
White-Box Elliptic Curve Diffie-Hellman

Arnaud Casteigts

October 27, 2011

Abstract

This report describes the prototype implemented during August and September 2011, as part of a SME4SME
Applied Research Project between Irdeto Canada and the University of Ottawa. The prototype follows a cryp-
tographic scheme designed by Mizanur Rahman between April and July 2011 as part of the same project (see
Mizan’s report [1] for design details). The level of integration with respect to Irdeto’s library, Clockware Security
(CS), lies somewhere between “out of the box” and fully integrated. Precisely, the runtime parts at stub, smooth,
and robust levels (without transcode pragmas) are merged with the library, while the compile time generation of
glue code and data is simulated through hardcoded functions which fake the behavior of codegen and datagen for
the prototype needs. Testing can be done through compiling and running a given test program in stub, smooth,
or robust mode.

1 Introduction

This report being intended for internal use, the reader is referred to Irdeto’s intranet or the web for basics on
key agreement protocols and white box cryptography. Below is a minimal introduction lifted from the SME4SME
project proposal:

Elliptic Curve Diffie-Hellman (ECDH) is a key agreement protocol that allows two parties, each having
an elliptic curve public-private key pair, to establish a shared secret over an insecure channel. This
shared secret may be directly used as a key, or to derive another key which can then be used to
encrypt subsequent communications using a symmetric key cipher. It is a variant of the Diffie-Hellman
protocol using elliptic curve cryptography. ECDH is an important protocol, used for things like DTCP-
IP (Digital Transmission Content Protection over Internet Protocol). [...] While ECDH is a great
technique to establish protected communication between two trusted parties, it is from the era of the
’Black-Box’ attack context, where attacks can only happen as a ’Man-in-the-Middle’. When we consider
the case where there is distrust with a party or the ’White-Box’ attack context, there are many more
concerns and issues with the execution of the software for the ’Man-at-the-End’.

Among these issues is the fact that the adversary can watch the host memory while a program executes. If
this program makes use of cryptographic primitives, such as key agreement primitives, the privates keys become
exposed. Besides the generic obfuscation transforms already offered by the CS library, this project aimed to
find a way to perform the three basic operations of ECDH key agreement – Key Pair Generation, Shared Secret
Computation, and Key Derivation – without exposing the private keys. This was achieved in the design of [1],
through breaking up critical computations into a sequence of indirect operations involving compile time random
numbers.

2 Testing the prototype

You should first apply the patch from within your cs/ directory (cd cs; patch -p1 < ecdh-arnaud.patch), then
recompile the library using make at any level higher or equal to modules/crypto/. To run the prototype, you can
go in modules/crypto/asymmetric/ecc/test/e2e/ecdh, and then:

For stub mode: $ make ka-stub.exe (compilation) $ ./ka-stub.exe (execution)
For smooth mode: $ make ka-smooth.exe $ ./ka-smooth.exe

For robust mode: $ make ka-robust.exe $ ./ka-robust.exe

1



The smooth and robust executions should output something like:

Key Pair Generation on A’s side

A_pub->Qx: 8e9ab49e 06433f45 94c89aca 5bbfd4e7 35d956af 3f821f64 06a27b1f 0da81eaf

A_pub->Qy: 71ddd3a7 40657bd3 40035f79 0ef542b8 7df534ee 87f9f239 a014a9d8 9fa6fe5c

A_pri->d: 20e04c02 cd2efb24 a36e8e98 7e181c8d 96af0657 ec551a4d c1eb27f2 25ff49b2

Key Pair Generation on B’s side

B_pub->Qx: 235af398 8cdc3310 50ba64e2 f9c3f23a 97ce34eb ac3f808d 2bcb3d6f 4db1252b

B_pub->Qy: 5b64f011 1281d92f 83da9065 3cea9533 ef0875ef 3e64499e 06a1a37b 152dc690

B_pri->d: 8c2d53ff 48de4340 4b09ac36 b3a95464 c9620b42 fcd66475 2690c66c 8e5a7119

Shared Secret Computation on A’s side

A’s Shared Secret: 4bb447a7 82336711 6bcb072f f07955dc 690b1f08 ae6bea66 0a1bb71d dfd0f038

Shared Secret Computation on B’s side

B’s Shared Secret: 4bb447a7 82336711 6bcb072f f07955dc 690b1f08 ae6bea66 0a1bb71d dfd0f038

Key Derivation Function on A’s side

A’s Derivated Key: 4bb447a7 82336711 6bcb072f f07955dc 690b1f08 ae6bea66 0a1bb71d dfd0f038

Key Derivation Function on B’s side

B’s Derivated Key: 4bb447a7 82336711 6bcb072f f07955dc 690b1f08 ae6bea66 0a1bb71d dfd0f038

Note that the content of A pri->d in robust mode is not A’s private key (which is never present in mem-
ory), but instead the value of r̂, the so-called transformed random number. The struct field was so recycled to
allow the sharing of r̂ in between calls without modifying the internal representation of a private key in the
CS library (struct xc wb ECC private key). Another possibility is to create a dedicated field in the structure
XC KeyAgreementOptions.

3 ECDH White-box design (in a nutshell)

The normal (i.e., black-box) procedure described p30 of [2] specifies that the key pair (private key d, public key
Q), where d is a large number and Q is an elliptic curve point, is to be generated by means of a random number
r as follows: d = r + 1, and Q = dG, where G is a given generator of the considered field. Several white-box
methodologies were proposed in [1], corresponding to various strengths and complexities. After discussion with
James, it was decided to focus mainly on Methodology 1 (henceforth abbreviated M1), which is believed to offer
the best tradeoff.

The trick is to replace the use of r by another number r̂ such that r̂ = k1 r + k2, where k1 and k2 are two
instance-specific (and thus compile time) random numbers k1 and k2 called the magic numbers. In fact, r is never
drawn concretely; r̂ is the drawn number (at runtime), and is manipulated as if it were determined by the above
expression, i.e., in such a way that:

1: Ĝ ← (k−1
1 )G

2: U1 ← r̂ Ĝ

3: U2 ← (k1 − k2)Ĝ

4: Q ← U1 + U2

leads the very same Q as in Q = (r + 1)G without ever using r. Symmetrically, computation of the shared secret
(the x-coordinate of the point P = dAQB = dBQA) can be reformulated through:

1: Q̂1 ← (k−1
1 ) Q

2: Q̂2 ← r̂Q̂1

3: Q̂3 ← (k1 − k2) Q̂1

4: P ← Q̂2 + Q̂3

where Q is the remote public key. Algebraic proofs of these equivalences are given in [1]. As for the Key Derivation
procedure, which simply copies the shared secret in our case, it needs no particular white-box adaptation.

3.1 Compile time versus Runtime

White-box computation of keys and shared secrets (as specified above) are not performed as a single block. Since
k1, k2, and G are already known at compile time, some computations involving them can be performed by datagen

at compile time (more security advantages). This is the case with Ĝ and U2 (key pair generation), and k−1
1 and

k1 − k2 (shared secret computation). These are depicted in red/gray on Figure 1. Note that, contrary to the

2



generator G, the remote public key Q is known only at runtime, which is why we cannot compute Q̂1 and Q̂3 at
compile time (at least in the case of ephemeral key agreement, which is the one we consider).

1: Ĝ ← (k−11 )G

2: U1 ← r̂ Ĝ

3: U2 ← (k1 − k2)Ĝ

4: Q ← U1 + U2

(a) Key Pair Generation

1: Q̂1 ← (k−11 ) Q

2: Q̂2 ← r̂Q̂1

3: Q̂3 ← (k1 − k2) Q̂1

4: P ← Q̂2 + Q̂3

(b) Shared Secret Computation

Figure 1: Computation by datagen at compile time (red/gray) vs. by CS library at runtime (black).

3.2 A slight variant

The computation of Q̂1 (step 1 above) involves at runtime the use of one magic number non-combined with the
other (k1, inverted), which may or may not be considered as a security problem (likely not serious if working at a
transformed level). An computationally equivalent alternative is to pose r̂ ← k2(k1r + 1) instead of r̂ = k1 r + k2,
and consider instead these new versions of lines 1 and 3:

1: Ĝ ← (k−11 k−12 ) G

3: U2 ← (k2(k1 − 1)) Ĝ

(a) Key Pair Generation

1: Q̂1 ← (k−11 k−12 ) Q

3: Q̂3 ← (k2(k1 − 1)) Q̂1

(b) Shared Secret Computation

Figure 2: A possible variant combining k1 and k2 in every step. (Steps 2 and 4 are unchanged.)

This fix was implemented in addition to the original version. Is not clear whether it adds more security or
just little confusion to an attacker; the answer certainly depends on whether k1 and k2 are to be used in other
parts of the code. In any case, the changes between both variants are confined to the level of datagen. Runtime
computations remain unchanged, and to make it clear, the runtime code for shared secret computation refers to
the red expressions usingthe generic names of factorQ1 and factorQ3. The computations in key pair generation
were also adapted to be consistent (the variant must indeed be the same for both operations, although it needs
not be the same among hosts). The name of both variants in the prototype are v1 and v2.

4 Implementation

4.1 User API

The CS Library offers generic cryptography APIs that encapsulte the concrete implementation of algorithms. The
main sets of API are:

• Block-Ciphers

• Asymmetric-Ciphers

• Hash-Functions

The generic function names therein are to be called from the user program, and then be mapped at compile
time (through a glue code generated by codegen) into real calls to the concrete algorithms. This allows the user
to tune various parameters or to switch from an algorithm to another (e.g. des to aes) without modifying its
code, by means of an external parameter file. Key Agreement protocols do not fall into any of these APIs, and
the following generic function names were introduced as part of a new Key-Agreement family:

• XC Dynamic Key Asymmetric Cipher Key Agreement Key Pair Generation()

• XC Dynamic Key Asymmetric Cipher Key Agreement Shared Secret Computation()

• XC Dynamic Key Asymmetric Cipher Key Agreement Key Derivation Function()

Key agreement is not strictly speaking an “Asymmetric Cipher”, but it was decided to keep this radical to
simplify future integration into codegen (for conventions related to the automatic contraction of function names
in codegen templates). The file containing these APIs is modules/crypto/include/xc/xc wb.h. It actually
contains macros that expand these functions according to the mode considered (stub, smooth, or robust). In stub
mode, the functions have their names appended with a stub() suffixe, which makes them point to the generic
stub implementations in the CS library (modules/crypto/asymmetric/common/src/wb ac stub.c). In smooth or

3



robust modes, the function names are appended with the id passed as their own first argument, which refers to
a particular entry of the parameter file. The corresponding functions (that is, the ones being called for real)
are functions generated by codegen into a glue code file at compile time. These functions encapsulate calls to
appropriate functions in the CS library based on the parameter file again.

4.2 Architecture

The eventual architecture of key agreement features in the CS library will probably look like the diagram in
Figure 3. The “additional parameters” in this diagram correspond to the red/gray elements in Figure 1, i.e.,
those elements which can be computed (and “diversified”) at compile time using datagen.

wb ac ecc ecdh robust.c

XC ECDH Key Pair Generation Robust M1()
XC ECDH Shared Secret Computation Robust M1()
XC ECDH Key Derivation Function Robust Dummy()

robust intermediate files
...

wb ac ecc ecdh smooth.c

XC ECDH Key Pair Generation Smooth()
XC ECDH Shared Secret Computation Smooth()
XC ECDH Key Derivation Function Smooth Dummy()

wb ac smooth.c

API Prefix Key Pair Generation Smooth()
API Prefix Shared Secret Computation Smooth()
API Prefix Key Derivation Function Smooth()

wb ac stub.c

API Prefix Key Pair Generation Stub()
API Prefix Shared Secret Computation Stub()
API Prefix Key Derivation Function Stub()

xc wb.h (expansion macros)

API Prefix Key Pair Generation()
API Prefix Shared Secret Computation()
API Prefix Key Derivation Function()

ka-glue.c

API Prefix Key Pair Generation IDi()
API Prefix Shared Secret Computation IDj()
API Prefix Key Derivation Function IDk()

ka.c (user code)

Calls to:
API Prefix Key Pair Generation(IDi,...)
API Prefix Shared Secret Computation(IDj,...)
API Prefix Key Derivation Function(IDk,...)

params.wbp

IDi → {params}
IDj → {params}
IDk → {params}
...

encapsulates

#ifdef XC WB STUB

expands as

#ifndef XC WB STUB

expands as

#ifdef XC WB SMOOTH

calls

#ifdef XC WB ROBUST

calls using..

additional parameters

datagen

generates

codegen
generates

dk ecc gen files

generates

encapsulates

Figure 3: Eventual architecture (ignoring the transcoder). In the function names, API Prefix should be replaced by
XC Dynamic Key Asymmetric Cipher Key Agreement.

4



Given the complexity of this architecture, due mostly to the various levels of code generation involved, a
number of simplifying assumption were made in order to obtain a runnable prototype in the given time frame.
These assumptions are:

1. No transforms: the prototype code is not to be transcoded; it does not use any pragma like xc transform,
xc transformtype, or xc transformcast. In a sense, it can be seen as a noxcode-level robust implemen-

tation on both the library and user sides.

2. Hard glue code: rather than modifying codegen (that is, creating new perl templates for the three key agree-
ment functions in xtools/whitebox/wbcodegen/WBTemplates/), I settled down for writting a hardcoded glue
file (fake-glue.c) which branches the key agreement calls to their appropriate implementation, depending
on which of XC WB STUB, XC WB SMOOTH, or XC WB ROBUST is defined. Hence, the test program can be compiled
in either mode without modifying the code (in the spirit of the other cryptographic tests).

3. Runtime data generation: rather than having the robust data (red/gray expressions in Figure 1) generated
at compile time by datagen, they are generated at runtime by means of a fake datagen implemented in C in
fake-data.c. These functions are called from within the glue code whenever XC WB ROBUST is defined, and
their outputs are passed as additional parameters to the robust versions of ECDH key agreement functions
(on the library side). Both variants described in Section 3 are implemented (v1 and v2).

The resulting architecture in depicted on Figure 4

wb ac ecc ecdh robust.c

XC ECDH Key Pair Generation Robust M1()
XC ECDH Shared Secret Computation Robust M1()
XC ECDH Key Derivation Function Robust Dummy()

wb ac ecc ecdh smooth.c

XC ECDH Key Pair Generation Smooth()
XC ECDH Shared Secret Computation Smooth()
XC ECDH Key Derivation Function Smooth Dummy()

wb ac smooth.c

API Prefix Key Pair Generation Smooth()
API Prefix Shared Secret Computation Smooth()
API Prefix Key Derivation Function Smooth()

wb ac stub.c

API Prefix Key Pair Generation Stub()
API Prefix Shared Secret Computation Stub()
API Prefix Key Derivation Function Stub()

fake-glue.c

glue KeyPairGeneration()
glue SharedSecretComputation()
glue KeyDerivationFunction()

fake-datagen.c

genParamsKeyPairGenerationM1 v1()
genParamsKeyPairGenerationM1 v2()
genParamsSharedSecretComputationM1 v1()
genParamsSharedSecretComputationM1 v2()

ka.c (user code)

encapsulates

calls

#ifdef XC WB STUB

calls#ifdef XC WB SMOOTH

calls

#ifdef XC WB ROBUST

calls using..

additional parameters

calls

Figure 4: Architecture of the prototype

5



4.3 The three ECDH functions

Implementations of the three key agreement functions (key pair generation, shared secret computation, and key
derivation function) constitute the heart of the prototype. They can be found in:

• modules/crypto/asymmetric/common/src/wb ac stub.c (stub implementation)

• modules/crypto/asymmetric/ecc/src/wb ac ecc ecdh smooth.c (smooth implementation)

• modules/crypto/asymmetric/ecc/src/wb ac ecc ecdh robust.c (robust implementation)

Stub implementation, which is little more than an empty shell, is intended to validate the key flow in between
API calls from a user program. Smooth implementation does implement the ECDH features, but without doing
the white-box computations explained in Section 3, that is, using the standard procedures [2]. The robust
implementation is the one implementing white-box computations. Both smooth and robust implementations
delegate elliptic curve operations to the CS elliptic curve library, which conveniently exist in both smooth and
robust versions (the robust one is called hydrogen). Note that our robust implementation still relies on one
preamble function from the smooth elliptic curve library: XC ECC Get Domain Parameters Smooth(); this function
having no equivalent in the hydrogen version.

As per the coding style, it strived to follow the examples of comparable source files in the library, e.g.,
declaring all variables before any assignment, allocating memory at one time and testing whether each allocation
was a success, providing debugging message, and using whichever naming conventions I identified in other parts
of the code.

4.4 List of impacted files

Here is the list of files that were either created or modified in the framework of this prototype. All the corresponding
changes are contained in the patch ecdh-arnaud.patch.

1. ka.c (created): the test program, to reside anywhere in the filesystem (in my case, this was in a dedicated
subfolder of CS library test directory, modules/crypto/asymmetric/ecc/test/e2e/ecdh/).

2. Makefile (created): accompanying the test program, in the same directory. The recognized targets are
ka-stub.exe, ka-smooth.exe, and ka-robust.exe.

3. fake-glue.c (created): hard coded glue, same directory as the test program.

4. fake-datagen.[c,h] (created): runtime data generation, same directory again. This file uses smooth elliptic
curve operations, and therefore requires an additional linking to xc wb smooth.xlib:eval despite being in
robust mode (taken into account in the Mafefile).

5. modules/crypto/include/xc/xc wb.h (modified): key agreement API and expansion macros.

6. modules/crypto/include/xc/xc wb types.h (modified): API related typedefs: XC KeyAgreementSecret,
XC KeyAgreementDerivatedKey, and XC KeyAgreementOptions.

7. modules/crypto/asymmetric/ecc/include/int wb ac ecc.h (modified): other lower-level typedefs: struct
xc wb ECC secret and struct xc wb ECC derivated key.

8. modules/crypto/include/xsys/xc wb funcs ac.h (modified): stub and smooth declarations.

9. modules/crypto/asymmetric/common/src/wb ac stub.c (modified): stub implementation.

10. modules/crypto/asymmetric/common/src/wb ac smooth.c (modified): smooth encapsulation.

11. modules/crypto/asymmetric/ecc/src/wb ac ecc ecdh smooth.c (created): smooth implementation.

12. modules/crypto/asymmetric/ecc/src/wb ac ecc ecdh robust.c (created): robust implementation.

13. modules/crypto/asymmetric/ecc/src/wb ac ecc ecdh util.c (created): random number conversion.

14. modules/crypto/asymmetric/ecc/makefile.xc wb ecc (modified): having the latter three files included for
compilation of the library.

15. XPP/src/com/cloakware/whitebox/ecc/ECCKeyAgreementDraft.java (created): translation of the elliptic
curve operations in fake-datagen.c into Java (see below).

5 What’s next

The next steps come to relax the simplifying assumptions made in Section 4.2. In other words, to make the code
transcodable; write codegen templates in Perl (one for each ECDH function); and write datagen classes in Java

(one for key pair generation, and one for shared secret computation). To help in the latter direction, I am joining
to the patch a Java class (ECCKeyAgreementDraft.java) which is a simple translation of the fake datagen in Java.
It contains four functions, generating the red/gray expressions for both design variants on Figures 1 and 2. This
does not resemble the structure of other datagen classes, but at least provides the elliptic curve computations to
be used in the eventual datagen implementation. The class comes with a main function, and can be compiled and
run from XPP/src/ as follows:

6



• javac com/cloakware/whitebox/ecc/ECCKeyAgreementDraft.java

• java com.cloakware.whitebox.ecc.ECCKeyAgreementDraft

On a different topic, the expansion macros for key agreement in modules/crypto/include/xc/xc wb.h are also
ready to be used.

6 The learning path...

Working on the CS library seems to involve a variety of skills and knowledge whose acquisition does not follow an
obvious learning path (there are various entry points, some of which cyclically depends on each other). Besides
Mizan’s report [1] and crucial guidance from James (many thanks!), I found that [3] offered the most appropriate
overview of the CS library to a newcomer; I wish I had encountered this document earlier in the project and
encourage the team to add it among reference documents in the intranet. Finally, sketching a diagram like the
one of Figure 3 helped me quite a lot to understand the various levels of interaction between static and generated
code, compile time and runtime, etc. Please feel free to reuse it (as well as any material in this report).

References

[1] Mizanur Raman. White-Box Elliptic Curve Diffie-Hellman Key Exchange Protocol Design. Technical Report,
Aug. 2011.

[2] National Institute of Standards and Technology. Suite B Implementer’s Guide to NIST SP 800-56A. Crypto-
Bytes, RSA Laboratories, 4(1):610, July 2009.

[3] Cliffor Liem, Yuan Gu, Harold Johnson. A compiler-based infrastructure for software-protection. Proceedings
of the third ACM SIGPLAN workshop on Programming languages and analysis for security, p33–44, 2008.

7


