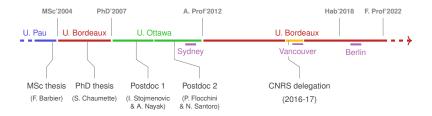
Dynamic networks from inside and outside

Arnaud Casteigts Public seminar at Unige

January 10, 2023

Overview of academic experience



Current position

- Professor at the university of Bordeaux
- Teaching : Département informatique de l'IUT and UF d'informatique
- Research : Laboratoire bordelais de recherche en informatique (LaBRI)
 - > Algorithms and combinatorics department
 - >> Distributed algorithms group (head)
 - >> Graph theory and optimization group

Main research interests

Main topics :

- o Theory of networks
- o Distributed algorithms
- Computational complexity
- o Dynamic graphs

More recent interests :

- Cryptography & security
- Quantum computing
- Algebraic graph theory

Main teaching activities

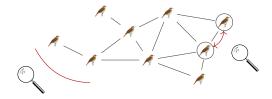
Classical TCS topics :

- Formal languages and automata
- o Algorithms and complexity
- o Graph theory
- Data structures

Other CS topics :

- Android programming
- o Operating systems
- o Algorithms of mobility
- Low-level programming

Theory of networks



Network as data

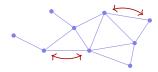
 \rightarrow centralized algorithms...

Network as environment

 \rightarrow decentralized algorithms... (a.k.a. distributed)

Distributed Algorithms

(Think globally, act locally)



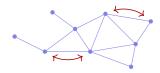
Collaboration of distinct entities to perform a common task.

No centralization available, interactions among neighbors.

Theoretical aspects of collective intelligence.

Distributed Algorithms

(Think globally, act locally)

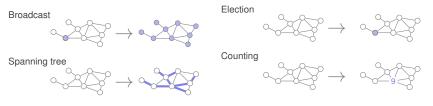


Collaboration of distinct entities to perform a common task.

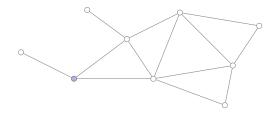
No centralization available, interactions among neighbors.

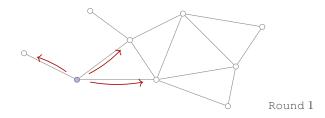
Theoretical aspects of collective intelligence.

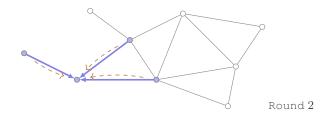
Examples of problems :

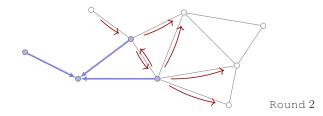


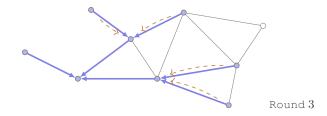
Consensus, naming, routing, exploration, coloring, dominating sets, ...

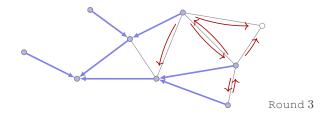


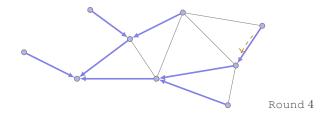


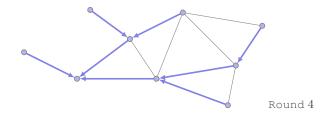


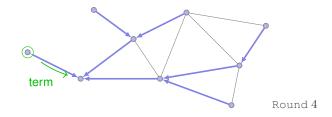


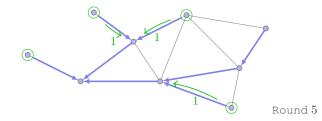


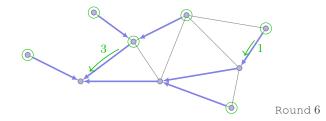


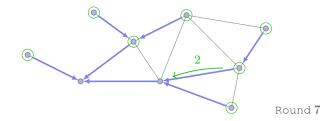


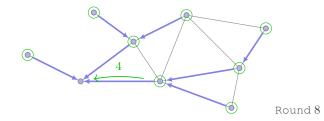


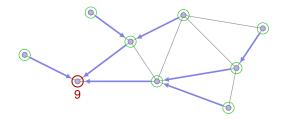










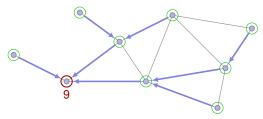


Assumptions : synchronous communication / unique ids / distinguished node

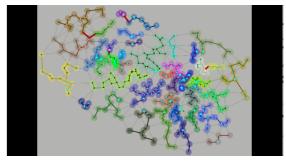


$$\label{eq:complexity} \begin{split} \text{Time complexity} : O(\text{diameter}(G)) &= O(n) & n: \#nodes \\ \text{Message complexity} : O(m+n+n) &= O(m) & m: \#edges \end{split}$$

Assumptions : synchronous communication / unique ids / distinguished node



What if there are no distinguished nodes? (The GHS algorithm, 1983)

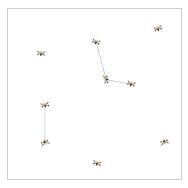


Real-world networks are dynamic

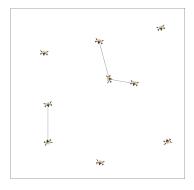
In technologies

In nature

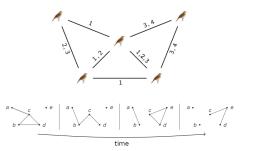
Example of scenario



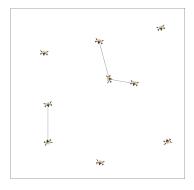
Example of scenario



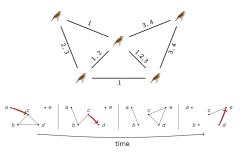
Modeling



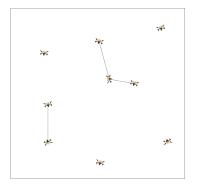
Example of scenario



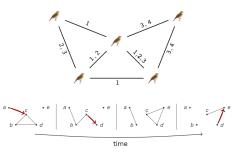
Modeling



Example of scenario



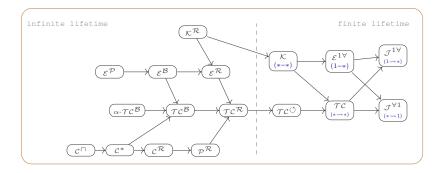
Modeling

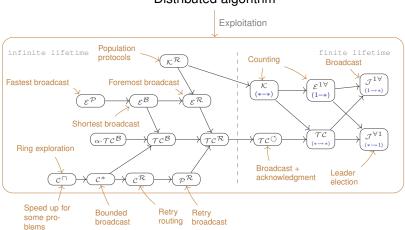


Properties :

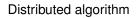
Temporal connectivity ?	\mathcal{TC}
Repeatedly ?	$\mathcal{TC}^{\mathcal{R}}$
Recurrent links?	$\mathcal{E}^{\mathcal{R}}$
In bounded time ?	$\mathcal{E}^{\mathcal{B}}$

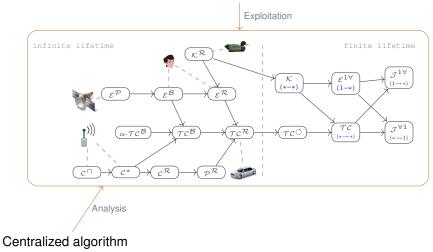
→ Classes of temporal graphs

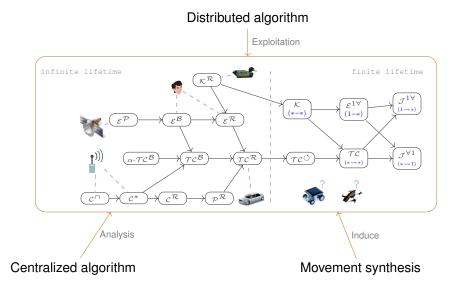




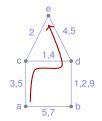
Distributed algorithm



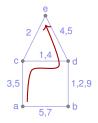




Temporal graphs for their own sake



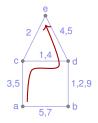
Temporal graphs for their own sake



Fundamental questions :

- What makes them different?

Temporal graphs for their own sake

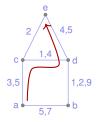


Fundamental questions :

- What makes them different?

- Why are temporal problems harder?

Temporal graphs for their own sake



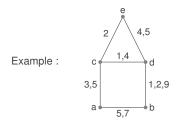
Fundamental questions :

- What makes them different?

- Why are temporal problems harder?
- What techniques work / don't work?

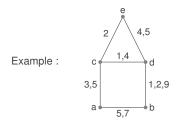
Basic definition :

 $\mathcal{G} = (V, E, \lambda)$, where $\lambda : E \to 2^{\mathbb{N}}$ assigns *presence times* to edges.



Basic definition :

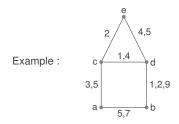
 $\mathcal{G} = (V, E, \lambda)$, where $\lambda : E \to 2^{\mathbb{N}}$ assigns *presence times* to edges.



(a.k.a. time-varying, time-dependent, evolving, dynamic,...)

Basic definition :

 $\mathcal{G} = (V, E, \lambda)$, where $\lambda : E \to 2^{\mathbb{N}}$ assigns *presence times* to edges.

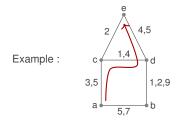


Can also be viewed as a sequence of snapshots $\{G_i = \{e \in E : i \in \lambda(e)\}\}$

(a.k.a. time-varying, time-dependent, evolving, dynamic,...)

Basic definition :

 $\mathcal{G} = (V, E, \lambda)$, where $\lambda : E \to 2^{\mathbb{N}}$ assigns *presence times* to edges.



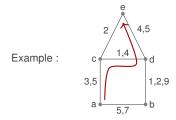
Can also be viewed as a sequence of snapshots $\{G_i = \{e \in E : i \in \lambda(e)\}\}$

Temporal paths

(a.k.a. time-varying, time-dependent, evolving, dynamic,...)

Basic definition :

 $\mathcal{G} = (V, E, \lambda)$, where $\lambda : E \to 2^{\mathbb{N}}$ assigns *presence times* to edges.



Can also be viewed as a sequence of snapshots $\{G_i = \{e \in E : i \in \lambda(e)\}\}$

Temporal paths

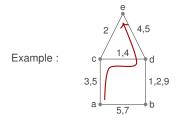
- e.g. $\langle (a, c, 3), (c, d, 4), (d, e, 4) \rangle$
- e.g. $\langle (a, c, 3), (c, d, 4), (d, e, 5) \rangle$

(non-decreasing)

(increasing)

Basic definition :

 $\mathcal{G} = (V, E, \lambda)$, where $\lambda : E \to 2^{\mathbb{N}}$ assigns *presence times* to edges.



Can also be viewed as a sequence of snapshots $\{G_i = \{e \in E : i \in \lambda(e)\}\}$

Temporal paths

• e.g.
$$\langle (a, c, 3), (c, d, 4), (d, e, 5) \rangle$$

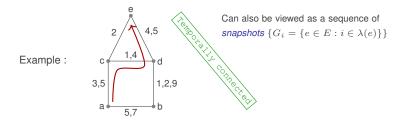
(non-decreasing)

(increasing)

Temporal connectivity : \exists temporal paths between all vertices.

Basic definition :

 $\mathcal{G} = (V, E, \lambda)$, where $\lambda : E \to 2^{\mathbb{N}}$ assigns *presence times* to edges.



Temporal paths

- e.g. $\langle (a, c, 3), (c, d, 4), (d, e, 4) \rangle$
- ▶ e.g. ((a, c, 3), (c, d, 4), (d, e, 5))

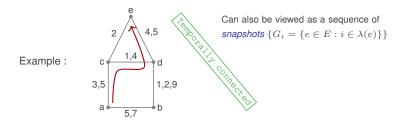
(non-decreasing)

(increasing)

Temporal connectivity : \exists temporal paths between all vertices.

Basic definition :

 $\mathcal{G} = (V, E, \lambda)$, where $\lambda : E \to 2^{\mathbb{N}}$ assigns *presence times* to edges.



Temporal paths

- e.g. $\langle (a, c, 3), (c, d, 4), (d, e, 4) \rangle$
- e.g. $\langle (a, c, 3), (c, d, 4), (d, e, 5) \rangle$

(non-decreasing)

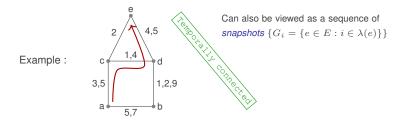
(increasing)

Temporal connectivity : \exists temporal paths between all vertices.

 \rightarrow Warning : Reachability is non-symmetrical...

Basic definition :

 $\mathcal{G} = (V, E, \lambda)$, where $\lambda : E \to 2^{\mathbb{N}}$ assigns *presence times* to edges.



Temporal paths

- e.g. $\langle (a, c, 3), (c, d, 4), (d, e, 4) \rangle$
- ▶ e.g. ((a, c, 3), (c, d, 4), (d, e, 5))

(non-decreasing)

(increasing)

Temporal connectivity : \exists temporal paths between all vertices.

 \rightarrow Warning : Reachability is non-symmetrical... and non-transitive !

(Example : connected components)

In static graphs

- Components define a partition
- Easy to compute

In temporal graphs

- Maximal components may overlap
- Can be exponentially many

(Example : connected components)

In static graphs

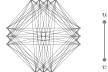
- Components define a partition
- Easy to compute

In temporal graphs

Maximal components may overlap
Can be exponentially many

MAX COMPONENT is NP-hard! (from CLIQUE)

Bui-Xuan, Ferreira, Jarry, 2003

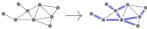


- Replace edges with semaphore gadgets - Cliques become temporal components

(e.g. spanning structures)

In static graphs

Spanning tree :

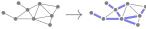


- Existence is guaranteed
- Size is always n-1

(e.g. spanning structures)

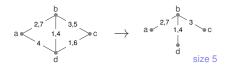
In static graphs

Spanning tree :



- Existence is guaranteed
- Size is always n-1

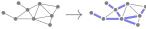
In temporal graphs



(e.g. spanning structures)

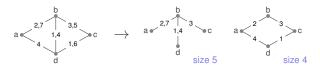
In static graphs

Spanning tree :



- Existence is guaranteed
- Size is always n-1

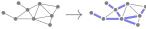
In temporal graphs



(e.g. spanning structures)

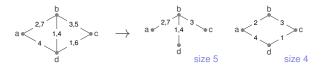
In static graphs

Spanning tree :



- Existence is guaranteed
- Size is always n-1

In temporal graphs



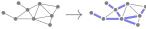
Minimum size? (increasingly bad news)

- At least 2n - 4 Bumby, 1979

(e.g. spanning structures)

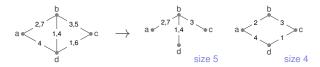
In static graphs

Spanning tree :



- Existence is guaranteed
- Size is always n-1

In temporal graphs



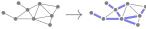
Minimum size? (increasingly bad news)

- At least 2n 4 Bumby, 1979
- $\Omega(n \log n)$ Kempe, Kleinberg, Kumar, 2000

(e.g. spanning structures)

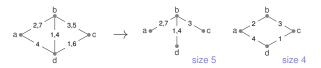
In static graphs

Spanning tree :



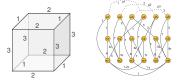
- Existence is guaranteed
- Size is always n-1

In temporal graphs



Minimum size? (increasingly bad news) - At least 2n - 4 Bumby, 1979

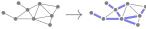
- $\Omega(n \log n)$ Kempe, Kleinberg, Kumar, 2000
- $\Omega(n^2)$ Axiotis, Fotakis, 2016



(e.g. spanning structures)

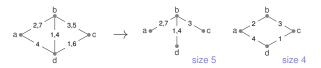
In static graphs

Spanning tree :

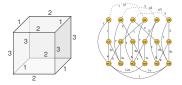


- Existence is guaranteed
- Size is always n-1

In temporal graphs



Minimum size ? (increasingly bad news) - At least 2n - 4 Bumby, 1979 - $\Omega(n \log n)$ Kempe, Kleinberg, Kumar, 2000 - $\Omega(n^2)$ Axiotis, Fotakis, 2016

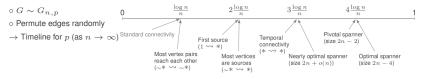


Computational complexity?

 $\rightarrow \mathsf{MIN} \; \mathsf{SPANNER} \; is \; \mathsf{APX}\text{-hard} \,! \quad \mathsf{Akrida}, \; \mathsf{Gasieniec}, \; \mathsf{Mertzios}, \; \mathsf{Spirakis}, \; \mathsf{2017}$

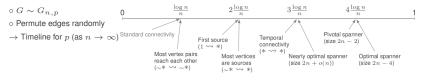
Good news 1 : In **random** temporal graphs, nearly optimal spanners (of size 2n + o(n)) almost surely exist as soon as the graph is temporally connected !

Good news 1 : In **random** temporal graphs, nearly optimal spanners (of size 2n + o(n)) almost surely exist as soon as the graph is temporally connected !



Casteigts, Raskin, Renken, Zamaraev, FOCS 2021

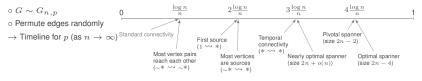
Good news 1 : In **random** temporal graphs, nearly optimal spanners (of size 2n + o(n)) almost surely exist as soon as the graph is temporally connected !



Casteigts, Raskin, Renken, Zamaraev, FOCS 2021

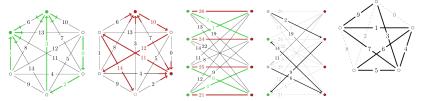
Good news 2 : Spanners of size $O(n \log n)$ always exist in **complete** temporal graphs

Good news 1 : In **random** temporal graphs, nearly optimal spanners (of size 2n + o(n)) almost surely exist as soon as the graph is temporally connected !



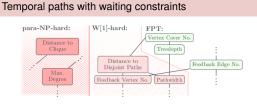
Casteigts, Raskin, Renken, Zamaraev, FOCS 2021

Good news 2 : Spanners of size $O(n \log n)$ always exist in **complete** temporal graphs



Casteigts, Peters, Schoeters, ICALP 2019

Various impacts of waiting

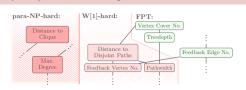


ISAAC'20 & Algorithmica (2021)

(with A. Himmel, H. Molter, P. Zschoche)

Various impacts of waiting

Temporal paths with waiting constraints



ISAAC'20 & Algorithmica (2021)

(with A. Himmel, H. Molter, P. Zschoche)

The power of waiting

start \rightarrow v_0 e_1 v_1 e_2 e_3 v_2

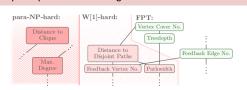
e	Presence $\rho(e, t) = 1$ iff	Latency $\zeta(e, t) =$
e_0	always true	(p-1)t
e_1	t > p	(q - 1)t
e_2	$t \neq p^{i}q^{i-1}, i > 1$	(q - 1)t
e_3	t = p	any
e_4	$t = p^i q^{i-1}, i > 1$	any

(with P. Flocchini, E. Godard, N. Santoro, M. Yamashita)

FCT'13 & Theoretical Computer Science (2015)

Various impacts of waiting

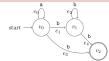
Temporal paths with waiting constraints



ISAAC'20 & Algorithmica (2021)

(with A. Himmel, H. Molter, P. Zschoche)

The power of waiting



e	Presence $\rho(e, t) = 1$ iff	Latency $\zeta(e, t) =$
e_0	always true	(p - 1)t
e_1	t > p	(q - 1)t
e_2	$t \neq p^{i}q^{i-1}, i > 1$	(q - 1)t
e_3	t = p	any
e_4	$t = p^i q^{i-1}, i > 1$	any

FCT'13 & Theoretical Computer Science (2015)

(with P. Flocchini, E. Godard, N. Santoro, M. Yamashita)

Gradual timing assumptions for agreement

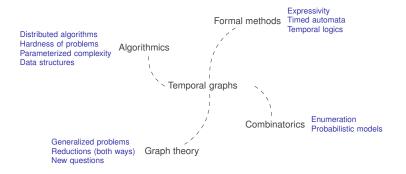
Level of abstraction	Timely Connectivity	Parameters
Level 3 (system)	Δ -components	Δ
Level 2 (multi-hop)	B-journeys, (A, B)-journeys	A and B
Level 1 (link)	(α, β) -journeys	α , β and n

TIMELY CONNECTIVITY DEPENDING ON THE LEVEL OF ABSTRACTION

(with C. Gomez-Calzado, M. Larrea, A. Lafuente)

EUROPAR'15

A new fundamental object

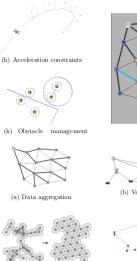


Theoretical boom in the past \sim 5 years.

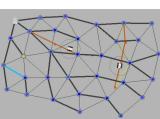
While motivated by real-world applications, it is now studied per se.

Theory fed by practical scenarios... and pedagogical practice!

JBOTSIM : Collective intelligence / Network algorithms / Motion planning / Robotics

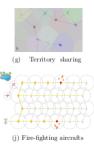


(d) Deployment by virtual forces



(i) Heterogeneous park cleaning

(o) Navigation (embedding)



(b) Vehicular networks

Travelling Salesman Problem (e)

(c) Geographical routing

(f) Toroidal space

Thanks!