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Main research interests

Main topics :

◦ Theory of networks

◦ Distributed algorithms

◦ Computational complexity

◦ Dynamic graphs

More recent interests :

◦ Cryptography & security

◦ Quantum computing

◦ Algebraic graph theory
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Main teaching activities

Classical TCS topics :

◦ Formal languages and automata

◦ Algorithms and complexity

◦ Graph theory

◦ Data structures

Other CS topics :

◦ Android programming

◦ Operating systems

◦ Algorithms of mobility

◦ Low-level programming
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Theory of networks

Network as data

→ centralized algorithms...

Network as environment

→ decentralized algorithms...
(a.k.a. distributed)
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Distributed Algorithms

(Think globally, act locally)

Collaboration of distinct entities to perform a common task.

No centralization available, interactions among neighbors.

Theoretical aspects of collective intelligence.

Examples of problems :

Broadcast

→
Spanning tree

→

Election

→
Counting

→ 9

Consensus, naming, routing, exploration, coloring, dominating sets, ...
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Example : Broadcasting → Spanning tree → Counting

Assumptions : synchronous communication / unique ids / distinguished node
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Example : Broadcasting → Spanning tree → Counting

Assumptions : synchronous communication / unique ids / distinguished node

9

Time complexity : O(diameter(G)) = O(n) n : #nodes

Message complexity : O(m + n + n) = O(m) m : #edges
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Example : Broadcasting → Spanning tree → Counting

Assumptions : synchronous communication / unique ids / distinguished node

9

What if there are no distinguished nodes? (The GHS algorithm, 1983)
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Real-world networks are dynamic

In technologies In nature
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(Highly) dynamic networks?

Example of scenario

Modeling

Properties :

▶ Temporal connectivity?

T C

▶ Repeatedly?

T CR

▶ Recurrent links?

ER

▶ In bounded time?

EB

▶ ...

→ Classes of temporal graphs
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Some classes of temporal graphs

T C⟲
T C

(∗⇝∗)
J ∀1
(∗⇝1)

J 1∀
(1⇝∗)

T CR

ER

KR

EBEP

T CBα-T CB

PRCRC∗C∩

K
(∗–∗)

E1∀
(1–∗)

infinite lifetime finite lifetime

? ?

Foremost broadcast

Shortest broadcast

Fastest broadcast

Population
protocols

Retry
routing

Retry
broadcast

Bounded
broadcast

Speed up for
some pro-
blems

Ring exploration

BroadcastCounting

Leader
election

Broadcast +
acknowledgment

Distributed algorithm

Centralized algorithm Movement synthesis

Exploitation

Analysis Induce
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Temporal graphs

for their own sake

a b

c d

e

5,7

3,5 1,2,9

1,4

2 4,5

Fundamental questions :

- What makes them different?

- Why are temporal problems harder ?

- What techniques work / don’t work?

...
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Temporal graphs (a.k.a. time-varying, time-dependent, evolving, dynamic,...)

Basic definition :

G = (V, E, λ), where λ : E → 2N assigns presence times to edges.

a b

c d

e

Example :

Can also be viewed as a sequence of

snapshots {Gi = {e ∈ E : i ∈ λ(e)}}

5,7

3,5 1,2,9

1,4

2 4,5

Temporally
connected

Temporal paths

▶ e.g. ⟨(a, c, 3), (c, d, 4), (d, e, 4)⟩ (non-decreasing)

▶ e.g. ⟨(a, c, 3), (c, d, 4), (d, e, 5)⟩ (increasing)

Temporal connectivity : ∃ temporal paths between all vertices.

→ Warning : Reachability is non-symmetrical... and non-transitive !
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Impact of non-transitivity (Example : connected components)

In static graphs

- Components define a partition
- Easy to compute

In temporal graphs

2 1,3 2 - Maximal components may overlap
- Can be exponentially many

MAX COMPONENT is NP-hard ! (from CLIQUE) Bui-Xuan, Ferreira, Jarry, 2003

−→

u

v

u

v

1

21

2 - Replace edges with semaphore gadgets
- Cliques become temporal components
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Impact of non-transitivity (e.g. spanning structures)

In static graphs

Spanning tree :

→ - Existence is guaranteed

- Size is always n − 1

In temporal graphs

a

b

c

d

2,7 3,5
1,4

1,64

→ a

b

c

d

2,7 3
1,4

size 5

a

b

c

d

2 3

14

size 4

Minimum size? (increasingly bad news)

- At least 2n − 4 Bumby, 1979

- Ω(n log n) Kempe, Kleinberg, Kumar, 2000

- Ω(n2) Axiotis, Fotakis, 2016
1 1

1 1

2

2

2

23
3

3
3

Computational complexity?

→ MIN SPANNER is APX-hard ! Akrida, Ga̧sieniec, Mertzios, Spirakis, 2017
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Are there good news for spanning structures?

Good news 1 : In random temporal graphs, nearly optimal spanners (of size 2n + o(n)) almost
surely exist as soon as the graph is temporally connected !

◦ G ∼ Gn,p

◦ Permute edges randomly

→ Timeline for p (as n → ∞)

Casteigts, Raskin, Renken, Zamaraev, FOCS 2021

Good news 2 : Spanners of size O(n log n) always exist in complete temporal graphs

Casteigts, Peters, Schoeters, ICALP 2019
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Various impacts of waiting

Temporal paths with waiting constraints ISAAC’20 & Algorithmica (2021)

(with A. Himmel, H. Molter, P. Zschoche)

The power of waiting FCT’13 & Theoretical Computer Science (2015)

(with P. Flocchini, E. Godard, N. Santoro, M. Yamashita)

Gradual timing assumptions for agreement EUROPAR’15

(with C. Gomez-Calzado, M. Larrea, A. Lafuente)
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A new fundamental object

Temporal graphs

Formal methods

Algorithmics

Graph theory

Combinatorics

Expressivity
Timed automata
Temporal logics

Distributed algorithms
Hardness of problems
Parameterized complexity
Data structures

Generalized problems
Reductions (both ways)
New questions

Enumeration
Probabilistic models

Theoretical boom in the past ∼ 5 years.

While motivated by real-world applications, it is now studied per se.
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Theory fed by practical scenarios... and pedagogical practice !

JBOTSIM : Collective intelligence / Network algorithms / Motion planning / Robotics
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Thanks !


