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Main research interests

Main topics : )
More recent interests :
o Theory of networks

o Cryptography & security
o Distributed algorithms yplograpty

. ) o Quantum computing
o Computational complexity

o Algebraic graph theory
o Dynamic graphs
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Main teaching activities

Classical TCS topics : Other CS topics :
o Formal languages and automata o Android programming
o Algorithms and complexity o Operating systems
o Graph theory o Algorithms of mobility

o Data structures o Low-level programming
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Theory of networks
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Network as data Network as environment

— centralized algorithms... — decentralized algorithms...

(a.k.a. distributed)
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Distributed Algorithms

(Think globally, act locally)

|

-/
Collaboration of distinct entities to perform a common task.

No centralization available, interactions among neighbors.

Theoretical aspects of collective intelligence.
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Distributed Algorithms

(Think globally, act locally)

|

-/
Collaboration of distinct entities to perform a common task.

No centralization available, interactions among neighbors.

Theoretical aspects of collective intelligence.

Examples of problems :

Election

Broadcast Q
N A X = o

Spanning tree Counting
‘; @ — & 2@ — O\%g

Consensus, naming, routing, exploration, coloring, dominating sets, ...
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Example: Broadcasting — Spanning tree — Counting

Assumptions : synchronous communication / unique ids / distinguished node
\/
<O/

719



Example: Broadcasting — Spanning tree — Counting

Assumptions : synchronous communication / unique ids / distinguished node

w5l

Round 1

719



Example: Broadcasting — Spanning tree — Counting

Assumptions : synchronous communication / unique ids / distinguished node

\o/ Round 2

719



Example: Broadcasting — Spanning tree — Counting

Assumptions : synchronous communication / unique ids / distinguished node

5

Round 2

719



Example: Broadcasting — Spanning tree — Counting

Assumptions : synchronous communication / unique ids / distinguished node

Round 3

719



Example: Broadcasting — Spanning tree — Counting

Assumptions : synchronous communication / unique ids / distinguished node

’
s

Round 3

719



Example: Broadcasting — Spanning tree — Counting

Assumptions : synchronous communication / unique ids / distinguished node

Round 4

719



Example: Broadcasting — Spanning tree — Counting

Assumptions : synchronous communication / unique ids / distinguished node

Round 4

719



Example: Broadcasting — Spanning tree — Counting

Assumptions : synchronous communication / unique ids / distinguished node

term /

Round 4

719



Example: Broadcasting — Spanning tree — Counting

Assumptions : synchronous communication / unique ids / distinguished node

Round 4

719



Example: Broadcasting — Spanning tree — Counting

Assumptions : synchronous communication / unique ids / distinguished node

Round 5

719



Example: Broadcasting — Spanning tree — Counting

Assumptions : synchronous communication / unique ids / distinguished node

Round 6

719



Example: Broadcasting — Spanning tree — Counting

Assumptions : synchronous communication / unique ids / distinguished node

Round 7

719



Example: Broadcasting — Spanning tree — Counting

Assumptions : synchronous communication / unique ids / distinguished node

Round 8

719



Example: Broadcasting — Spanning tree — Counting
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Example: Broadcasting — Spanning tree — Counting

Assumptions : synchronous communication / unique ids / distinguished node

Time complexity : O(diameter(G)) = O(n) n : #nodes
Message complexity : O(m +n +n) = O(m) m : #edges
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Example : Broadcasting — Spanning tree — Counting

Assumptions : synchronous communication / unique ids / distinguished node
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Real-world networks are dynamic

In technologies In nature
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(Highly) dynamic networks ?

o=\ NP a2

Example of scenario
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(Highly) dynamic networks ?

o =T g

Example of scenario
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b d be d
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(Highly) dynamic networks ?

o=\ NP a2

Example of scenario

w

¥
-

42

Modeling

\/
‘*y\@“‘

—_— A
a e c e a \/C\ e 3\ ¢ 7 e as 57 e
b d b d b d be d
time
Properties :
» Temporal connectivity ? TC
> Repeatedly ? TCR
» Recurrent links ? ER
» In bounded time ? eB
| 4

— Classes of temporal graphs

9/19



Some classes of temporal graphs

-

infinite lifetime

finite lifetime

~
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Some classes of temporal graphs

Distributed algorithm

‘ Exploitation

-

infinite lifetime

Fastest broadcast

Population
protocols

Counting

finite lifetime
Broadcast

Broadcast +
acknowledgment

Leader
election

~

Speed up for
some pro-
blems

Bounded
broadcast

Retry  Retry
routing  broadcast
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Some classes of temporal graphs

Distributed algorithm

-

lExploitation
infinite lifetime ‘ | finite lifetime
l
\
! v
7 i £1v g;ﬂ
! (=) (1-%)
l
|
|
l
I V1
(720) Te 7
: uTCO (%~ %) (#~>1)
I
|
|
| J

Analysis

Centralized algorithm
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Some classes of temporal graphs

Distributed algorithm

lExploitation
infinite lifetime w- finite lifetime
|
3 |
| v
\ . -
|
!
N =N TC v1
I \T7c>) [ {wl)
|
|
= B A
Analysis Induce
Centralized algorithm Movement synthesis

10/19



Temporal graphs
for their own sake

® D

2 4,5
o 1,4 d
3,5 1,2,9
a b

5,7
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Temporal graphs
for their own sake

e
I3
2 4,5
c 1.4 d
3,5 1,2,9
a 57 b

Fundamental questions :

- What makes them different ?
- Why are temporal problems harder ?

- What techniques work / don’t work ?
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Temporal graphs

Basic definition :

G = (V,E,)\), where ) : E — 2N assigns presence times to edges.

Example : c

3,5

1,4

(a.k.a. time-varying, time-dependent, evolving, dynamic,...)

4,5

1,2,9

5,7
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Temporal graphs

Basic definition :

G = (V,E,)\), where ) : E — 2N assigns presence times to edges.

Example : c

3,5

1,4

5,7

4,5

1,2,9

Can also be viewed as a sequence of
snapshots {G; = {e € E:i € X(e)}}

(a.k.a. time-varying, time-dependent, evolving, dynamic,...)
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Temporal graphs

Basic definition :

G = (V,E,)\), where ) : E — 2N assigns presence times to edges.

Example : c

3,5

Temporal paths

e
4,5
1,4 d
1,2,9
5,7 b

Can also be viewed as a sequence of
snapshots {G; = {e € E:i € X(e)}}

(a.k.a. time-varying, time-dependent, evolving, dynamic,...)
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Tempo ral g raphs (a.k.a. time-varying, time-dependent, evolving, dynamic,...)

Basic definition :

G = (V,E,)\), where ) : E — 2N assigns presence times to edges.

e
Can also be viewed as a sequence of
2 4,5 snapshots {G; = {e € E:i € A(e)}}
Example : c 14 d
3,5 1,2,9
at—g7 P
Temporal paths
> eg.((a,c 3),(c,d 4),(d e 4)) (non-decreasing)

> eg.((a,c 3),(c,d,4),(d, e, b)) (increasing)
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Tempo ral graphs (a.k.a. time-varying, time-dependent, evolving, dynamic,...)
Basic definition :

G = (V,E,)\), where ) : E — 2N assigns presence times to edges.

e
Can also be viewed as a sequence of
2 4,5 snapshots {G; = {e € E:i € A(e)}}
Example : c 14 d
3,5 1,2,9
at—g7 P
Temporal paths

> eg.((a,c 3),(c,d 4),(d e 4)) (non-decreasing)
> eg.((a,c 3),(c,d,4),(d, e, b)) (increasing)

Temporal connectivity : 3 temporal paths between all vertices.

12/19



Tempo ral graphs (a.k.a. time-varying, time-dependent, evolving, dynamic,...)
Basic definition :

G = (V,E,)\), where ) : E — 2N assigns presence times to edges.

e
Can also be viewed as a sequence of
2 4,5 snapshots {G; = {e € E:i € A(e)}}
Example : c 14 d
3,5 1,2,9
at—g7 P
Temporal paths

> eg.((a,c 3),(c,d 4),(d e 4)) (non-decreasing)
> eg.((a,c 3),(c,d,4),(d, e, b)) (increasing)

Temporal connectivity : 3 temporal paths between all vertices.

12/19



Tempo ral g raphs (a.k.a. time-varying, time-dependent, evolving, dynamic,...)

Basic definition :

G = (V,E,)\), where ) : E — 2N assigns presence times to edges.

e
Can also be viewed as a sequence of
2 4,5 snapshots {G; = {e € E:i € A(e)}}
Example : c 14 d
3,5 1,2,9
at—g7 P
Temporal paths

> eg.((a,c 3),(c,d 4),(d e 4)) (non-decreasing)
> eg.((a,c 3),(c,d,4),(d, e, b)) (increasing)

Temporal connectivity : 3 temporal paths between all vertices.

— Warning : Reachability is non-symmetrical...

12/19



Tempo ral g raphs (a.k.a. time-varying, time-dependent, evolving, dynamic,...)

Basic definition :

G = (V,E,)\), where ) : E — 2N assigns presence times to edges.

e
Can also be viewed as a sequence of
2 4,5 snapshots {G; = {e € E:i € A(e)}}
Example : c 14 d
3,5 1,2,9
at—g7 P
Temporal paths

> eg.((a,c 3),(c,d 4),(d e 4)) (non-decreasing)
> eg.((a,c 3),(c,d,4),(d, e, b)) (increasing)

Temporal connectivity : 3 temporal paths between all vertices.

— Warning : Reachability is non-symmetrical... and non-transitive !
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Impact of non-transitivity (Example : connected components)

In static graphs

- Components define a partition
- Easy to compute

2 1,3 2 - Maximal components may overlap
- Can be exponentially many
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Impact of non-transitivity (Example : connected components)

In static graphs

- Components define a partition
- Easy to compute

8 2 1,3 2 8 - Maximal components may overlap
- Can be exponentially many
MAX COMPONENT is NP-hard ! (from CLIQUE) Bui-Xuan, Ferreira, Jarry, 2003
u u
N 2 /\1 - Replace edges with semaphore gadgets
1\ /2 - Cliques become temporal components
v v
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Impact of non-transitivity (e.g. spanning structures)

In static graphs
Spanning tree :
N N '\.//'\\'. - Existence is guaranteed
% o,
T \'/—\'<_/' - Size is always n — 1
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Impact of non-transitivity (e.g. spanning structures)

In static graphs

Spanning tree :

N N '\.//'\\'. - Existence is guaranteed
\LQ/ — .\0/—\-<./' - Size is always n — 1

b b
27/T\35 3/2'7/11\3\00
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Impact of non-transitivity (e.g. spanning structures)

In static graphs

Spanning tree :

N N '\.//'\\'. - Existence is guaranteed
\LQ/ — .\0/—\-<./' - Size is always n — 1

b b b
277 T3 27
a-<2Y7/1T4\3’5>C _y A s Sec ao<4 1>-<:
e l ~
d
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Impact of non-transitivity (e.g. spanning structures)

In static graphs

Spanning tree :

N N '\.//'\\'. - Existence is guaranteed
\LQ/ — .\0/—\-<./' - Size is always n — 1

b b b
AN
<N “T\ <
1,6 7
4\i/ , d
d size 5 size 4

Minimum size ? (increasingly bad news)
- Atleast 2n — 4  Bumby, 1979
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Impact of non-transitivity

In static graphs

Spanning tree :
N S
'\-LQ‘/ —7 S

In temporal graphs

Minimum size ? (increasingly bad news)

- Atleast 2n — 4  Bumby, 1979
-Q(nlogn)

Kempe, Kleinberg, Kumar, 2000

(e.g. spanning structures)

L R - Existence is guaranteed
LAY, e
.—.<./' - Sizeis always n — 1
b b
277 T3 27
—y a4 Sec as e
i 4 1
\./
d d
size 5 size 4
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Impact of non-transitivity

In static graphs

Spanning tree :
N S
'\-LQ‘/ —7 S

In temporal graphs

Minimum size ? (increasingly bad news)

- Atleast 2n — 4  Bumby, 1979
-Q(nlogn)
-Q(n?) Axiotis, Fotakis, 2016

Kempe, Kleinberg, Kumar, 2000

(e.g. spanning structures)

-;_ \,/-\\'. - Existence is guaranteed
-—-<_/' - Size is always n — 1
b b
2,7 /T\ 3 2 N 3
—y a4 Sec as e
l 4 1
7
d ) d )
size 5 size 4
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Impact of non-transitivity (e.g. spanning structures)

In static graphs

Spanning tree :

N N XAy - Existence is guaranteed
% L
.\‘/*Qf \'/—\-<_/' - Size is always n — 1

b b b
27 s 27
a<2Y7/1T4\3’5>c —y a4 Sec a-<4 1>-<:
4\1/1,6 l 7
d

d
d size 5 size 4

Minimum size ? (increasingly bad news) 2
- Atleast 2n — 4  Bumby, 1979 2
-Q(nlogn) Kempe, Kleinberg, Kumar, 2000 3
-Q(n?)  Axiotis, Fotakis, 2016 8 2

Computational complexity ?
— MIN SPANNER is APX-hard!  Akrida, Gasieniec, Mertzios, Spirakis, 2017
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Are there good news for spanning structures ?

Good news 1 : In random temporal graphs, nearly optimal spanners (of size 2n + o(n)) almost
surely exist as soon as the graph is temporally connected !
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Are there good news for spanning structures ?

Good news 1 : In random temporal graphs, nearly optimal spanners (of size 2n + o(n)) almost
surely exist as soon as the graph is temporally connected !

logn logn glogn qlogn
oG ~ Gnpp 0 n 270 3= 423 1
>,
o Permute edges randomly _—1 /T /\ /
|
— Timeline for p (as n — o0) SN | g guyg | Tomporal poehat'y
| (L~ %) connectivity
M N . ! * ~ k)
lost vertex pairs Most vertices Nearly optimal spanner ~ Optimal spanner
reach each other are sources (size 2n + o(n)) (size 2n — 4)
(%~ k) (3K ~ %)

Casteigts, Raskin, Renken, Zamaraev, FOCS 2021
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Are there good news for spanning structures ?

Good news 1 : In random temporal graphs, nearly optimal spanners (of size 2n + o(n)) almost
surely exist as soon as the graph is temporally connected !

logn logn ologn Llogn
°0G ~ Gnyp 0 2 22 3R 4R 1
o Permute edges randomly ///"? /T /’K\ /N
i i Standard connectivity | Pivotal spanner
— Timeline for p (as n — o) v First souroe ‘ Temporal (size 2 )
| (1~ *) connectivity
. ! * A k)
Most vertex pairs Most vertices Nearly optimal spanner ~ Optimal spanner
:ea;hﬁch 3})"9' are sources (size 2n + o(n)) (size 2n — 4)

(%~ %)

Casteigts, Raskin, Renken, Zamaraev, FOCS 2021

Good news 2 : Spanners of size O(n log n) always exist in complete temporal graphs
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Are there good news for spanning structures ?

Good news 1 : In random temporal graphs, nearly optimal spanners (of size 2n + o(n)) almost
surely exist as soon as the graph is temporally connected !

logn logn qlogn 4logn
°0G ~ Gnyp 0 ™ 27 3% 47 1
o Permute edges randomly ///"4 /T /’K\ /N
|
i i Standard connectivity | Pivotal spanner
— Timeline for p (as n — oo) ‘o‘ First source ‘ Iz'n"rf;;‘ai"li‘ (size 2n — 2)
B Chate] | * *)y
Most vertex pairs Most vertices Nearly optimal spanner ~ Optimal spanner
reach each other are sources (size 2n + o(n)) (size 2n — 4)
(~k k) (% ~> %)

Casteigts, Raskin, Renken, Zamaraev, FOCS 2021

Good news 2 : Spanners of size O(n log n) always exist in complete temporal graphs

. e

Casteigts, Peters, Schoeters, ICALP 2019
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Various impacts of waiting

Temporal paths with waiting constraints ISAAC’20 & Algorithmica (2021)

W(1]-hard: FPT:

Treedepth :
Feedback Edge No. ~— — . z
6—e
b

(with A. Himmel, H. Molter, P. Zschoche)

para-NP-hard:

Distance to
Clique
Max.
Degree

1
V.

Distance to
Disjoint Paths

1
Pathwidth
T

Feedback Vertex No.
T
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Various impacts of waiting

Temporal paths with waiting constraints ISAAC’20 & Algorithmica (2021)

para-NP-hard: W(1]-hard: FPT: a

Distance to
Max.
Degree

. s 3 d 4 B
: 21— >o
1 4 2 e
Feedback Edge No. ~— — =z
6 —=e

b

(with A. Himmel, H. Molter, P. Zschoche)

Distance to
Disjoint Paths

1
Feedback Vertex No. | | Pathwidth
T T

The power of waiting FCT'13 & Theoretical Computer Science (2015)
a b
“) “ T Prosonce p(c, 1) = L | | Latency C(e.1) =

start “G ® [ v € always true [

a N Ly 2 t>p (g -1t

) e t#pq i1 (q— 1)t
3 i=p any
ey t=pq T i>1 any

(with P. Flocchini, E. Godard, N. Santoro, M. Yamashita)
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Various impacts of waiting

Temporal paths with waiting constraints

para-NP-hard:

Distance to
Clique
Max.
Degree

W(1]-hard: FPT:

Treedepth

Distance to
Disjoint Paths

1
Feedback Vertex No. | | Pathwidth
T T

The power of waiting

a b

ISAAC’20 & Algorithmica (2021)

3 /j\ 4 .
22— 4>o
1 4 2 .
T &
b
(with A. Himmel, H. Molter, P. Zschoche)

FCT'13 & Theoretical Computer Science (2015)

¢ [ Presence ple, 1) = il

Latency ¢(c.1) =

.
LIV

start —( o always true (p— 1)t
PN 2 T>p (q— 1)
e t£pqg i1 (q— 1)t

2 i=p any

[ t=pq T i>1 any

(with P. Flocchini, E. Godard, N. Santoro, M. Yamashita)

Gradual timing assumptions for agreement

[ Level of abstraction [ Timely Connectivity [ Parameters |
Level 3 (system) A-components A
Level 2 (multi-hop) || B-journeys, (A, B)-journeys Aand B
Level 1 (link) (a, B)-journeys a, B and n

TIMELY CONNECTIVITY DEPENDING ON THE LEVEL OF ABSTRACTION

EUROPAR'15
7;.&)
TC (@)

| [ rew

| freap)

(with C. Gomez-Calzado, M. Larrea, A. Lafuente)
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A new fundamental object

Expressivity
Formal methods Timed automata

|
Distributed algorithms . Temporal logics

Hardness of problems Algorithmics ’
Parameterized complexity .
Data structures \ "
\
N
~ Temporal graphs <
| AN
! \
1

/ Enumeration
L,/ Comblnatorlcs Probabilistic models
Generalized problems e
Reductions (both ways) Graph theory

New questions

Theoretical boom in the past ~ 5 years.

While motivated by real-world applications, it is now studied per se.
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Theory fed by practical scenarios... and pedagogical practice !

JBOTSIM : Collective intelligence / Network algorithms / Motion planning / Robotics

L%

(h) Acceleration constraints

(o) Navigation (embedding)

A

(b) Velicular networks (€] Geograhical routing (5] Territory sharing
. % P
. 7 . Casanans
T J be’
\ - b
y ]
e X
. v N HH
(d) Deployment by vittual farces — (e]  Travelling Salesman Prablem (f) Toroidal space (j) Fire-fight ing airerafts
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Thanks!!
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