
Graph Algorithms (Spring 2025)

11. Temporal components and Temporal spanners

Teacher: Arnaud Casteigts Assistant: Matteo De Francesco

In this second class on temporal graphs, we discuss two topics that have focused a lot of
attention in recent years, namely temporal components and temporal spanners. One reason
is that connected components and spanning structures behave very differently in temporal
graphs, compared to their static analogs.

11.0.1 Temporal components

A temporal component in a temporal graph is a subset of vertices V ′ ⊆ V such that
for all u, v ∈ V ′, u can reach v by a temporal path (shorthand, u ⇝ v). We have already
seen that temporal reachability is non-transitive. An important consequence of this is that
maximal temporal components may overlap, as illustrated in fig. 1.

a
b c

d2 1,3
2

Figure 1: Overlapping of maximal components.

This overlapping is specific to temporal graphs. In static graphs (directed or not), max-
imal components do not overlap, they partition V into disjoint subsets. Unfortunately, this
situation is a source of computational hardness for many problems in temporal graphs. Let’s
consider the following two problems:

Temporal Component

Input: a temporal graph G and an integer k.

Question: does G admit a temporal component of size k?

We can define analoguously the problem Strict Temporal Component where the
component must be based on strict temporal paths. We will show that these two problems
are NP-hard, using two reductions from the Clique problem (in static graphs). Let us start
with the reduction for Strict Temporal Component, which is straightforward:

Theorem 11.1. Strict Temporal Component is NP-hard.

Proof. Given an instance for the Clique problem, say, a graph G = (V,E) and an integer k
(where the question is whether G admits a clique of size k), one can construct a temporal

1

graph G whose footprint is G itself and λ assigns a single and identical label to every edge
(say, label 1). Because the temporal paths in G are required to be strict, two vertices can
reach each other if and only if an edge exists between them. Consequently, a clique of size k
exists in G if and only if a temporal component of size k exists in G. In other words, if there
exists an algorithm solving Strict Temporal Component in polynomial time, then it
can be used to solve Clique in polynomial time as well.

Pseudo-code:

has_clique(G, k):
G ← temporal graph with footprint G and label 1 for every edge.

return has_temporal_component(G, k)

Clearly, the above construction does not work in the non-strict setting, because the
constructed temporal graph would then form a single component. The reduction is slightly
more complex:

Theorem 11.2. Temporal Component is NP-hard.

Proof. Given an instance (G = (V,E), k) for the Clique problem, one can build a temporal
graph where every edge {u, v} ∈ E is replaced with a semaphore gadget, i.e. an alternat-
ing cycle (u, u′, v, v′), where u′ and v′ are new vertices, and the labels along the cycle are
respectively set to 2, 3, 2, 3 (see fig. 2). As before, we obtain that two vertices u and v in
V can reach each other in G if and only if they share an edge in G. The difficulty is that

(a) An instance of Clique.

−→

u

v

u

v

u′v′
2

32

3

(b) The semaphore gadget.

Figure 2: Replacing all the edges by semaphores.

some of the new vertices may also reach each other, which prevents us from concluding that
components in G have the same size as cliques in G. To circumvent this problem, we create
another vertex x and add an edge between x and all the new vertices, with labels 1 and 4.
Note that all the new vertices are now in the same temporal component (through x), and
there are 2 |E| of them. These vertices can also reach (and be reached by) all the original
vertices. Finally, observe that this construction does not create new reachability among the
original vertices. Consequently, a clique of size k exists in G iff a temporal component of
size 2 · |E|+ 1+ k exists in G. In other words, a polynomial time algorithm for Temporal
Component implies one for Clique.

2

In conclusion, even basic questions like finding connected components are computation-
ally hard in temporal graphs. In this case, the problem turns out to be hard in both the
strict and the non-strict settings. Interestingly, there exists problems that are hard only in
the strict setting, and others that are hard only in the non-strict setting. Both settings are
really incomparable!

11.1 Temporal spanners

Given a (static) graph G = (V,E), recall that a spanning tree of G is a subgraph G′ =
(V ′, E ′) ⊆ G such that V ′ = V and G′ is a tree (see fig. 3). Clearly, spanning trees always

Figure 3: A spanning tree of a graph.

exist if G is connected, and we have already seen that computing them is an easy problem.

Given a temporal graph G = (V,E, λ) that is temporally connected, we can similarly
define a temporal spanning tree of G as a subgraph G ′ = (V ′, E ′, λ′) ⊆ G such that
V ′ = V , the footprint (V ′, E ′) is a tree, and G ′ is temporally connected. (See fig. 4.)

G ′
⊆a

b

c

d

2,7 3
1,4

G

a

b

c

d

2,7 3,5
1,4

1,64

Figure 4: A temporal graph G ∈ TC (right) and one of its temporal spanning tree G ′ (left).

Is the existence of a temporal spanning tree guaranteed as long as the initial graph is
in TC? Alas, no, for example the graph of fig. 5 does not admit a temporal spanning tree,
although it is temporally connected.

a

b c

d

2

1

2

1

Figure 5: A temporal graph in TC that does not admit a temporal spanning tree.

In fact, even deciding if a given temporal graph admits a temporal spanning tree turns
out to be an NP-hard problem!

3

11.1.1 Relaxing trees into spanners

Since temporal spanning trees do not always exist, we need to replace this notion by a more
flexible one. Given a temporal graph G = (V,E, λ) in TC, a temporal spanner of G is a
subgraph G ′ = (V ′, E ′, λ′) ⊆ G such that V ′ = V and G ′ is in TC.

Naturally, we want such a spanner to be as small as possible. Ideally, we would like that
it uses only O(n) edges. Is this always possible? Alas, no again! Hypercubes are an example
of a class of graphs that have Θ(n log n) edges. These edges can be labeled in a way that the
graph is TC but none of the edges (nor labels) can be removed. An example of dimension 3
is given in fig. 6.

2

1

2

1

2

1

2

1
3

3 3

3

Figure 6: A temporal hypercube (of dimension 3) that is minimal in TC.

In fact, there exists even an infinite family of temporal graphs in TC with Θ(n2) edges,
none of which can be removed. Bad day for spanners!

11.1.2 Small spanners in temporal cliques

Given the above negative results, a natural question is whether small spanners are guaranteed
at least in some restricted families of temporal graphs. The case of temporal cliques is an
interesting one. A temporal clique is a temporal graph whose footprint is a complete
graph. An example of temporal clique is given in fig. 7.

9 0

32

46

1

5

78

Figure 7: A temporal clique on 5 vertices.

When the labeling of the clique is simple and proper (as in this example), we do have
the guarantee that a spanner of size O(n log n) always exists whatever the labels. In fact,

4

most of these temporal cliques even admit spanners of size 2n− 3 that can be found easily
using a technique called dismountability.

Let G = (V,E, λ) be a (simple and proper) temporal clique. For any node v ∈ V , denote
by e−(v) the earliest edge incident to v, and by n−(v) the corresponding neighbor (its earliest
neighbor). Define similarly the latest edge e+(v) and latest neighbor n+(v).

Because G is a clique, the fact that n−(v) = u for some u implies that u can reach every
other node through v (indeed, v still has a later edge with every other node after time λ(uv)).
Likewise, if n+(w) = u, then every node can reach u through w. Let u, v, w be three nodes
that satisfy n−(v) = u and n+(w) = u. Then u can delegate its emissions to v, and delegate
its receptions to w. These observations suggest a possible approach for self-reducing the
problem of finding a temporal spanner as follows:

Theorem 11.3 (Dismountability). Let G be a temporal clique, and let u, v, w be three nodes
such that n−(v) = u and n+(w) = u. Let S ′ be a temporal spanner of G \ {u} Then
S := S ′ ∪ {uv, uw} is a temporal spanner of G.

In this case, we say that node u is dismountable, and by extension, the clique is dismount-
able if at least one node is dismountable. A temporal clique is recursively dismountable if
one can find an ordering of V that allows for a complete dismounting of the graph (down to
n = 2), like in the example shown in fig. 8, together with the resulting spanner.

9 0

32

46

1

5

78 46

1

5

78 46

5

0

32

9

46

1

5

78

Figure 8: Recursive dismounting of a temporal clique and the resulting spanner (in bold).

Observe that exactly 2 edges are included in the spanner in every dismounting step. For
a temporal clique with n vertices, this produces spanners of size 2n− 3. While most of the
temporal cliques are dismountable, the recursion may fail at some point because not all of
them are dismountable. In this case, the O(n log n) result is obtained by looking at the extra
structure that non-dismountable cliques offer, and exploiting this structure using different
techniques.

Do temporal cliques always admit O(n)-size spanners? As of today, we do not know.
This is a major open question in the field.

5

