldsymbol{G}
\end{aligned}
$$

Lower Bound (by contradiction)

- Let A be an algorithm that decides if \mathcal{G} is T-interval connected in $\delta-1$
\Rightarrow At least one graph $G \in \mathcal{G}$ is never accessed by A
- G could be connected or disconnected
$\Rightarrow \Omega(\delta)$ elementary operations are necessary to solve T-Interval-Connectivity
- Same argument for Interval-Connectivity

Row-Based Strategy

Row-Based Strategy

- T-Interval-Connectivity (Given T)

Row-Based Strategy

- T-Interval-Connectivity (Given T)
- Compute only "power rows" : $\mathcal{G}^{2^{i}}$

Row-Based Strategy

- T-Interval-Connectivity (Given T)
- Compute only "power rows" : $\mathcal{G}^{2^{i}}$

Row-Based Strategy

- T-Interval-Connectivity (Given T)
- Compute only "power rows" : $\mathcal{G}^{2^{i}}$

Row-Based Strategy

- T-Interval-Connectivity (Given T)
- Compute only "power rows" : $\mathcal{G}^{2^{i}}$
- $O(\delta)$ intersections per row

Row-Based Strategy

- T-Interval-Connectivity (Given T)
- Compute only "power rows" : $\mathcal{G}^{2^{i}}$
- $O(\delta)$ intersections per row

Row-Based Strategy

- T-Interval-Connectivity (Given T)
- Compute only "power rows" : $\mathcal{G}^{2^{i}}$
- $O(\delta)$ intersections per row
- $O(\log \delta)$ rows

Row-Based Strategy

- T-Interval-Connectivity (Given T) is solvable with $O(\delta \log \delta)$ elementary operations
- Compute only "power rows" : $\mathcal{G}^{2^{i}}$
- $O(\delta)$ intersections per row
- $O(\log \delta)$ rows

Row-Based Strategy

- Interval-Connectivity (Find T)

Row-Based Strategy

- Interval-Connectivity (Find T)

Row-Based Strategy

- Interval-Connectivity (Find T)

Row-Based Strategy

- Interval-Connectivity (Find T)

Row-Based Strategy

- Interval-Connectivity (Find T)
- $O(\delta)$ intersections per row
- $O(\delta)$ connectivity tests per row

Row-Based Strategy

- Interval-Connectivity (Find T)
- $O(\delta)$ intersections per row
- $O(\delta)$ connectivity tests per row

Row-Based Strategy

- Interval-Connectivity (Find T)
- $O(\delta)$ intersections per row
- $O(\delta)$ connectivity tests per row

Row-Based Strategy

- Interval-Connectivity (Find T)
- $O(\delta)$ intersections per row
- $O(\delta)$ connectivity tests per row

Row-Based Strategy

- Interval-Connectivity (Find T)
- $O(\delta)$ intersections per row
- $O(\delta)$ connectivity tests per row

Row-Based Strategy

- Interval-Connectivity (Find T)
- $O(\delta)$ intersections per row
- $O(\delta)$ connectivity tests per row

Row-Based Strategy

- Interval-Connectivity (Find T)
- $O(\delta)$ intersections per row
- $O(\delta)$ connectivity tests per row

Row-Based Strategy

- Interval-Connectivity (Find T)
- $O(\delta)$ intersections per row
- $O(\delta)$ connectivity tests per row

Row-Based Strategy

- Interval-Connectivity (Find T)
- $O(\delta)$ intersections per row
- $O(\delta)$ connectivity tests per row

Row-Based Strategy

- Interval-Connectivity (Find T)
- $O(\delta)$ intersections per row
- $O(\delta)$ connectivity tests per row
- $O(\log \delta)$ rows

Row-Based Strategy

- Interval-Connectivity (Find T) is solvable with $O(\delta \log \delta)$ elementary operations
- $O(\delta)$ intersections per row
- $O(\delta)$ connectivity tests per row
- $O(\log \delta)$ rows

T-interval Connectivity on EREW PRAM

- T-Interval-Connectivity and Interval-Connectivity are in Nick's class
- T-Interval-Connectivity is solvable in $O(\log \delta)$ on an EREW PRAM with $O(\delta)$ processors
- Interval-Connectivity is solvable in $O\left(\log ^{2} \delta\right)$ on an EREW PRAM with $O(\delta)$ processors

Optimal Solution

Optimal Solution

- T-Interval-Connectivity

Optimal Solution

- T-Interval-Connectivity
- A ladder of length $/$ costs $/-1$ binary intersections

Optimal Solution

- T-Interval-Connectivity
- A ladder of length / costs I-1 binary intersections

Optimal Solution

- T-Interval-Connectivity
- A ladder of length / costs I-1 binary intersections

Optimal Solution

- T-Interval-Connectivity
- A ladder of length / costs I-1 binary intersections

Optimal Solution

- T-Interval-Connectivity
- A ladder of length I costs I-1 binary intersections

Optimal Solution

- T-Interval-Connectivity
- A ladder of length / costs I-1 binary intersections

Optimal Solution

- T-Interval-Connectivity
- A ladder of length / costs I-1 binary intersections

Optimal Solution

- T-Interval-Connectivity
- A ladder of length $/$ costs $/-1$ binary intersections
- Any graph "between" (red graphs) two ladders can be computed by a single binary intersection

Optimal Solution

- T-Interval-Connectivity
- A ladder of length $/$ costs $/-1$ binary intersections
- Any graph "between" (red graphs) two ladders can be computed by a single binary intersection

Optimal Solution

- T-Interval-Connectivity
- A ladder of length $/$ costs $/-1$ binary intersections
- Any graph "between" (red graphs) two ladders can be computed by a single binary intersection

Optimal Solution

- T-Interval-Connectivity
- A ladder of length $/$ costs $/-1$ binary intersections
- Any graph "between" (red graphs) two ladders can be computed by a single binary intersection

Optimal Solution

- T-Interval-Connectivity
- A ladder of length $/$ costs $/-1$ binary intersections
- Any graph "between" (red graphs) two ladders can be computed by a single binary intersection

Optimal Solution

- T-Interval-Connectivity
- A ladder of length $/$ costs $/-1$ binary intersections
- Any graph "between" (red graphs) two ladders can be computed by a single binary intersection

Optimal Solution

- T-Interval-Connectivity
- A ladder of length $/$ costs $/-1$ binary intersections
- Any graph "between" (red graphs) two ladders can be computed by a single binary intersection

Optimal Solution

- T-Interval-Connectivity
- A ladder of length $/$ costs $/-1$ binary intersections
- Any graph "between" (red graphs) two ladders can be computed by a single binary intersection

Optimal Solution

- T-Interval-Connectivity
- A ladder of length $/$ costs $/-1$ binary intersections
- Any graph "between" (red graphs) two ladders can be computed by a single binary intersection

Optimal Solution

- T-Interval-Connectivity
- A ladder of length $/$ costs $I-1$ binary intersections
- Any graph "between" (red graphs) two ladders can be computed by a single binary intersection

Optimal Solution

- T-Interval-Connectivity
- A ladder of length $/$ costs $/-1$ binary intersections
- Any graph "between" (red graphs) two ladders can be computed by a single binary intersection

Optimal Solution

- T-Interval-Connectivity
- A ladder of length $/$ costs $/-1$ binary intersections
- Any graph "between" (red graphs) two ladders can be computed by a single binary intersection

Optimal Solution

- T-Interval-Connectivity
- A ladder of length $/$ costs $/-1$ binary intersections
- Any graph "between" (red graphs) two ladders can be computed by a single binary intersection

Optimal Solution

- T-Interval-Connectivity
- A ladder of length $/$ costs $/-1$ binary intersections
- Any graph "between" (red graphs) two ladders can be computed by a single binary intersection

Optimal Solution

- T-Interval-Connectivity
- A ladder of length $/$ costs $/-1$ binary intersections
- Any graph "between" (red graphs) two ladders can be computed by a single binary intersection

Optimal Solution

- T-Interval-Connectivity
- A ladder of length $/$ costs $/-1$ binary intersections
- Any graph "between" (red graphs) two ladders can be computed by a single binary intersection

Optimal Solution

- T-Interval-Connectivity
- A ladder of length $/$ costs $/-1$ binary intersections
- Any graph "between" (red graphs) two ladders can be computed by a single binary intersection

Optimal Solution

- T-Interval-Connectivity
- A ladder of length $/$ costs $/-1$ binary intersections
- Any graph "between" (red graphs) two ladders can be computed by a single binary intersection

Optimal Solution

- T-Interval-Connectivity
- A ladder of length $/$ costs $/-1$ binary intersections
- Any graph "between" (red graphs) two ladders can be computed by a single binary intersection

Optimal Solution

- T-Interval-Connectivity
- A ladder of length $/$ costs $/-1$ binary intersections
- Any graph "between" (red graphs) two ladders can be computed by a single binary intersection

Optimal Solution

- T-Interval-Connectivity
- A ladder of length $/$ costs $/-1$ binary intersections
- Any graph "between" (red graphs) two ladders can be computed by a single binary intersection

Optimal Solution

- T-Interval-Connectivity
- A ladder of length $/$ costs $/$ - 1 binary intersections
- Any graph "between" (red graphs) two ladders can be computed by a single binary intersection

Theorem 1 : T-Interval-Connectivity is solvable with $O(\delta)$ elementary operations

Optimal Solution

- Interval-Connectivity (Find T)

Optimal Solution

- Interval-Connectivity (Find T)
- Strategy : descending walk

Optimal Solution

- Interval-Connectivity (Find T)
- Strategy : descending walk

Optimal Solution

- Interval-Connectivity (Find T)
- Strategy : descending walk

Optimal Solution

- Interval-Connectivity (Find T)
- Strategy : descending walk

Optimal Solution

- Interval-Connectivity (Find T)
- Strategy : descending walk

Optimal Solution

- Interval-Connectivity (Find T)
- Strategy : descending walk

Optimal Solution

- Interval-Connectivity (Find T)
- Strategy : descending walk

Optimal Solution

- Interval-Connectivity (Find T)
- Strategy : descending walk

Optimal Solution

- Interval-Connectivity (Find T)
- Strategy : descending walk

Optimal Solution

- Interval-Connectivity (Find T)
- Strategy : descending walk

Optimal Solution

- Interval-Connectivity (Find T)
- Strategy : descending walk

Optimal Solution

- Interval-Connectivity (Find T)
- Strategy : descending walk

Optimal Solution

- Interval-Connectivity (Find T)
- Strategy : descending walk

Optimal Solution

- Interval-Connectivity (Find T)
- Strategy : descending walk

Optimal Solution

- Interval-Connectivity (Find T)
- Strategy : descending walk

Optimal Solution

- Interval-Connectivity (Find T)
- Strategy : descending walk

Optimal Solution

- Interval-Connectivity (Find T)
- Strategy : descending walk

Optimal Solution

- Interval-Connectivity (Find T)
- Strategy : descending walk

Optimal Solution

- Interval-Connectivity (Find T)
- Strategy : descending walk

Optimal Solution

- Interval-Connectivity (Find T)
- Strategy : descending walk
- The total length of the ladders is $O(\delta)$
- At most $O(\delta)$ binary intersections and connectivity tests

Optimal Solution

- Interval-Connectivity (Find T)
- Strategy : descending walk
- The total length of the ladders is $O(\delta)$
- At most $O(\delta)$ binary intersections and connectivity tests

Theorem 2: Interval-Connectivity is solvable with $O(\delta)$ elementary operations

Online Algorithms

Online Algorithms

- The optimal algorithms for T-Interval-Connectivity and Interval-Connectivity can be adapted to an online setting
- The sequence of graphs $G_{1}, G_{2}, G_{3}, \ldots$ of \mathcal{G} is processed in the order of reception
- T-Interval-Connectivity and Interval-Connectivity can be solved online with an amortized cost of $O(1)$ elementary operations per graph received

Conclusion and Future works

- Conclusions :
- Efficient algorithms that use only $O(\delta)$ elementary operations, asymptotically matching the lower bound of $\Omega(\delta)$
- Both problems are efficiently parallelizable on PRAM (in Nick's class)
- Online algorithms with amortized cost of $O(1)$ elementary operations per graph received
- Future work :
- Use specific data structure and low-level operations
- Sliding window online algorithms
- How about other classes?
- How about distributed testing?

Thank you!

