Arnaud Casteigts

June 4, 2018

Habilitation à diriger des recherches

Rapporteur(e)s	Antonio Fernández Anta	DR. IMDEA-Networks	(Madrid)
	Clémence Magnien	DR. CNRS-LIP6	(Paris)
	Sébastien Tixeuil	PU. Sorbonne Université-LIP6	(Paris)
Examinateurs	Emmanuel Godard	PU. Univ Aix-Marseille-LIS	(Marseille)
	Nicolas Hanusse	DR. CNRS-LaBRI (Bordeaux)
	Philippe Jacquet	DR. Bell-Labs Nokia (Pa	ris-Saclay)
Invité	Joseph Peters	PU. Simon Fraser University (\	/ancouver)

3/35

Introduction

- Set of nodes V (a.k.a. entities, vertices)
- Set of links E among them (a.k.a. relations, edges)

$$\rightarrow$$
 A network (or graph) $G = (V, E)$

- Set of nodes V (a.k.a. entities, vertices)
- Set of links E among them (a.k.a. relations, edges)

 \rightarrow A network (or graph) G = (V, E)

- Set of nodes V (a.k.a. entities, vertices)
- Set of links E among them (a.k.a. relations, edges)

 \rightarrow A network (or graph) G = (V, E)

- Set of nodes V (a.k.a. entities, vertices)
- Set of links *E* among them (*a.k.a.* relations, edges)

 \rightarrow A network (or graph) G = (V, E)

Complex networks

- \rightarrow compute global metrics
- \rightarrow explain and reproduce phenomena

Communication networks

- \rightarrow design interactions among entities
- \rightarrow study what can be done from within

- Set of nodes V (a.k.a. entities, vertices)
- Set of links *E* among them (*a.k.a.* relations, edges)

 \rightarrow A network (or graph) G = (V, E)

Complex networks

- \rightarrow compute global metrics
- \rightarrow explain and reproduce phenomena

Communication networks

- \rightarrow design interactions among entities
- \rightarrow study what can be done from within

 \rightarrow distributed algorithms...

Distributed Algorithms

(Think globally, act locally)

Collaboration of distinct entities to perform a common task.

No centralization available.

Examples of problems:

Consensus, naming, routing, exploration, dominating sets, ...

Distributed Algorithms

(Think globally, act locally)

Collaboration of distinct entities to perform a common task.

No centralization available.

Examples of problems:

Consensus, naming, routing, exploration, dominating sets, ...

< □ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ の へ つ 10/35

Excursion: Bit complexity of Leader Election (CHAP 6 SEC 1)

Leader Election (distributed problem)

 \rightarrow Distinguishing one node among all

Version with ID \rightarrow highest ID elected

	Time	# Messages	Message size	
Awerbuch'87	<i>O</i> (<i>n</i>)	$\Theta(m + n \log n)$	$O(\log n)$ bits	
Peleg'90	Θ(D)	O(Dm)	$O(\log n)$ bits	

Optimal in time and number of messages?

Excursion: Bit complexity of Leader Election

 $(CHAP \ 6 \ Sec \ 1)$

Leader Election (distributed problem)

 \rightarrow Distinguishing one node among all

Version with ID \rightarrow highest ID elected

$\sim 2 \sim \sim \sim$	
-------------------------	--

	Time	# Messages	Message size	# Bit rounds
Awerbuch'87	<i>O</i> (<i>n</i>)	$\Theta(m + n \log n)$	$O(\log n)$ bits	$O(n \log n)$
Peleg'90	Θ(D)	O(Dm)	$O(\log n)$ bits	$O(D \log n)$
Our contrib.	$O(D + \log n)$	$O((D + \log n)m)$	O(1) bits	$\Theta(D + \log n)$

Optimal in time and number of messages?

Yes! With constant size messages $\rightarrow O(D + \log n)$ bit rounds algorithm

+ matching lower bound: $\Omega(D + \log n)$

The algorithm

Bitwise dissemination of highest ID defining a spanning tree

New encoding technique for IDs

 \rightarrow ex: ID = 25 $\stackrel{2}{=}$ 11001, then $\alpha(\textit{Id})$ = 11111011001

Casteigts et al., 30th Int. Symposium on Distributed Computing (DISC), 2016

Dynamic networks?

Applied *versus* theoretical?

How to approach these contexts?

Dynamic networks?

Applied versus theoretical?

How to approach these contexts?

Excursion: Biconnecting robots with virtual angular forces $(CHAP \ 7 \ SEC \ 3)$

Problem: Deploying robots from arbitrary connected configuration, with consideration to

- Coverage (max)
- Movements (min)
- Diameter (min)
- <u>Bi</u>connectivity (fault tolerance)

Excursion: Biconnecting robots with virtual angular forces (CHAP 7 SEC 3)

Problem: Deploying robots from arbitrary connected configuration, with consideration to

- Coverage (max)
- Movements (min)
- Diameter (min)
- <u>Bi</u>connectivity (fault tolerance)

Approach: spring forces (attraction/repulsion) + angular forces

Casteigts et al., Computer Communication (Elsevier), Vol.35 Issue 9, 2012.

Dynamic networks?

How to approach these contexts?

Applied versus theoretical

Dynamic networks?

Applied versus theoretical

 \rightarrow Working with structure (mostly theoretical)

Static networks

... can be exploited by an algorithm

How to approach these contexts?

(Highly) dynamic networks

What kind of structure?

Graph representations

$(CHAP \ 1 \ SEC \ 2)$

Time-varying graphs (TVG)

$$\begin{split} \mathcal{G} &= (V, E, \mathcal{T}, \rho, \zeta) \\ &- \mathcal{T} \subseteq \mathbb{N}/\mathbb{R} \text{ (lifetime)} \\ &- \rho : E \times \mathcal{T} \to \{0, 1\} \text{ (presence fonction)} \\ &- \zeta : E \times \mathcal{T} \to \mathbb{N}/\mathbb{R} \text{ (latency function)} \end{split}$$

Another classical view $\mathcal{G} = \mathcal{G}_0, \mathcal{G}_1, \dots$

Variety of models and terminologies:

Dynamic graphs, evolving graphs, temporal graphs, link streams, etc.

Graph representations

$(CHAP \ 1 \ SEC \ 2)$

Time-varying graphs (TVG)

$$\begin{split} \mathcal{G} &= (V, E, \mathcal{T}, \rho, \zeta) \\ &- \mathcal{T} \subseteq \mathbb{N}/\mathbb{R} \text{ (lifetime)} \\ &- \rho : E \times \mathcal{T} \to \{0, 1\} \text{ (presence fonction)} \\ &- \zeta : E \times \mathcal{T} \to \mathbb{N}/\mathbb{R} \text{ (latency function)} \end{split}$$

(among others) イロトイ団トイミトイミト ミークへへ

Another classical view $\mathcal{G} = \mathcal{G}_0, \mathcal{G}_1, \dots$

Variety of models and terminologies:

Dynamic graphs, evolving graphs, temporal graphs, link streams, etc.

Graph representations

$(CHAP \ 1 \ SEC \ 2)$

Time-varying graphs (TVG)

$$\begin{split} \mathcal{G} &= (V, E, \mathcal{T}, \rho, \zeta) \\ &- \mathcal{T} \subseteq \mathbb{N}/\mathbb{R} \text{ (lifetime)} \\ &- \rho : E \times \mathcal{T} \to \{0, 1\} \text{ (presence fonction)} \\ &- \zeta : E \times \mathcal{T} \to \mathbb{N}/\mathbb{R} \text{ (latency function)} \end{split}$$

(among others)

Another classical view $\mathcal{G}=\textit{G}_{0},\textit{G}_{1},...$

Variety of models and terminologies:

Dynamic graphs, evolving graphs, temporal graphs, link streams, etc.

A conceptual shift (impact of temporal dimension)

Chap 1 Sec 3

 \rightarrow Temporal connectivity

A conceptual shift (impact of temporal dimension)

Chap 1 Sec 3

 \rightarrow Temporal connectivity

Temporal distance & shortest paths

A conceptual shift (impact of temporal dimension)

Chap 1 Sec 3

Temporal distance & shortest paths

Redefinition of classical problems

Classes of dynamic networks/graphs

< □ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ の Q ℃ 17/35

Classes of dynamic networks/graphs

< □ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ の Q ℃ 17/35

Classes of dynamic networks/graphs

< □ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ の Q ℃ 17/35

Zoom: Optimal broadcast with termination detection (CHAP 2 SEC 2)

Distributed problem:

- \rightarrow A node must send a piece of information to all other nodes, then detect termination
- \rightarrow Three criteria: foremost, shortest, fastest

Unsolvable without further assumption.

Structure (+ knowledge)

- Connected footprint (obvious)
 - Recurrent edges $\mathcal{E}^{\mathcal{R}}$ (+ n)
 - Bounded-recurrent edges $\mathcal{E}^{\mathcal{B}}$ $(+ \Delta)$
 - Periodic edges $\mathcal{E}^{\mathcal{P}}$ (+ p)

Note that $\mathcal{E}^\mathcal{P} \subset \mathcal{E}^\mathcal{R} \subset \mathcal{E}^\mathcal{B}$

Casteigts et al., Int. J. of Foundations of Computer Science, Vol. 26, Issue 4, 2015 (optimality metrics defined by Bui-Xuan, Ferreira, Jarry, 2003)

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ▶ ● ■ ⑦ Q @ 18/35

Zoom: Optimal broadcast with termination detection (CHAP 2 SEC 2)

Distributed problem:

- \rightarrow A node must send a piece of information to all other nodes, then detect termination
- \rightarrow Three criteria: foremost, shortest, fastest

Unsolvable without further assumption.

Structure (+ knowledge)

 $\begin{array}{l} - \mbox{ Connected footprint (obvious)} \\ - \mbox{ Recurrent edges $\mathcal{E}^{\mathcal{R}}$ (+ n)} \\ - \mbox{ Bounded-recurrent edges $\mathcal{E}^{\mathcal{B}}$ (+ \Delta)} \\ - \mbox{ Periodic edges $\mathcal{E}^{\mathcal{P}}$ (+ p)} \end{array}$

Note that $\mathcal{E}^\mathcal{P} \subset \mathcal{E}^\mathcal{R} \subset \mathcal{E}^\mathcal{B}$

Theorems:

- Foremost feasible in $\mathcal{E}^\mathcal{R}$
- Shortest feasible in $\mathcal{E}^\mathcal{B}$ (but not in $\mathcal{E}^\mathcal{R})$
- Fastest feasible in $\mathcal{E}^\mathcal{P}$ (but not in $\mathcal{E}^\mathcal{B})$

 $\frac{\text{Theorem:}}{power}(\mathcal{E}^{\mathcal{R}} + n) \subsetneq power(\mathcal{E}^{\mathcal{B}} + \Delta) \subsetneq power(\mathcal{E}^{\mathcal{P}} + p)$

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ▶ ● ■ ⑦ Q @ 18/35

Casteigts et al., Int. J. of Foundations of Computer Science, Vol. 26, Issue 4, 2015 (optimality metrics defined by Bui-Xuan, Ferreira, Jarry, 2003)

Zoom: Optimal broadcast with termination detection (CHAP 2 SEC 2)

Distributed problem:

- \rightarrow A node must send a piece of information to all other nodes, then detect termination
- \rightarrow Three criteria: foremost, shortest, fastest

Unsolvable without further assumption.

Structure (+ knowledge)

 $\begin{array}{l} - \mbox{ Connected footprint (obvious)} \\ - \mbox{ Recurrent edges } \mathcal{E}^{\mathcal{R}} \ (+ n) \\ - \mbox{ Bounded-recurrent edges } \mathcal{E}^{\mathcal{B}} \ (+ \Delta) \\ - \mbox{ Periodic edges } \mathcal{E}^{\mathcal{P}} \ (+ p) \end{array}$

Note that $\mathcal{E}^\mathcal{P} \subset \mathcal{E}^\mathcal{R} \subset \mathcal{E}^\mathcal{B}$

Theorems:

- Foremost feasible in $\mathcal{E}^\mathcal{R}$
- Shortest feasible in $\mathcal{E}^{\mathcal{B}}$ (but not in $\mathcal{E}^{\mathcal{R}}$)
- Fastest feasible in $\mathcal{E}^\mathcal{P}$ (but not in $\mathcal{E}^\mathcal{B})$

 $\begin{array}{l} \hline \text{Theorem:} \\ \textit{power}(\mathcal{E}^{\mathcal{R}} + n) \subsetneq \textit{power}(\mathcal{E}^{\mathcal{B}} + \Delta) \subsetneq \textit{power}(\mathcal{E}^{\mathcal{P}} + p) \end{array}$

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ▶ ● ■ ⑦ Q @ 18/35

Casteigts et al., Int. J. of Foundations of Computer Science, Vol. 26, Issue 4, 2015 (optimality metrics defined by Bui-Xuan, Ferreira, Jarry, 2003)
Zoom: Optimal broadcast with termination detection (CHAP 2 SEC 2)

Distributed problem:

- \rightarrow A node must send a piece of information to all other nodes, then detect termination
- \rightarrow Three criteria: foremost, shortest, fastest

Unsolvable without further assumption.

Structure (+ knowledge)

 $\begin{array}{l} - \mbox{ Connected footprint (obvious)} \\ - \mbox{ Recurrent edges } \mathcal{E}^{\mathcal{R}} \ (+ n) \\ - \mbox{ Bounded-recurrent edges } \mathcal{E}^{\mathcal{B}} \ (+ \Delta) \\ - \mbox{ Periodic edges } \mathcal{E}^{\mathcal{P}} \ (+ p) \end{array}$

Note that $\mathcal{E}^\mathcal{P} \subset \mathcal{E}^\mathcal{R} \subset \mathcal{E}^\mathcal{B}$

Theorems:

- Foremost feasible in $\mathcal{E}^\mathcal{R}$
- Shortest feasible in $\mathcal{E}^{\mathcal{B}}$ (but not in $\mathcal{E}^{\mathcal{R}}$)
- Fastest feasible in $\mathcal{E}^\mathcal{P}$ (but not in $\mathcal{E}^\mathcal{B})$

 $\begin{array}{l} \hline \text{Theorem:} \\ \textit{power}(\mathcal{E}^{\mathcal{R}} + n) \subsetneq \textit{power}(\mathcal{E}^{\mathcal{B}} + \Delta) \subsetneq \textit{power}(\mathcal{E}^{\mathcal{P}} + p) \end{array}$

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ▶ ● ■ ⑦ Q @ 18/35

Casteigts et al., Int. J. of Foundations of Computer Science, Vol. 26, Issue 4, 2015 (optimality metrics defined by Bui-Xuan, Ferreira, Jarry, 2003)

< □ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ の へ で 19/35

< □ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ の Q ℃ 19/35

Zoom: Exploiting structure within $\mathcal{TC}^{\mathcal{R}}$

$(CHAP \ 2 \ Sec \ 4)$

 $\mathcal{TC}^{\mathcal{R}} := \text{All nodes can reach each other through journeys infinitely often} \\ (\mathcal{TC}^{\mathcal{R}} := \forall t, \mathcal{G}_{[t,+\infty)} \in \mathcal{TC})$

Zoom: Exploiting structure within $\mathcal{TC}^{\mathcal{R}}$

(Chap 2 Sec 4)

 $\mathcal{TC}^\mathcal{R}:=\mathsf{All}$ nodes can reach each other through journeys infinitely often

 $(\mathcal{TC}^{\mathcal{R}} := \forall t, \mathcal{G}_{[t,+\infty)} \in \mathcal{TC})$

Alternative characterization: Eventual footprint connected

Braud Santoni et al., 2016

 \rightarrow Can be exploited in a distributed algorithm Kaaouachi et al., 2016

Zoom: Exploiting structure within $\mathcal{TC}^{\mathcal{R}}$

$(CHAP \ 2 \ Sec \ 4)$

 $\mathcal{TC}^\mathcal{R}:=\mathsf{All}$ nodes can reach each other through journeys infinitely often

 $(\mathcal{TC}^{\mathcal{R}}) := \forall t, \mathcal{G}_{[t,+\infty)} \in \mathcal{TC})$

Alternative characterization: Eventual footprint connected

Braud Santoni et al., 2016

 \rightarrow Can be exploited in a distributed algorithm

Robustness

(dealing with uncertainty)

ightarrow New form of heredity in graphs: property/solution holds in all connected spanning subgraph

Ex: MINIMALDOMINATINGSET (MDS) and MAXIMALINDEPENDENTSET (MIS)

Casteigts, Dubois, Petit, Robson, CoRR, abs/1703.03190v2, 2018

Kaaouachi et al., 2016

< □ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ の Q ℃ 21/35

What if no structure at all?

Beyond structure

(Chap 4)

Maintaining a Spanning Forest

The Computer Journal (Oxford Univ. Press), to appear, 2018

Beyond structure

(Снар 4)

IEEE Transactions on Computers, Vol. 63, Issue 2, 2014

Beyond structure

(Chap 4)

IEEE Transactions on Computers, Vol. 63, Issue 2, 2014

The Power of Waiting

start \rightarrow $\begin{array}{c} a \\ c_1 \\ c_2 \\ c_3 \\ c_4 \\ c_4 \\ c_5 \\ c_5 \\ c_5 \\ c_5 \\ c_7 \\ c_7$

e	Presence $\rho(e, t) = 1$ iff	Latency $\zeta(e, t) =$
e_0	always true	(p - 1)t
e_1	t > p	(q - 1)t
e_2	$t \neq p^{i}q^{i-1}, i > 1$	(q - 1)t
e_3	t = p	any
e_4	$t = p^i q^{i-1}, i > 1$	any

Theoretical Computer Science (Elsevier), Vol. 590, 27-37, 2015

What about real-world mobility?

Zoom: Testing properties on dynamic graphs Chap 3 Sec 3

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ▶ ■ ⑦ Q @ 24/35

All consecutive T graphs contain a common spanning tree \rightarrow measures stability

Casteigts et al., 9th Int. Conference on Algorithms and Complexity (CIAC), 2015

Zoom: Testing properties on dynamic graphs

Chap 3 Sec 3

Ex: T-interval connectivity (C^{-})

All consecutive T graphs contain a common spanning tree \rightarrow measures stability

The problem, finding T (given a sequence of δ graphs)

 \rightarrow Theorem: $O(\delta)$ high-level operations (vs. $O(\delta^2)$ naive)

(intersections and connectivity tests).

Genericity:		Property	composition	test	goal		
	\mathcal{C}	T-interval connectivity	intersection	connectivity	max		
	$\mathcal{E}^{\mathcal{R}}$	Realization of the footprint	union	identity	min		
	$\mathcal{TC}^{\mathcal{B}}$	Temporal diameter	concat TC	completeness	min		
	$\mathcal{TC}^{\circlearrowleft}$	Round-trip temp. diameter	concat RTTC	completeness	min		

Casteigts *et al.*, 9th Int. Conference on Algorithms and Complexity (CIAC), 2015 Casteigts *et al.*, 19th Int. Conference on Structural Information and Communication Complexity (SIROCCO), 2017 *Combined article in minor revision (in ToCS)*

< □ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ の へ C 25/35

Collective movements which induce temporal structure

Jason Schoeters (since Nov. 2017) PhD funded by ANR ESTATE

Synthesizing collective movements (*a.k.a. mobility models*) so as to satisfies temporal properties on the resulting communication graph.

Collective movements which induce temporal structure

Jason Schoeters (since Nov. 2017) PhD funded by ANR ESTATE

Synthesizing collective movements (*a.k.a. mobility models*) so as to satisfies temporal properties on the resulting communication graph.

Collective movements which induce temporal structure

Jason Schoeters (since Nov. 2017) PhD funded by ANR ESTATE

Synthesizing collective movements (*a.k.a. mobility models*) so as to satisfies temporal properties on the resulting communication graph.

$$\leftarrow \text{ this network } \in \mathcal{E}^{\mathcal{R}} \qquad \text{ this one } \in \mathcal{C}^* \rightarrow$$

Main objectives:

- Design mobility models independently (warm up)
- Combine them with concrete problems like exploration (more difficult)

Interesting target: $\mathcal{TC}^{\mathcal{B}}$ (bounded temporal diameter)

 \rightarrow Weakest setting to detect a crash.

JBOTSIM

JBOTSIM

Prototyping library for distributed algorithms in dynamic networks

Interactive, simple to use, extensible, event-driven programming (java)

 \rightarrow Download statistics (SF): 150 (2015), 900 (2016), 1100 (2017), ...

Growing community, \sim 10 "universities"

JBOTSIM

Prototyping library for distributed algorithms in dynamic networks

Interactive, simple to use, extensible, event-driven programming (java) \rightarrow Download statistics (SF): 150 (2015), 900 (2016), 1100 (2017), ... Growing community, \sim 10 "universities"

Enables the use of many models of computations (by design), at graph or network level.

Masters course "Algorithmique de la mobilité" (48h, Bordeaux) (others in Ottawa, Marseille, Strasbourg)

JBotsim on Android!

Kinda Al Chahid (M2)

DAVIS project (E.Godard)

Casteigts, 8^{th} Int. Conf. on Simulation Tools and Techniques (SIMUTOOLS), 2015

Perspectives

Perspectives

Two natural perspectives:

Structure in dynamic networks (a step further)

 \rightarrow Explore relations among existing and new classes of dynamic networks

- \to Focus on $\mathcal{TC}^\mathcal{R}$ and $\mathcal{TC}^\mathcal{B}$ and robustness
- \rightarrow Consider studying real-world data sets

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● のへで

30/35

(Perspective 0)

Perspectives

Two natural perspectives:

Structure in dynamic networks (a step further)

- \rightarrow Explore relations among existing and new classes of dynamic networks
- \to Focus on $\mathcal{TC}^\mathcal{R}$ and $\mathcal{TC}^\mathcal{B}$ and robustness
- \rightarrow Consider studying real-world data sets

Around JBotSim

\rightarrow Convergence of tools

- \rightarrow Specific extensions, *e.g.* Remote topology viewer through a classroom network
- \rightarrow Interactive web platform based on Jupyter?

A one-year postdoc is coming (starting Sep. 1, 2018)

(Perspective 0)

(Perspective 1)

Towards formal proofs of temporal requirements

(Perspective 2)

< □ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ · ク Q ペ 31/35

Towards formal proofs of temporal requirements

(Perspective 2)

Current related efforts:

 \rightarrow with Event-B (F. Fakhfakh, D. Mery, M. Mosbah, M. Tounsi) Ex: Proving correctness of our spanning forest algorithm by refinements

 \rightarrow PADEC: Coq library (K. Altisen, P. Corbineau, S. Devismes) – ANR ESTATE Ex: Proving correctness of algorithms in the "Locally shared memory" model

Past efforts:

 \rightarrow Loco: Coq library (P. Castéran)

Ex: Local computation à la Métivier

Ambition:

Prove formally that a given property on the dynamics is necessary or sufficient to a given algorithm.

 \rightarrow Need to pair up with a partner!

Algorithmic movement synthesis (broader view) (Perspective 3)

1) Collective movements which induce temporal structure

Already discussed

Synthesize collective movements (*a.k.a. mobility models*) such that the resulting graph satisfies temporal properties.

Algorithmic movement synthesis (broader view) (Perspective 3)

1) Collective movements which induce temporal structure Already discussed Synthesize collective movements (*a.k.a. mobility models*) such that the resulting graph satisfies temporal properties.

2) Integrating physical constraints in a tractable way

 $[\]rightarrow$ Impact on problems, e.g. TSP

Exploratory work with J. Schoeters and M. Raffinot

Theorem: Acceleration does impact the visit order!

Ambition:

 \rightarrow Occupy the space between control theory and empirical approaches

Discrete algorithms!

Graph-theoretical problems

(Perspective 4)

Simplification of temporal cliques

Setting: Complete graph, every edge exists only one instant, remove as many edges as possible while remaining temporally connected (*i.e.*, in TC).

 Theorem: O(n) edges can be removed
 Akrida et al. 2015

 Theorem: All but $O(n \log n)$ edges can be removed!
 Casteigts et al. 2018 (in preparation)

 Open question: Is it optimal? Could we remove all but O(n)?

Transitive closures of journeys

Def: journey in $\mathcal{G} \iff$ arc in transitive closure.

Question: What is the set of possible transitive closures?

Acknowledgments

PhD students (supervised or co-supervised):

- Jason Schoeters
- Matthieu Barjon and Yessin M. Neggaz

PhD students (through collaboration):

- Carlos Gómez Calzado (3 month visit in Bordeaux)
- Jérémie Albert, Ahmed Jedda, Walter Quattrociocchi

Masters students:

- Kinda Al Chahid (current)
- Robin Despouys, David Del Campo + 4 of the above

Projects (significant scale):

- DRDC W7714-115111/001/SV (Defence Research and Development Canada) 100
- ANR ESTATE (Enhancing Safety and Self-Stabilization in Time-Varying Distributed Environments)

Other co-authors (alphabetical order):

Frédéric Amblard, Lionel Barrère, Jean-Marie Berthelot, Louise Bouchard, Mariette Chartier, Marie-Hélène Chomienne, Swan Dubois, Afonso Ferreira, Paola Flocchini, Colette Johnen, Guy-Vincent Jourdan, Emmanuel Godard, Nishith Goel, Frédéric Guinand, Ralf Klasing, Alberto Lafuente, Mikel Larrea, Bernard Mans, Luke Mathieson, Hussein Mouftah, Yves Métivier, Amiya Nayak, Joseph Peters, Franck Petit, Yoann Pigné, Mike Robson, Nicola Santoro, Ivan Stojmenovic, Alain Trugeon, Jan Warnke, Mark Yamashita, and Akka Zemmari.

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ♪ ○ ○ ○ 34/35</p>

(with C. Johnen and S. Chaumette)

(joint work in Ottawa)

Excursions: SHS & Privacy

(Chap 8.1 & 8.2)

Differential Privacy for Linguistic Data

(with a physician M.H. Chomienne)

