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Leader election

“[Likely one of] the two most studied tasks in distributed computing literature”
(Dinitz et al. JACM). More than 1500 papers published on this problem.

Def.: A distributed algorithm solves the election problem if it always
terminates and in the final configuration exactly one process is marked as
elected and all others are non-elected.

→

3 directions

I Feasibility of deterministic LE in anonymous graphs

I Complexity of deterministic LE with unique identifiers
I Complexity of randomized LE (in anonymous graphs)

This talk.
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Model and complexity measures

The model
I Synchronous rounds (and simultaneous wakeup)

1. Send messages to neighbors
2. Receive messages from neighbors
3. Perform computation

I Possibility to send different messages to different neighbors
I Identifiers of size O(log n)
I Messages of size O(1)

Does this model have a name?

Bit complexity (3 possible measures)

1. Total number of bits exchanged [Van Leeuwen et al.’87]

2. Max number of bits per edge [Schneider and Waterhofer’11]

3. Bit round complexity [Kothapalli et al.’06]
= #rounds with 1-bit message

→ Measure 3 captures both time and communication complexities (silence is not free)
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Best bounds

Time # Messages Message size # Bit rounds

Awerbuch’87 O(n) Θ(|E| + n log n) O(log n) bits O(n log n)

Peleg’90 Θ(D) O(D|E |) O(log n) bits O(D log n)

Can we be both optimal in time and messages?
(in our setting: deterministic algorithms without knowledge)

→ Not with O(log n)-size messages [Kutten et al. 2015].

What about bit round complexity?

This paper: Algorithm ST T + matching LB→ opt. bit round complexity (utcf)
(→ bit round complexity captures both time and communication complexities)

Lower bound Ω(D + log n) bit rounds

I 2dlog2((Idmax + 2)/3.5)e = Ω(log n) bits [Dinitz and Solomon’07]
I Ω(D) messages, even of size O(log n) [Kutten et al.’15]
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Algorithm ST T

The algorithm (no knowledge required on the graph)

1. A spreading algorithm that broadcasts the largest id to each node

2. A spanning tree algorithm that is associated to the spreading actions;

3. A termination detection algorithm from the leaves up to the root (highest
ID), which becomes elected when it detects termination.

This general principle is folklore. Takes O(D) time in the CONGEST model.

Trivial adaptation in O(D log n) bit rounds.

→ ST T takes it down to O(D + log n) bit rounds.
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The main trick...

α-encoding of the identifiers
Given Id , we define α(Id) as the unary representation of the binary length of
Id , followed by 0, followed by the binary representation of Id , i.e.:

α(Id) = base1(|base2(Id)|) · 0 · base2(Id).

Ex. Id = 25 2
= 11001, then α(Id) = 11111011001

Consequence:
Idu < Idv ⇔ α(Idu) ≺ α(Idv )

Order induced by the first distinct letter.

→ Decidable based on prefixes, no need to wait...
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The Spreading Algorithm S

Pipelining the identifiers
Each node maintains the largest prefix of (encoded) identifier known so far,
based on that of neighbors. Here are the round actions:

1. Update local largest prefix (e.g. based on that of neighbors)

2. Send signals indicating how the prefix was updated (or not)

3. Receive signals from neighbors

4. Update local copy of each neighbor’s largest prefix

Exchanged signals (constant-size)

signal ∈ {append0, append1, delete1, delete2, delete3, change, null}
meaning that the largest known prefix was updated by:

I appending 0 or 1
I deleting one, two or three letters
I changing the last letter from 0 to 1
I leaving it unchanged
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Update rules for prefix

The largest known prefix, denoted p here, is updated in each round
based on current status (active or follower) and neighbors largest
known prefixes (denoted pn here) learnt through signals.

Update rules (in order of priority, only one per round)

Variables z, x , and y denote words.

(1.1) if p = zx and ∃pn = z with delete signal, then delete x from p (up to 3 letters)

(1.2) if p = z0x (x 6= ε) and ∃pn = z1y , then delete |x | letters from p

(2) If p = z0 and ∃pn = z1y , then p ← z1 and status ← follower

(3) If p = z and ∃pn = z1x , then append 1 to p

(4) If p = z and ∃pn = z0x , then append 0 to p

(5) If active, then append the next bit of α(id) to p

(6) null action

25 ... ... ... 10

0
1
1
0
1
1
1

1
0
0
1
1
0
1
1
1
1
1
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Resulting properties

Lemma 8

Let u and v be two neighbors and pu and pv their prefixes. The only possible
cases after a round (up to renaming) are:

1. pu = pv

2. pu = p and pv = pw with 1 ≤ |w | ≤ 2
3. pu = p0 and pv = p1a
4. pu = p1 and pv = p0w and |w | ≤ 3
5. pu = p and pv = pw and 3 ≤ |w | ≤ 6 and u performed a delete

where p and w are words and a is either 0 or 1.

Theorem 10

After at most 6D + |α(Idmax )| rounds, the spreading is complete and all nodes
know α(Idmax ).

→ O(D + log n) bit rounds.
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Spanning tree construction (→ ST )

Occurs in parallel of spreading

I If u applies rule 2 relative to v , then v becomes u’s parent.
I If u applies rule 3 relative to v , then v becomes (or remains) u’s parent.
I If u applies rule 4 relative to v , then v becomes (or remains) u’s parent.

→ Additional signals (constant-size).
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Termination (→ ST T )

Recursive termination proceeds from the leaves up to the root,
according to the following rule.

Termination rule
If it holds that

1. u is a follower

2. u’s prefix is well-formed and identical to that of neighbors

3. for every child v of u, termv = true

4. termu = false

then termu ← true and u notifies its parent

→ Additional signals (constant-size).

Remark: termu may wrongly be true due to local maxima and then
re-become false (this is fine...). However, when an active node is notified by
all its children, it becomes elected and correctly decides termination.
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Conclusion

ST T runs in Θ(D + log n) bit rounds

1. Spreading phase in O(D + log n)

2. Spanning tree in parallel of spreading

3. Termination detection costs O(D) additional rounds

+ Lower bound Ω(D + log n)

Open questions

I How about weaker models? E.g. beeping models?
I Is the technique useful for other problems?

Thank you.
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