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Graph coloring

Goal: Assign a color to every vertex such that adjacent vertices have different colors.

Many applications (e.g. telecom)

▶ Wireless communications

▶ In general, mutual exclusion, scheduling, ...

▶ Occupy a 5-y.o. kid
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Graph coloring (2)

Example: traffic lights (credit: Eric Sopena)

AB

DC

DB

DA BC

BA

AC

AB

DC

DB

DA BC

BA

AC

1) Create a conflict graph G of the trajectories.

2) Color G

3) We obtain 3 color classes: 1 : {AB,DC , BA}, 2 : {DB,DA}, 3 : {AC , BC}.
→ All trajectories in the same class can have green light at the same time.

Further examples: time tables; altitude of aircrafts; anything to be optimized against conflicts.

Chromatic number χ(G)

χ(G) = minimum number of colors needed in G .

▶ At least the size of any clique in G

▶ Hadwiger’s conjecture (1943):
At most the size of a clique minor in G .
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On the algorithmic side

Complexity of k-coloring

▶ 2-Col is linear (if and only if bipartite graph)

▶ 3-Col is NP-hard (reduction from SAT)

▶ k-Col is NP-hard (reduction from (k-1)-Col)
[Garey, Johnson, Stockmeyer, 1976]

(drawing: Yu Cheng)

The First-Fit algorithm

For each vertex in G :
Try color 1, then 2, then 3...

Very fast, but arbitrarily far from optimum
(if we pick the vertices in bad order)
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Still, essentially the best we can do!

(No n1−ϵ approx in polynomial time... [Zuckermann, 2007])
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The four color theorem

Every planar graph is four colorable (planar = can be drawn without crossing edges).

Timeline:

1852 Francis Guthrie (botanist) notices that four colors are
enough to color the map of England’s counties.

1879 Kempe proves the conjecture.

1880 Tait formulates it in terms of planar graphs, and gives a
different proof.

1890 Heawood finds a bug in Kempe’s proof and adapts it to
prove that five colors are enough.

1891 Petersen finds a bug in Tait’s proof.

1960s Heesch starts using computers to search for a proof

1976 Appel and Haken succeed!
→ reduction from ∞ to 1834 possible configurations, all
checked by computer.

1996 Robertson, Sanders, Seymour reduce it to 633
configurations.

2005 Gonthier certifies the proof using Coq.
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Proof of the 5 color theorem

Theorem: planar graphs are 5 colorable.

Warm-up: what about 6 colors first?

▶ Euler’s formula: in planar graphs, v − e + f = 2 (v = #vertices, e = #edges, f = #faces)

▶ Implies (not immediate) that every planar graph has a vertex of degree ≤ 5

▶ Recursive algorithm:

1. Find a vertex v of degree ≤ 5

2. Color G \ v

3. Give an available color to v (guaranteed by its degree)

Base case: If G has ≤ 5 vertices, give a different color to each vertex.

5 colors: Kempe’s chains

Similar ideas as 6 colors, with an additional trick (by Kempe, 1879).

Step 2 becomes:
Color G \ v , then tweak the coloring so that the neighbors of v use at most 4 colors.

This is indeed always possible!

There must exist two colors which do not induce a connected component

→ flip one of the components, one color is freed.

4 colors?

Not for today :-)
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Reduction from 3-SAT to 3-COL

(credit: Lalla Mouatadid)

(credit: Igor Potapov)
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Additional material

Clique versus Independent Set

▶ Clique (G , k): Does G admit a clique of size k?

▶ Independent Set (G , k): Are there k vertices in G , none of them being neighbors?

▶ Independent set ≤p Clique and Clique ≤p Independent set

Same reduction: G admits a clique of size k iff G admits an independent set of size k.

The six friends (correction of exercise 1.2.2 from Lecture 1

This can be seen as a coloring problem:

▶ Can we color the edges of K5 (complete graph on 5 vertices) with two colors (know / don’t know each
other) such that no monochromatic triangle is created?

Yes: outer cycle in one color, inner edges in the other color.

▶ Same question with K6?

No. Proof: Pick a vertex v . Without loss of generality, v has at least three incident edges with the same
colors (say, color 1). Let v1, v2, v3 be the corresponding neighbors.

Now, consider the edges between vertices v1, v2, and v3. Two possible cases:

▶ At least one of these edges has color 1 =⇒ this closes a triangle with v .
▶ None of these edges has color 1 =⇒ this makes a triangle with color 2.


