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Abstract

In highly dynamic systems (such as wireless mobile ad-hoc networks, robotic
swarms, vehicular networks, etc.) connectivity does not necessarily hold at a
given time but temporal paths, or journeys, may still exist over time and space,
rendering computing possible; some of these systems allow waiting (i.e., pauses
at intermediate nodes, also referred to as store-carry-forward strategies) while
others do not. These systems are naturally modelled as time-varying graphs,
where the presence of an edge and its latency vary as a function of time; in these
graphs, the distinction between waiting and not waiting corresponds to the one
between indirect and direct journeys.

We consider the expressivity of time-varying graphs, in terms of the lan-
guages generated by the feasible journeys. We examine the impact of waiting
by studying the difference in the type of language expressed by indirect jour-
neys (i.e., waiting is allowed) and by direct journeys (i.e., waiting is unfeasible),
under various assumptions on the functions that control the presence and la-
tency of edges. We prove a general result which implies that, if waiting is not
allowed, then the set of languages Lnowait that can be generated contains all
computable languages when the presence and latency functions are computable.
On the other end, we prove that, if waiting is allowed, then the set of languages
Lwait contains all and only regular languages; this result, established using al-
gebraic properties of quasi-orders, holds even if the presence and latency are
unrestricted (e.g., possibly non-computable) functions of time.

In other words, we prove that, when waiting is allowed, the power of the
accepting automaton can drop drastically from being at least as powerful as a
Turing machine, to becoming that of a Finite-State Machine. This large gap
provides an insight on the impact of waiting in time-varying graphs.

We also study bounded waiting, in which waiting is allowed at a node for at
most d time units, and prove that Lwait[d] = Lnowait; that is, the power of the
accepting automaton decreases only if waiting time is unbounded.
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1. Introduction

1.1. Highly Dynamic Networks and Time-Varying Graphs

The study of highly dynamic networks focuses on networked systems where
changes in the topology are extensive, possibly unbounded, and occur contin-
uously; in particular, connectivity might never be present. For example, in
wireless mobile ad hoc networks, the topology depends on the current distance
between mobile nodes: an edge exists between them at a given time if they are
within communication range at that time. Hence, the topology changes con-
tinuously as the movements of the entities destroy old connections and create
new ones. These changes can be dramatic; connectivity does not necessarily
hold, at least with the usual meaning of contemporaneous end-to-end multi-hop
paths between any pair of nodes, and the network may actually be disconnected
at every time instant. These infrastructure-less highly dynamic networks, vari-
ously called delay-tolerant, disruptive-tolerant, challenged, epidemic, opportunis-
tic, have been long and extensively investigated by the engineering community
and, more recently, by distributed computing researchers (e.g. [38, 44, 47, 51]).
Some of these systems provide the entities with store-carry-forward-like mecha-
nisms (e.g., local buffering) while others do not. In presence of local buffering,
an entity wanting to communicate with a specific other entity, can wait un-
til the opportunity of communication presents itself; clearly, if such buffering
mechanisms are not provided, waiting is not possible.

These highly dynamic networks are modelled in a natural way as time-
varying graphs or evolving graphs (e.g., [18, 27]). In a time-varying graph
(TVG), edges between nodes exist only at certain times (in general, unknown
to the nodes themselves) specified by a presence function. Another component
of TVGs is the latency function, which indicates the time it takes to cross a
given edge at a given time. The lifetime of a TVG can be arbitrary, that is time
could be discrete or continuous, and the presence and latency functions can vary
from finite automata to Turing computable functions and even non-computable
functions.

A crucial aspect of time-varying graphs is that a path from a node to another
might still exist over time, even though at no time the path exists in its entirety;
it is this fact that renders computing possible. Indeed, the notion of “path over
time”, formally called journey, is a fundamental concept and plays a central role
in the definition of almost all concepts related to connectivity in time-varying
graphs. Examined extensively, under a variety of names (e.g., temporal path,
schedule-conforming path, time-respecting path, trail), informally a journey is
a walk1 <e1, e2, ..., ek> with a sequence of time instants <t1, t2, ..., tk> where
edge ei exists at time ti and its latency ζi at that time is such that ti+1 ≥ ti+ζi.

The distinction between absence and availability of local buffering in highly
dynamic systems corresponds in time-varying graphs to the distinction between

1A walk is a path with possibly repeated edges.
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a journey where ∀i, ti+1 = ti + ζi (a direct journey), and one where it may
happen that, for some i, ti+1 > ti + ζi (an indirect journey).

In this paper, we are interested in studying the difference between direct and
indirect journeys, that is the difference that the possibility of waiting creates in
time-varying graphs.

1.2. Main Contributions

In a time-varying graph G, a journey can be viewed as a word on the alphabet
of the edge labels; in this light, the class of feasible journeys in G defines a
language Lf (G) expressed by G, where f ∈ {wait, nowait} indicates whether
or not indirect journeys are allowed. In this paper we examine the complexity
of time-varying graphs in terms of their expressivity, that is of the language
defined by the journeys, and establish results showing the difference that the
possibility of waiting creates.

We will investigate and demonstrate the varying expressivity we get in the
non-waiting case and the constant expressivity we get in the waiting case.

Given a class of functions Φ, we consider the class UΦ of TVGs whose pres-
ence and latency functions belong to Φ. More precisely, we focus on the sets of
languages LΦ

nowait = {Lnowait(G) : G ∈ UΦ} and LΦ
wait = {Lwait(G) : G ∈ UΦ}

expressed when waiting is, or is not allowed. For each of these two sets, the com-
plexity of recognizing any language in the set (that is, the computational power
needed by the accepting automaton) defines the complexity of the environment.

We first study the expressivity of time-varying graphs when waiting is not
allowed, that is the only feasible journeys are direct ones. We show that, for any
computable language L, there exists a time-varying graph G, with computable
functions for presence and latency, such that Lnowait(G) = L. We actually prove
the stronger result that, given a class of functions Φ, the set LΦ

nowait contains
the languages recognizable by Φ.

We next examine the expressivity of time-varying graphs if indirect journeys
are allowed. We prove that, for any class Φ, LΦ

wait is precisely the set of regular
languages; even if the presence and latency functions are arbitrarily complex
(e.g., non-computable) functions of time, only regular languages can be gener-
ated. The proof is algebraic and based on order techniques, relying on a theorem
by Harju and Ilie [34] that enables to characterize regularity from the closure
of the sets from a well quasi-order. In other words, we prove as a main corol-
lary that, when waiting is allowed, the power of the accepting automaton drops
drastically from being (possibly) as powerful as a Turing Machine, to becoming
that of a Finite-State Machine.

To better understand the impact of waiting on the expressivity of time-
varying graphs, we then turn our attention to bounded waiting; that is when
indirect journeys are considered feasible if the pause between consecutive edges
in the journeys has a duration bounded by d > 0. At each step of the jour-
ney, waiting is allowed only for at most d time units. Hence, we examine the
set Lwait[d] of the languages expressed by time-varying graphs when waiting
is allowed up to d time units. In fact, we prove that for any fixed d ≥ 0,
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Lwait[d] = Lnowait, which implies that the expressivity of time-varying graphs
is not impacted by allowing waiting for a limited amount of time.

1.3. Related Work

The literature on dynamic networks and dynamic graphs could fill a vol-
ume. Here we briefly mention only some of the work most directly connected
to the results of this paper. In this light, noticeable is the pioneering work,
in distributed computing, by Awerbuch and Even on broadcasting in dynamic
networks [6], and, in graph theory, by Harari and Gupta on models of dynamic
graphs [33].

The idea of representing a dynamic graph as a sequence of (static) graphs,
called evolving graph (EG), was formalized in [27] to study basic dynamic net-
work problems initially from a centralized point of view [8, 13]. In an evolving
graph representation, the dynamics of the system is viewed as a sequence of
global snapshots (taken either in discrete steps or when events occur). This
notion has been subsequently re-discovered by researchers who, unaware of the
pre-existing literature, have called it with different names; in particular, the
term “time-varying graph” was first used in such a context [48].

The notion of time-varying graph (TVG) used here has been introduced
in [18]. It is theoretically more general than that of evolving graph; the two
notions are computationally equivalent in the case of countable events (edge ap-
pearence/disappearance). In a time-varying graph representation, the dynamics
of the system is expressed in terms of the changes in the local viewpoint of the
entities.

Both EG and TVG have been extensively employed in the analysis of basic
problems such as routing, broadcasting, gossiping and other forms of information
spreading (e.g., [5, 9, 17, 21, 25, 29, 47, 49, 50]); to study problems of exploration
(e.g. [1, 12, 28, 29, 30, 36, 37]); to examine fault-tolerance, consensus and
security (e.g., [11, 22, 31, 42, 43]); for investigating leader election, counting and
computing network information (e.g., [4, 16, 24, 32]); to examine computability
issues (e.g., [15, 45]); for studying the probabilistic analysis of informations
spreading and use of randomizationn (e.g. [7, 19, 20, 23]); to identify graph
components with special properties (e.g., [3, 40]); and to investigate emerging
properties in social networks (e.g., [10, 14, 39, 41, 48]).

A characterization of classes of TVGs with respect to properties typically
assumed in distributed computing research can be found in [18]. The impact of
bounded waiting in dynamic networks has been investigated for exploration [37].

The closest concept to TVG-automata, defined in this paper, are the well-
established Timed Automata proposed by [2] to model real-time systems. A
timed automaton has real valued clocks and the transitions are guarded with
finite comparisons on the clock values; with only one clock and no reset it is
a TVG-automaton with 0 latency. Note that, even in the simple setting of
timed automata, some key problems, like inclusion, are undecidable for timed
languages in the non-deterministic case, while the deterministic case lacks some
expressive power. Further note that we focus here on the properties of the

4



un-timed part of the journeys (i.e. the underlying walk made of the edges
that are crossed), and given that the guards (presence and latency) can be
arbitrary functions, the reachability problem is obviously not decidable for TVG-
automaton. This is probably what explains that, to the best of our knowledge,
such systems have not been considered for these classical questions. We are here
mainly interested in comparing the expressivity of waiting and non-waiting in
TVGs, which is a more unusual question.

2. Definitions and Terminology

2.1. Time-varying graphs

Following [18], we define a time-varying graph (TVG) as a quintuple G =
(V,E, T , ρ, ζ), where V is a finite set of entities or nodes; E ⊆ V × V × Σ is
a finite set of relations, or edges, between these entities, possibly labeled by
symbols in an alphabet Σ. The system is studied over a given time span T ⊆ T
called lifetime, where T is an arbitrary temporal domain, that is, time could be
discrete (e.g., T = N) or continuous (e.g., T = R+); ρ : E×T → {0, 1} is the edge
presence function, which indicates whether a given edge is available at a given
time; ζ : E×T → T, is the latency function, which indicates the time it takes to
cross a given edge if starting at a given date (the latency of an edge could vary
in time). In general, both presence and latency are arbitrary functions of the
time. The impact of restricting the computability class of presence and latency
is further discussed later. In this paper we restrict ourselves to deterministic
functions.

The directed edge-labeled graph G = (V,E), called the footprint of G, may
contain loops, and it may have more than one edge between the same nodes,
but all with different labels.

Definition 2.1. A journey is a finite sequence 〈(e1, t1), (e2, t2), ..., ek, tk)〉 where
〈e1, e2, . . . , ek〉 is a walk in the footprint G, ρ(ei, ti) = 1 (for 1 ≤ i < k), and
ζ(ei, ti) is such that ti+1 ≥ ti +ζ(ei, ti) (for 1 ≤ i < k). If ∀i, ti+1 = ti +ζ(ei, ti)
the journey is said to be direct, otherwise indirect. We denote by J ∗(G) the set
of all possible journeys in G.

Time-varying graph introduced in [18], can arguably describe a multitude of
different scenarios, from transportation networks to communication networks,
complex systems, or social networks. Figure 1 shows two simple examples
of TVGs, depicting respectively a transportation network (Figure 1a) and a
communication network (Figure 1b). In the transportation network, an edge
from node u to node v represents the possibility for some agent to move from
u to v; typical edges in this scenario are available on a punctual basis, i.e.,
the presence function ρ for these edges returns 1 only at particular date(s)
when the trip can be started. The latency function ζ may also vary from
one edge to another, as well as for different availability dates of a same given
edge (e.g. variable traffic on the road, depending on the departure time). In
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Figure 1: Two examples of time-varying graphs, highlighting (a) the labels, and (b) the
presence function.

the communication network of Figure 1b, the labels are not indicated; shown
instead are the intervals of time when the presence function ρ is 1. Assum-
ing ζ = 1 for all edges at all times, examples of indirect journeys include
J1 = {(ac, 2), (cd, 5)}, and J2 = {(ab, 2), (bc, 3), (cd, 5)}; an example of direct
journey is J3 = {(ab, 2), (bc, 3)}; note that J2 is not a direct journey.

2.2. TVG-automata

Definition 2.2 (TVG-automaton). Given a time-varying graph G = (V,E, T , ρ, ζ)
whose edges are labeled over Σ, we define a TVG-automaton A(G) as the 5-tuple
A(G) = (Σ, S, I, E , F ) where

• Σ is the input alphabet;

• S = V is the set of states;

• I ⊆ S is the set of initial states;

• F ⊆ S is the set of accepting states; and

• E ⊆ S×T ×Σ×S×T is the set of transitions such that (s, t, a, s′, t′) ∈ E
iff ∃e = (s, s′, a) ∈ E : ρ(e, t) = 1, ζ(e, t) = t′ − t.

In the following we shall denote (s, t, a, s′, t′) ∈ E also by s, t
a→ s′, t′. A

TVG-automaton A(G) is deterministic if for any time t ∈ T , any state s ∈ S,

and any symbol a ∈ Σ, there is at most one transition of the form (s, t
a→ s′, t′);

it is non-deterministic otherwise.
The concept of journey can be extended in a natural way to the framework

of TVG-automata.

Definition 2.3 (Journey in a TVG-automaton). A journey J in a TVG-
automaton A(G) is a finite sequence of transitions

J = (s0, t0
a0→ s1, t1), (s1, t

′
1

a1→ s2, t2) . . . (sp−1, t
′
p−1

ap−1→ sp, tp)
such that the sequence 〈(e0, t0), (e1, t

′
1), . . . , (ep−1, t

′
p−1)〉 is a journey in G.

Observe that we have ti = t′i−1 + ζ(ei−1, t
′
i−1), where ei = (si, si+1, ai) (for

0 ≤ i < p). Also note that the transitions defining journeys are guarded by
arbitrary functions of time.
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(a) Structure of G1

e ρ(e, t) = 1 iff ζ(e, t) =

e0 always true (p− 1)t

e1 t > p (q − 1)t

e2 t 6= piqi−1, i > 1 (q − 1)t

e3 t = p any

e4 t = piqi−1, i > 1 any

(b) Presence and Latency functions for G1

Figure 2: A TVG-automaton G1 such that Lnowait(G1) = {anbn : n ≥ 1}.

Consistently with the above definitions, we say that J is direct if ∀i, t′i = ti
(there is no pause between transitions), and indirect otherwise.We denote by
λ(J ) the associated word a0, a1, ...ap−1 and by start(J ) and arrival(J ) the
dates t0 and tp, respectively. To complete the definition, an empty journey
J∅ consists of a single state, involves no transitions, its associated word is the
empty word λ(J∅) = ε, and its arrival date is the starting date. A journey is
said accepting if it starts at time t = 0 in an initial state s0 ∈ I and ends in
an accepting state sp ∈ F some time later. A TVG-automaton A(G) accepts a
word w ∈ Σ∗ iff there exists an accepting journey J such that λ(J ) = w.

Let Lnowait(G) denote the set of words (i.e., the language) accepted by
TVG-automaton A(G) using only direct journeys, and let Lwait(G) be the lan-
guage recognized if journeys are allowed to be indirect. Given the set U of
all possible TVGs, let us denote as Lnowait = {Lnowait(G) : G ∈ U} and
Lwait = {Lwait(G) : G ∈ U} the sets of all languages being possibly accepted
by a TVG-automaton if journeys are constrained to be direct (i.e., no waiting
is allowed) and if they are unconstrained (i.e., waiting is allowed), respectively.

In the following, when no ambiguity arises, we will use interchangeably the
terms node and state, and the terms edge and transition; the term journey will
be used in reference to both TVGs and TVG-automata.

2.3. Example of TVG-automaton

Consider the graph G = (V,E) composed of three nodes: V = {v0, v1, v2},
and five edges E = {e0 = (v0, v0, a), e1 = (v0, v1, b), e2 = (v1, v1, b), e3 =
(v0, v2, b), e4 = (v1, v2, b))}. We show below how to define presence and latency
functions, and hence a TVG G1 = (V,E, T , ρ, ζ), such that, based on direct
journeys, the deterministic TVG-automaton A(G1) recognizes the context-free
language {anbn, n ≥ 1}.

Consider the automaton A(G1), depicted on Figure 2a, where v0 is the initial
state and v2 is the accepting state. For clarity, let us assume that A(G1) starts at
time 1 (the same behavior could be obtained by modifying slightly the formulas
involving t in Table 2b). The presence and latency functions are as shown in
Table 2b, where p and q are two distinct prime numbers greater than 1.
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It is clear that the an portion of the word anbn is read entirely at v0 within
t = pn time. If n = 1, at this time the only available edge is e3 (labeled b),
which allows to correctly accept ab. Otherwise (n > 1) at time t = pn, the only
available edge is e1, which allows to start reading the bn portion of the word.
By construction of ρ and ζ, edge e2 is always present except for the very last b,
which has to be read at time t = pnqn−1. At that time, only e4 is present and
the word is correctly recognized. It is easy to verify that only these words are
recognized, and the automaton is deterministic. The reader may have noticed
the basic principle employed here (and later in the paper) of using latencies as
a means to encode words into time, and presences as a means to select through
opening the appropriate edges at the appropriate time.

2.4. Restrictions of Computability.

When considering general TVG-automata, we will investigate whether the
class of computability to which the presence and latency functions belong im-
pacts the class of recognizable language by a general TVG-automaton.

Consider a finite alphabet Σ. Let q = |Σ| be the size of the alphabet, and
w.l.o.g assume that Σ = {0, . . . , q − 1}. Let Φ be a class of functions over the
set of integers represented in base q with a little-endian encoding (i.e., least
significant digit first). For any integer n, |n| denotes the size of the encoding of
n in base q.

A function ψ is Φ−computable if ψ ∈ Φ. A language L is Φ−recognizable if
there exists c ∈ N, ψ ∈ Φ such that L = ψ−1(c). By extension, a characteristic
function χL for a set L is said to be Φ−computable if L is Φ−recognizable.

Let L be an arbitrary Φ−computable language defined over the finite alpha-
bet Σ. Let ε denote the empty word; note that L might or might not contain
ε. The notation α.β indicates the concatenation of α ∈ Σ∗ with β ∈ Σ∗.

Definition 2.4. A class Φ of functions is q−stable, for some base q, if it is
stable by composition and for any function ϕ ∈ Φ, for any p ∈ Σ,

1. the function ϕp : n 7→ ϕ(n+ p× q|n|) is in Φ.

2. the function w 7→ ϕp(w)− ϕ(w) is in Φ.

Remark. It should be obvious that standard computability classes satisfy
these conditions. For instance, consider finite state transducers with alphabet
Σ, adding p×q|n| to n ∈ N can be done with a finite state transducer. Indeed, by
assuming little-endian encoding in base q for integers in N, such an arithmetic
operation corresponds to a concatenation of the letter p at the end. Similarly,
for any ϕ that corresponds to a finite transducer, computing the difference in
2 can be obtained by a finite transducer that outputs 0 for any letter of (the
encoding of) n and terminates with a p.

Definition 2.5. A Φ−TVG-automaton is a TVG-automaton whose presence
and latency functions are Φ−computable. The set LΦ

nowait is the set of languages
that can be recognized by a Φ−TVG with no waiting allowed. The set LΦ

wait is
the set of languages that can be recognized by a Φ−TVG with waiting allowed.
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(b) Case with ε /∈ L

Figure 3: The TVG G2(L) that recognizes the arbitrary computable language L.

3. No Waiting Allowed

This section focuses on the expressivity of time-varying graphs when only
direct journeys are allowed. We prove that, in this case, the computability class
of the presence and latency functions translate directly in the computability
class of recognized languages. In other words, for any class Φ, the set LΦ

nowait of
languages recognized by Φ−TVG is at least the set of Φ−recognizable languages.
This inclusion is tight in the case of classical (Turing) computable function: the
set of recognizable languages is exactly the set of recursive languages.

Theorem 3.1. Let Φ be a q−stable class of integer functions. The set LΦ
nowait of

languages recognized by a Φ−TVG contains the set of Φ−recognizable languages.

Proof. Consider a class Φ of functions, that is q−stable. Consider L a Φ−recogni-
zable language. Denote ψ ∈ Φ and c ∈ N such that L = ψ−1(c).

Given p ∈ Σ, we denote by ψp the function of Φ such that ψp : n 7→
ϕ(n+ p× q|n|). Note that ψp is also in Φ.

Consider now the TVG G2 where V = {v0, v1}, E = {{(v0, v0, i), i ∈ Σ} ∪
{(v0, v1, i), i ∈ Σ} ∪ {(v1, v0, i), i ∈ Σ} ∪ {(v1, v1, i), i ∈ Σ}}. The presence and
latency functions are defined relative to which node is the end-point of an edge.
For all u ∈ {v0, v1}, i ∈ Σ, and t ≥ 0, we define

• ρ((u, v0, i), t) = true if ψi(t) = c

• ζ((u, v0, i), t) = ψi(t)− ψ(t)

• ρ((u, v1, i), t) = true if ψi(t) 6= c

• ζ((u, v1, i), t) = ψi(t)− ψ(t)

Consider the corresponding TVG-automaton A(G2(L)) where the unique
accepting state is v0 and the initial state is either v0 (if ε ∈ L, see Figure 3a),
or v1 (if ε /∈ L see Figure 3b).

Claim 3.2. G2(L) is a Φ−TVG-automaton. Lnowait(G2(L)) = L.

Proof. Since Φ is q−stable, G2(L) presence and latency functions are obviously
Φ−computable.

Now, we want to show there is a unique accepting journey J with λ(J ) =
w if and only if w ∈ L. We first show that for all words w ∈ Σ∗, there is
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exactly one direct journey J in A(G2(L)) such that λ(J ) = w, and in this
case arrival(J ) = ψ(w). This is proven by induction on k ∈ N, the length
of the words. It clearly holds for k = 0 since the only word of that length is
ε and ψ(ε) = 0 (by convention, see above). Let k ∈ N. Suppose now that
for all w ∈ Σ∗, |w| = k we have exactly one associated direct journey, and
arrival(J ) = ψ(w).
Consider w1 ∈ Σ∗ with |w1| = k + 1. Without loss of generality, let w1 = w.i
where w ∈ Σ∗ and i ∈ Σ. By induction there is exactly one direct journey J
with λ(J ) = w. Let u = arrival(J ) be the node of arrival and t the arrival
time. By induction, t ∈ ψ(Σ∗); furthermore since the presence function depends
only on the node of arrival and not on the node of origin, there exists exactly
one transition, labeled i from u. So there exists only one direct journey labeled
by w1. By definition of the latency function, its arrival time is ψ(w)+(ψ(w.i)−
ψ(w)) = ψi(w). This ends the induction.
We now show that such a unique journey is accepting if and only if w ∈ L. In
fact, by construction of the presence function, every journey that corresponds
to w ∈ L,w 6= ε, ends in v0, which is an accepting state. By construction, the
empty journey corresponding to ε ends in the accepting state v0 if and only if
ε ∈ L.

For any Φ−recognizable language L, there exists a Φ−TVG-automaton that
recognizes L. This concludes the proof of the theorem.

As a corollary we have

Corollary 3.3. Let Turing be the class of Turing computable integers func-

tions. We have LTuring
nowait = Turing

4. Waiting Allowed

We now turn the attention to the case of time-varying graphs where indirect
journeys are possible. In striking contrast with the non-waiting case, we show
that the languages LΦ

wait recognized by Φ−TVG-automata consists only of reg-
ular languages, even if Φ strictly contains the Turing computable functions. Let
R denote the set of regular languages.

Lemma 4.1. Let Φ be any class of functions containing the constant functions.
Then R ⊆ LΦ

wait.

Proof. It follows easily from observing that any finite-state machine (FSM) is
a particular TVG-automaton whose edges are always present and have a nil
latency. The fact that we allow waiting here does not modify the behavior of the
automata as long as we consider deterministic FSMs only (which is sufficient),
since at most one choice exists at each state for each symbol read. By considering
exactly the same initial and final states, for any regular language L, we get a
corresponding TVG G such that Lwait(G) = L.

10



The reverse inclusion is more involved. Consider a TVG-automaton G =
(V,E, T , ρ, ζ) with labels in Σ and with arbitrary ρ and ζ, we have to show that
Lwait(G) ∈ R.

The proof is algebraic, and based on order techniques, relying on a theorem
of Harju and Ilie (Theorem 6.3 in [34]) that enables to characterize regularity
from the closure of the sets from a well quasi-order. We will use here an inclusion
order on journeys (to be defined formally below). Informally, a journey J is
included in another journey J ′ if its sequence of transitions is included (in the
same order) in the sequence of transitions of J ′. It should be noted that sets
of indirect journeys from one node to another are obviously closed under this
inclusion order (on the journey J it is possible to wait on a node as if the
missing transitions from J ′ were taking place), which is not the case for direct
journeys as it is not possible to wait. In order to apply the theorem, we have to
show that this inclusion order is a well quasi-order, i.e. that it is not possible
to find an infinite set of journeys such that none of them could be included in
another from the same set.

Let us first introduce some definitions and results about quasi-orders. We
denote by ≤ a quasi-order over a given set Q (this is simply a reflexive and
transitive relation). A set X ⊂ Q is an antichain if all elements of X are
pairwise incomparable. The quasi-order ≤ is well founded if in Q, there is no
infinite descending sequence x1 ≥ x2 ≥ x3 ≥ . . . (where ≥ is the inverse of ≤)
such that for no i, xi ≤ xi+1. If ≤ is well founded and all antichains are finite
then ≤ is a well quasi-order on Q. When Q = Σ∗ for alphabet Σ, a quasi-order
is monotone if for all x, y, w1, w2 ∈ Σ∗, we have x ≤ y ⇒ w1xw2 ≤ w1yw2.

A word x ∈ Σ∗ is a subword of y ∈ Σ∗ if x can be obtained by deleting some
letters on y. This defines a relation that is obviously transitive and we denote
⊆ the subword order on Σ∗. Given two walks γ and γ′, γ is a subwalk of γ′, if γ
can be obtained from γ′ by deleting some edges. We can extend the ⊆ order to
labeled walks as follows: given two walks γ, γ′ on the footprint G of G, we note
γ ⊆ γ′ if γ and γ′ begin on the same node and end on the same node, and γ is
a subwalk of γ′.

Given a date t ∈ T and a word x in Σ∗, we denote by J ∗(t, x) the set
{J ∈ J ∗(G) : start(J ) = t, λ(J ) = x}. J ∗(x) denotes the set

⋃
t∈T J ∗(t, x).

Given a journey J , J̄ is the corresponding labeled walk (in the footprint G).
We denote by Γ(x) the set {J̄ : λ(J ) = x}.

In the following, we consider only “complete” TVG (i.e. there exists a tran-
sition for each letter in each state.) so we have J ∗(y) not empty for all word
y; complete TVG can be obtained from any TVG (without changing the recog-
nized language) by adding a sink node where any (missing) transition is sent.
In this way, all words have at least one corresponding journey in the TVG.

Let x and y be two words in Σ∗. We define the quasi-order ≺, as follows:
x ≺ y if

∀J ∈ J ∗(y),∃γ ∈ Γ(x), γ ⊆ J̄ .

The relation ≺ is obviously reflexive. We now establish the link between com-
parable words and their associated journeys and walks, and state some useful
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properties of relation ≺.

Lemma 4.2. Let x, y ∈ Σ∗ be such that x ≺ y. Then for any Jy ∈ J ∗(y), there
exists Jx ∈ J ∗(x) such that J̄x ⊆ J̄y, start(Jx) = start(Jy), arrival(Jx) =
arrival(Jy).

Proof. By definition, there exists a labeled walk γ ∈ Γ(x) such that γ ⊆ J̄y. It is
then possible to find a journey Jx ∈ J ∗(x) with J̄x = γ , start(Jx) = start(Jy)
and arrival(Jx) = arrival(Jy) by using for every edge of Jx the schedule of
the same edge in Jy.

Proposition 4.3. The relation ≺ is transitive.

Proof. Suppose we have x ≺ y and y ≺ z. Consider J ∈ J ∗(z). By Lemma 4.2,
we get a journey Jy ∈ J ∗(y), such that J̄y ⊆ J̄ . By definition, there exists
γ ∈ Γ(x) such that γ ⊆ J̄y. Therefore γ ⊆ J̄ , and finally x ≺ z.

Let L ⊂ Σ∗. For any quasi-order ≤, we denote Down≤(L) = {x | ∃y ∈
L, x ≤ y}.

The following is a corollary of Lemma 4.2:

Corollary 4.4. Consider the language L of words induced by labels of journeys
from u to v starting at time t. Then Down≺(L) = L.

The following theorem is due to Harju and Ilie; this is a generalization of
the well known theorem from Ehrenfeucht et al [26], which needs closure in the
other (upper) direction.

Theorem 4.5 (Th. 6.3 [34]). For any monotone well quasi order ≤ of Σ∗, for
any L ⊂ Σ∗, the language Down≤(L) is regular.

The main proposition to be proved now is that (Σ∗,≺) is a well quasi-order
(Proposition 4.12 below). We have first to prove the following.

Proposition 4.6. The quasi-order ≺ is monotone.

Proof. Let x, y be such that x ≺ y. Let z ∈ Σ∗. Let J ∈ J ∗(yz). Then there
exists Jy ∈ J ∗(y) and Jz ∈ J ∗(arrival(Jy), z) such that the end node of Jy is
the start node of Jz. By Lemma 4.2, there exists Jx that ends in the same node
as Jy and with the same arrival time. We can consider J ′ the concatenation of
Jx and Jz. By construction J̄ ′ ∈ Γ(xz), and J̄ ′ ⊆ J̄ . Therefore xz ≺ yz. The
property zx ≺ zy is proved similarly using the start property of Lemma 4.2.

Proposition 4.7. The quasi-order ≺ is well founded.

Proof. Consider a descending chain x1 � x2 � x3 � . . . such that for no
i xi ≺ xi+1. We show that this chain is finite. Suppose the contrary. By
definition of ≺, we can find γ1, γ2, . . . such that for all i, γi ∈ ¯J ∗(xi), and such
that γi+1 ⊆ γi. This chain of walks is necessarily stationary and there exits i0
such that γi0 = γi0+1. Therefore, xi0 = xi0+1, a contradiction.
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To prove that≺ is a well quasi-order, we now have to prove that all antichains
are finite. Let (Q,≤) be a quasi-order. For all A,B ⊂ Q, we denote A≤PB
if there exists an injective mapping ϕ : A −→ B, such that for all a ∈ A,
a ≤ ϕ(a). The relation ≤P is transitive and defines a quasi-order on P(Q), the
set of subsets of Q.

About the finiteness of antichains, we recall the following result

Lemma 4.8 ([35]). Let (Q,≤) be a well quasi-order. Then (P(Q),≤P) is a
well quasi-order.

and the fundamental result of Higman:

Theorem 4.9 ([35]). Let Σ be a finite alphabet. Then (Σ∗,⊆) is a well quasi-
order.

This implies that our set of journey-induced walks is also a well quasi-order
for ⊆ as it can be seen as a special instance of Higman’s Theorem about the
subword order. We are now ready to prove that all antichains are finite. We
prove this result by using a technique similar to the variation by [46] of the
proof of [35].

Lemma 4.10. Let X be an antichain of Σ∗. If the relation ≺ is a well quasi-
order on Down≺(X)\X then X is finite or Down≺(X)\X = ∅.

Proof. We denote Q = Down≺(X)\X, and suppose Q 6= ∅, and that Q is
a well quasi-order for ≺. Therefore the product and the associated product
order (Σ × Q,≺×) define also a well quasi-order. We consider A = {(a, x) |
a ∈ Σ, x ∈ Q, ax ∈ X}. Because ≺ is monotone, for all (a, x), (a′, x′) ∈ A,
(a, x) ≺× (b, y)⇒ ax ≺ by. Indeed, in this case a = b and x ≺ y ⇒ ax ≺ ay. So
A has to be an antichain of the well quasi-order Σ × Q. Therefore A is finite.
By construction, this implies that X is also finite.

Theorem 4.11. Let L ⊂ Σ∗ be an antichain for ≺. Then L is finite.

Proof. Suppose we have an infinite antichain X0. We apply recursively the
previous lemma infinitely many times, that is there exists for all i ∈ N, a set Xi

that is also an infinite antichain of Σ∗, such that Xi+1 ⊂ Down≺(Xi)\Xi.
We remark that if we cannot apply the lemma infinitely many times that

would mean that Xk = ∅ for some k. The length of words in X0 would be
bounded by k, hence in this case, finiteness of X0 is also granted.

Finally, by definition of Down≺, for all x ∈ Xi+1, there exists y ∈ Xi such
that x ≺ y, ie x ⊆ y. It is also possible to choose the elements x such that no
pair is sharing a common y. So Xi+1 ⊆P Xi, and we have a infinite descending
chain of (P(Σ∗),⊆P). This would contradict Lemma 4.8.

From Propositions 4.3, 4.6, 4.7 and Theorem 4.11 we have the last missing
ingredient:

Proposition 4.12. (Σ∗,≺) is a well quasi-order.
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Indeed, from Proposition 4.12, Proposition 4.6, Corollary 4.4, and Theorem
4.5, it immediately follows that Lwait(G) is a regular language for any TVG G;
that is,

Theorem 4.13. Let Φ be any class of functions containing the constant func-
tions. Then LΦ

wait = R.

5. Bounded Waiting Allowed

To better understand the expressive power of waiting, we now turn our atten-
tion to bounded waiting; that is when indirect journeys are considered feasible if
and only if the pause between consecutive edges has a bounded duration d > 0.
We restrict our study to the class of Turing-computable functions Turing. We

examine the set LTuring
wait[d] of all languages expressed by Turing−TVGs when

waiting is allowed up to d time units, and prove the negative result that for any

fixed d ≥ 0, LTuring
wait[d] = LTuring

nowait . That is, the complexity of the environment
is not affected by allowing waiting for a limited amount of time when the latency
and presence are computable.

The basic idea is to reuse the same technique as in Section 3, but with a
dilatation of time, i.e., given the bound d, the edge schedule is time-expanded
by a factor greater than d (and thus no new choice of transitions is created
compared to the no-waiting case).

Theorem 5.1. For any duration d, LTuring
wait[d] = LTuring

nowait .

Proof. Let L be an arbitrary Turing−recognizable language defined over the
finite alphabet Σ. We denote by ψ its characteristic function. Let d ∈ N
be the maximal waiting duration. We note K = q1+logq(d). We consider
a TVG G2,d structurally equivalent to G2 (see Figure 3 in Section 3), i.e.,
G2,d = (V,E, T , ρ, ζ) such that V = {v0, v1, v2}, E = {{(v0, v1, i), i ∈ Σ} ∪
{{(v0, v2, i), i ∈ Σ},∪ {(v1, v1, i), i ∈ Σ} ∪ {(v1, v2, i), i ∈ Σ} ∪ {(v2, v1, i), i ∈
Σ} ∪ {(v2, v2, i), i ∈ Σ}}. The initial state is v0, and the accepting state is v1.
If ε ∈ L then v0 is also accepting.

The presence and latency functions are now defined along the lines as those
of G2, the only difference being that we are somehow stretching the time by a
factor K.

For all u ∈ {v0, v1}, i ∈ Σ, and t ≥ 0, we define

• ρ((u, v0, i), 0) = true iff ψi(0) = c

• ζ((u, v1, i), 0) = K × i,
• ρ((u, v0, i), t) = true iff ψi(b t

K c) = c and b t
K c > 0,

• ζ((u, v0, i), t) = ψi(t)− ψ(t)

• ρ((u, v1, i), t) = true iff ψi(b t
K c) 6= c

• ζ((u, v1, i), t) = ψi(t)− ψ(t), t 6= 0.
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First, this is indeed a Turing-TVG.
For any word w, we denote by nw the corresponding integer (still using the

q based enconding). By the same induction technique as in Section 3, we have
that L ⊆ L(G2,d). Similarly, we have that any journey labeled by w ends at time
exactly Knw, even if some d−waiting occurred. Finally, we remark that for all
words w,w′ ∈ Σ+ such that w 6= w′, we have |Knw −Knw′ | ≥ K > d. Indeed,
if w 6= w′ then they differ by at least one letter. The minimal time difference
is when this is the first letter and these last letters are i, i + 1 w.l.o.g. In this
case, |Knw −Knw′ | ≥ K by definition of ζ for t = 0. Therefore waiting for a
duration of d does not enable more transitions in terms of labeling.

6. Concluding Remarks and Research Directions

We have studied the impact that waiting has on the expressivity of time-
varying graphs, examining the difference in the type of languages expressed
by indirect journeys (i.e., waiting is allowed) and direct journeys (i.e., waiting
is unfeasible). We have shown that, if waiting is not allowed, then for any
computable language L, there exists a time-varying graph G, with computable
functions for presence and latency, such that Lnowait(G) = L. This result has
to be compared with the fact that, as we have also proved, if waiting is allowed,
then a TVG can express only regular languages, and this is even if the latency
functions are arbitrarily complex (e.g., non-computable) functions of time.

In other words, if waiting is allowed, the difficulty of the language from arbi-
trary is always simplified to be regular. This expressivity gap can be rephrased
as a computational gap: when the guards are (at least) Turing-computable, the
power of the TVG automaton drops drastically from being (at least) as powerful
as a Turing machine, to becoming that of a Finite-State Machine. Note that the
result is also valid for continuous time models. In some sense, when considering
the untimed behaviour (the trajectories), discrete systems are as expressive as
continuous systems.

These results open interesting new research directions and pose intriguing
questions, some listed in the following.

– Language Classes.
Several interesting problems are open on the relationship between TVG and

language classes. In particular:
What restrictions on the journeys would characterize other classes of lan-

guages, e.g. only context-sensitive languages ?
For which computability class Φ the containment of the set LΦ

nowait in the
set of Φ−recognizable languages is strict ?

When waiting is allowed, what restrictions would identify specific subclasses
of the class of regular languages ?

Can the equivalence of recognizable languages between 0-delay and d-delay
TVG automaton be generalized to any q−stable computability class ?

– Randomized extensions.
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In this paper we have considered time-varying graphs where all functions
(presence, latency, waiting time) are deterministic.

An important research direction is to consider the impact on expressivity of
non-deterministic settings. Interesting questions include, for example, the study
of the expressivity of time-varying graphs where ρ(e, t) is the probability that
edge e exists at time t; or where the latency or the waiting time is a random
function.

Indeed, the study of the expressivity of random journeys is an inviting open
research direction.

– Application in highly dynamic networks.
Indirect and direct journeys in time-varying graphs correspond to the pres-

ence and absence, respectively, of unbounded buffering in highly dynamic net-
works. Obviously the availability of buffers (i.e., the ability to wait) increases
the number of available journeys and thus offers more computational power
to the designer of protocols for specific applications and tasks (broadcasting,
routing, etc.).

The results established here, that LΦ
wait is regular while LΦ

nowait is a Φ lan-
guage, provide a qualitative insight on the impact of buffering, rather than
a quantitative measure. This leaves open the important research question of
how to measure this computational impact. Indeed in a network modelled by
G, when waiting is allowed, the net gain in terms of of available journeys is
precisely ∆(G) = Lwait(G) \ Lnowait(G). The quantitative study of these dif-
ferences for classes of networks seems to be an important research direction.
In this line of investigation, there are many interesting questions with possibly
useful implications, e.g., to determine whether ∆(G) = ∅; i.e., whether or not
Lwait(G) = Lnowait(G).

The insights our results provide on the nature of time-varying graphs do not
seem to have an immediate practical impact on tasks and problems in highly
dynamic networks. Thus the need for investigations on computability and com-
plexity in time-varying graphs in presence of waiting is still pressing, both in
general and for specific classes of problems (e.g., information diffusion, routing,
etc.).
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