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Abstract

Dynamic networks are a complex subject. Not only do they inherit the complexity
of static networks (as a particular case); they are also sensitive to definitional subtleties
that are a frequent source of confusion and incomparability of results in the literature.

In this paper, we take a step back and examine three such aspects in more details,
exploring their impact in a systematic way; namely, whether the temporal paths are
required to be strict (i.e., the times along a path must increasing, not just be non-
decreasing), whether the time labeling is proper (two adjacent edges cannot be present
at the same time) and whether the time labeling is simple (an edge can have only
one presence time). In particular, we investigate how different combinations of these
features impact the expressivity of the graph in terms of reachability.

Our results imply a hierarchy of expressivity for the resulting settings, shedding
light on the loss of generality that one is making when considering either combination.
Some settings are more general than expected; in particular, proper temporal graphs
turn out to be as expressive as general temporal graphs where non-strict paths are
allowed. Also, we show that the simplest setting, that of happy temporal graphs (i.e.,
both proper and simple) remains expressive enough to emulate the reachability of
general temporal graphs in a certain (restricted but useful) sense. Furthermore, this
setting is advocated as a target of choice for proving negative results. We illustrates
this by strengthening two known results to happy graphs (namely, the inexistence of
sparse spanners, and the hardness of computing temporal components). Overall, we
hope that this article can be seen as a guide for choosing between different settings of
temporal graphs, while being aware of the way these choices affect generality.

Keywords: Temporal graphs; Temporal reachability; Reachability graph; Expressivity.

1 Introduction

In the context of this paper, a temporal graph is a labeled graph G “ pV,E, λq where
V is a finite set of vertices, E Ď V ˆ V a set of undirected edges, and λ : E Ñ 2N

a function assigning at least one time label to every edge, interpreted as presence times.
These graphs can model various phenomena, ranging from dynamic networks – networks
whose structure changes over the time – to dynamic interactions over static (or dynamic)
networks. These graphs have found applications in biology, transportation, social networks,
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robotics, scheduling, distributed computing, and self-stabilization, to name a few. Although
more complex formalisms have been defined and extensively studied (see e.g. [14] or [30]),
several features of temporal graphs remain not well understood even in the most restricted
settings.

A fundamental aspect of temporal graphs is reachability, commonly characterized in
terms of the existence of temporal paths; i.e., path which traverses edges in chronological
order. There has been a large number of studies related to temporal reachability in the past
two decades, seen from various perspectives, e.g. k-connectivity and separators [28, 25, 20],
components [7, 4, 2, 31, ?, ?], feasibility of distributed tasks [14, 26, 3, 9], schedule design [11],
data structures [12, 33, 31, 10], reachability minimization [22], reachability with additional
constraints [12, 15], temporal spanners [4, 2, 17, 8], path enumeration [23], random graphs [6,
18], exploration [27, 21, 24], cops and robbers [?, ?], and temporal flows [1, 32], to name a
few (many more exist). Over the course of these studies, it has become clear that temporal
connectivity differs significantly from classical reachability in static graphs. To start with,
it is not transitive, which implies that two temporal paths (also called journeys) are not,
in general, composable, and consequently, connected components do not form equivalence
classes. This explains, in part, why many tractable problems in static graphs become hard
when transposed to temporal graphs. Further complications arise, such as the conceptual
impact of having an edge appearing multiple times, and that of having adjacent edges
appearing at the same time. These aspects, while innocent-looking, have a deep impact on
the answers to many structural and algorithmic questions.

In this paper, we take a step back, and examine the impact of such aspects; in particular
strictness (should the times along a path increase or only be non-decreasing?), properness
(can two adjacent edges appear at the same time?) and simpleness (do the edges appear
only once or several times?). We look at the impact of these aspects from the point of view of
temporal reachability, and more precisely, how they restrict it. The central tool is the notion
of reachability graph, defined as the static directed graph where an arc exists if and only if
a temporal path exists in the original temporal graph.1 It turns out that the above aspects
have a strong impact on the kind of reachability graph one can obtain from a temporal graph.
Precisely, we establish four separations between various combinations (called settings) of
the above parameters. On the other hand, we also present three reachability-preserving
transformation between settings, which show that certain settings are at least as expressive
as others.

By combining the separations and transformations together with arguments of contain-
ment, we obtain an almost complete hierarchy of expressivity of these settings in terms of
reachability. This hierarchy clarifies the extent to which the choice of a particular setting im-
pacts generality, and as such, can be used as a guide for future research in temporal graphs.
Indeed, the above three aspects (strictness, properness, simpleness) are a frequent source of
confusion and of incomparability of results in the literature. Furthermore, many basic ques-
tions remain unresolved even in the most restricted setting. For this reason, and somewhat
paradoxically, we advocate the study of the simplest model, that of happy temporal graphs
(i.e., both proper and simple), where all the above subtleties vanish. Another reason is that,
despite being the least expressive setting, happy graphs remain general enough to capture
certain features of general temporal reachability. Finally, negative results in this setting are
de facto stronger than in all the other settings. In guise of illustration, we strengthen two
existing negative results to the happy setting. Namely, finding temporal components of a

1This concept was called the transitive closure of journeys in [7, 10, 16]; we now avoid this term because
reachability is not transitive, which makes it somewhat misleading.
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given size remains difficult even in happy graphs and the existence of opn2q-sparse temporal
spanners is also not guaranteed even in happy graphs. Both results were initially obtained
in more general settings (respectively, in the non-proper, non-simple, non-strict setting [7]
for the former, and in the non-proper, simple, non-strict setting [4] for the latter).

The paper is organized as follows. In Section 2, we give some definitions and argue that
the above aspects deserve to be studied for their own sake. In Section 3, we present the
four separations and the three transformations, together with the resulting hierarchy. In
Section 4, we strengthen the hardness of temporal components and the counter-example for
sparse spanners to the setting of happy graphs, and motivate their study further. Finally,
we conclude in Section 5 with some remarks.

2 Temporal Graphs

Given a temporal graph G “ pV,E, λq, the static graph G “ pV,Eq is called the footprint
of G. Similarly, the static graph Gt “ pV,Etq where Et “ te P E | t P λpequ is the snapshot
of G at time t. A pair pe, tq such that e P E and t P λpeq is a contact (or temporal edge). The
range of λ is called the lifetime of G, of length τ . A temporal path (or journey) is a sequence
of contacts xpei, tiqy such that xeiy is a path in the footprint and xtiy is non-decreasing.

The reachability relation based on temporal paths can be captured by a reachability
graph, i.e. a static directed graph RpGq “ pV,Ecq, such that pu, vq P Ec if and only if a
temporal path exists from u to v. A graph G is temporally connected if all the vertices
can reach each other at least once (i.e., RpGq is a complete directed graph). The class of
temporally connected graphs (TC) is arguably one of the most basic classes of temporal
graphs, along with its infinite lifetime analog TCR, where temporal connectivity is achieved
infinitely often (i.e., recurrently).

In what follows, we drop the adjective “temporal” whenever it is clear from the context
that the considered graph (or property) is temporal.

2.1 Strictness / Properness / Simpleness

The above definitions can be restricted in various ways. In particular, one can identify three
restrictions that are common in the literature, although they are sometimes considered
implicitly and under various names:

� Strictness: A temporal path xpei, tiqy is strict if xtiy is increasing.

� Properness: A temporal graph is proper if λpeq X λpe1q “ H whenever e and e1 are
incident to a same vertex (i.e., λ is locally-injective).

� Simpleness: A temporal graph is simple if λ is single-valued; that is, every edge has a
single presence time.

Strictness is perhaps the easiest way of accounting for traversal time for the edges.
Without such restriction (i.e., in the default non-strict setting), a journey can traverse
arbitrarily many edges at the same time step. The notion of properness is related to the one
of strictness, although not equivalent. Properness forces all the journeys to be strict, because
adjacent edges always have different time labels. However, if the graph is non-proper,
then considering strict or non-strict journeys does have an impact, thus distinguishing both
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concepts is important. We will call happy a graph that is both proper and simple, for reasons
that will become clear later.

Application-wise, proper temporal graphs arise naturally when the graph represent mu-
tually exclusive interactions. Proper graphs also have the advantage that λ induces a proper
coloring of the contacts (interpreting the labels as colors). Finally, simpleness naturally ac-
counts for scenarios where the entities interact only one time. It is somewhat unlikely
that a real-world system has this property; however, this restriction has been extensively
considered in well studied subjects (e.g. in gossip theory).

Note that simpleness and properness are properties of the graph, whereas strictness is a
property of the temporal paths in that graph. Therefore, one may either consider a strict or a
non-strict setting in a same temporal graph. The three notions (of strictness, simpleness, and
properness) interact in subtle ways, these interactions being a frequent source of confusion
and incomparability among results. Before focusing on these interactions, let us make a
list of the possible combinations. The naive cartesian product of these restrictions leads
to eight combinations. However, not all of them are meaningful, since properness removes
the distinction between strict and non-strict journeys. Overall, there are six meaningful
combinations, illustrated in Figure 1.

� Non-proper, non-simple, strict (1)

� Non-proper, non-simple, non-strict (2)

� Non-proper, simple, strict (4)

� Non-proper, simple, non-strict (5)

� Proper, non-simple (3)

� Proper, simple (= happy) (6)

Happy
(6)

Simple
(4)

(5)

Proper
(3)

Strict
(1)

(2)
Non-strict

Figure 1: Settings resulting from combining the three properties.

In the name of the settings, “non-proper” refers to the fact that properness is not required,
not to the fact that it is necessarily not satisfied. In other words, proper graphs are a
particular case of non-proper graphs, and likewise, simple graphs are a particular case of
non-simple graphs. Thus, whenever non-proper or non-simple graphs are considered, we
will omit this information from the name. For instance, setting (1) will be referred to as
the (general) strict setting. Finally, observe that strict paths are a special case of non-strict
paths, but we do not get an inclusion of the corresponding settings, whose features are
actually incomparable (we shall return on that subtle point later).

2.2 Does it really matter? (Example of spanners)

While innocent-looking, the choice for a particular setting may have tremendous impacts
on the answers to basic questions. For illustration, consider the spanner problem. Given a
graph G “ pV,E, λq such that G P TC, a temporal spanner of G is a graph G1 “ pV,E1, λ1q

such that G1 P TC, E1 Ď E, and for all e in E1, λ1peq Ď λpeq. In other words, G1 is a
temporally connected spanning subgraph of G. A natural goal is to minimize the size of the
spanner, either in terms of number of labels or number of underlying edges. More formally,
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Min-Label Spanner
Input: A temporal graph G, an integer k
Output: Does G admit a temporal spanner with at most k contacts?

Min-Edge Spanner
Input: A temporal graph G, an integer k
Output: Does G admit a temporal spanner of at most k edges (keeping all their labels)?

The search and optimization versions of these problems can be defined analogously.
Unlike spanners in static graphs, the definition does not care about stretch factors, due
to the fact that the very existence of small spanners is not guaranteed. In the following,
we illustrate the impact of the notions of strictness, simpleness, and properness (and their
interactions) on these questions. The impact of strictness is pretty straightforward. Consider
the graph G1 on Figure 2. If non-strict journeys are allowed, then this graph admits G2 as
a spanner (among others), this spanner being optimal for both versions of the problem
(3 labels, 3 edges). Otherwise, the minimum spanners are bigger (and different) for both
versions: G3 minimizes the number of labels (4 labels, 4 edges), while G4 minimizes the
number of edges (3 edges, 5 labels). If strictness is combined with non-properness, then
there exist a pathological scenario (already identified in [28] and [2]) where the input is
a complete temporal graph (see G5, for example) but none of the edges can be removed
without breaking connectivity! Note that G5 is a simple temporal graph. Simpleness has
further consequences. For example, if the input graph is simple and proper, then it cannot

1,3

2,3 1,2

1,3

3

3

3

1

2 2

1

1,3

2

1,3

1

1 1

1

11

G1 G2 G3 G4 G5

Figure 2: Some temporal graphs on four vertices.

admit a spanning tree (i.e. a spanner of n ´ 1 edges) and requires at least 2n ´ 4 edges
(or labels, equivalently, since the graph is simple) [13]. If the input graph is simple and
non-proper, then it does not admit a spanning tree if strictness is required, but it does
admit one otherwise if and only if at least one of the snapshots is connected (in a classical
sense). Finally, none of these affirmations hold in general for non-simple graphs.

If the above discussion seems confusing to the reader, it is not because we obfuscated it.
The situation is intrinsically subtle. In particular, one should bear in mind the above sub-
tleties whenever results from different settings are compared with each other. To illustrate
such pitfalls, let us relate a recent mistake (fortunately, without consequences) that involved
one of the authors. In [4], Axiotis and Fotakis constructed a (non-trivial) infinite family
of temporal graphs which do not admit opn2q-sparse spanners. Their construction is given
in the setting of simple temporal graphs, with non-proper labeling and non-strict journeys
allowed. The same paper actually uses many constructions formulated in this setting, and
a general claim is that these constructions can be adapted to proper graphs (and so strict
journeys). Somewhat hastily, the introductions of [18] and [17] claim that the counterex-
ample from [4] holds in happy graphs. The pitfall is that, for some of the constructions

5



in [4], giving up on non-properness (and non-strictness) is only achievable at the cost of
using multiple labels per edge – a conclusion that we reached in the meantime. To be fair,
the authors of [4] never claimed that these adaptations could preserve simpleness, so their
claim was actually correct.

Apart from illustrating the inherent subtleties of these notions, the previous observations
imply that counter-examples to sparse spanners in happy graphs was in fact still open. In
Section 4.2, we show that the spanner construction from [4] can indeed be adaptated to this
very restricted setting.

2.3 Happy Temporal Graphs

A temporal graph G “ pV,E, λq is happy if it is both proper and simple. These graphs have
sometimes been referred to as simple temporal graphs (including by the authors), which the
present paper now argues is insufficiently precise. Happy graphs are “happy” for a number
of reasons. First, the distinction between strict journeys and non-strict journeys can be
safely ignored (due to properness), and the distinction between contacts and edges can also
be ignored (due to simpleness). Clearly, these restrictions come with a loss of expressivity,
but this does not prevent happy graphs from being relevant more generally in the sense that
negative results in these graphs carry on to all the other settings. For example, if a problem
is computationally hard on happy instances, then it is so in all the other settings. Thus, it
seems like a good practice to try to prove negative results for happy graphs first, whenever
possible. If this is not possible, then proving it in proper graphs still has the advantage of
making it applicable to both strict and non-strict temporal paths alike. Positive results,
on the other hand, are not generally transferable; in particular, a hard problem in general
temporal graphs could become tractable in happy graphs. This being said, if a certain
graph contains a happy subgraph, then whatever pattern can be found in the latter also
exists in the former, which enables some form of transferability for positive results as well
from happy graphs to more general temporal graphs.

In fact, happy graphs coincide with a vast body of literature. Many studies in gossip
theory and population protocols consider the same restrictions, and the so-called edge-ordered
graphs [19] can also be seen as a particular case of happy graphs where λ is globally injective
(although the distinction does not matter for reachability). In addition, a number of other
existing results in temporal graphs consider such restrictions.

Finally, a nice property of happy graph is that, up to time-distortion that preserve the
local ordering of the edges, the number of happy graphs on a certain number of vertices is
finite – a crucial property for exhaustive search and verification (note that this is also the
case of simple graphs, more generally).

We think that the above arguments, together with the fact that many basic questions
remain unsolved even in this restricted model, makes happy graphs a compelling class of
temporal graphs to be studied in the current state of knowledge.

3 Expressivity of the settings in terms of reachability

As already said, a fundamental aspect of temporal graphs is reachability through temporal
paths. There are several ways of characterizing the extent to which two temporal graphs G1

and G2 have similar reachability. The first three, below, are increasingly more restrictive.
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Definition 1 (Reachability equivalence). Let G1 and G2 be two temporal graphs built on
the same set of vertices. G1 and G2 are reachability-equivalent if RpG1q » RpG2q (i.e. both
reachability graphs are isomorphic). By abuse of language, we say that G1 and G2 have the
“same” reachability graph.

Definition 2 (Support equivalence). Let G1 and G2 be two temporal graphs built on the
same set of vertices. These graphs are support-equivalent if for every journey in either
graph, there exists a journey in the other graph whose underlying path goes through the
same sequence of vertices.

Definition 3 (Bijective equivalence). Let G1 and G2 be two temporal graphs built on a same
set of vertices. These graphs are bijectively equivalent if there is a bijection σ between the
set of journeys of G1 and that of G2, and σ is support-preserving.

The following form of equivalence is weaker.

Definition 4 (Induced reachability equivalence). Let G1 and G2 be two temporal graphs
built on vertices V1 and V2, respectively, with V1 Ď V2. G2 is induced-reachability equivalent
to G1 if RpG2qrV1s » RpG1q. In other words, the restriction of RpG2q to the vertices of V1

is isomorphic to RpG1q.

Observe that bijective equivalence implies support equivalence, which implies reacha-
bility equivalence, which implies induced reachability equivalence. Furthermore, support
equivalence forces both footprints to be the same (the converse is not true). In this section,
we show that some of the settings differ in terms of reachability, whereas others coincide.
We first prove a number of separations, by showing that there exist temporal graphs in some
setting, whose reachability graph cannot be realized in some other settings (Section 3.1).
Then, we present three transformations which establish various levels of equivalences (Sec-
tion 3.2). Finally, we infer more relations by combining separations and transformations
in Section 3.3, together with further discussions. A complete diagram illustrating all the
relations is given in the end of the section (Figure 5 on page 15).

3.1 Separations

In view of the above discussion, a separation in terms of reachability graphs is pretty general,
as it implies a separation for the two stronger forms of equivalences (support-preserving and
bijective ones). Before starting, let us state a simple lemma used in several of the subsequent
proofs.

Lemma 1. In the non-strict setting, if two vertices are at distance two in the footprint,
then at least one of them can reach the other (i.e. the reachability graph must have at least
one arc between these vertices).

3.1.1 “Simple & strict” vs. “strict”

Lemma 2. There is a graph in the “strict” setting whose reachability graph cannot be
obtained from a graph in the “simple & strict” setting.

Proof. Consider the following non-simple graph G (left) in a strict setting and the corre-
sponding reachability graph (right). We will prove that a hypothetical simple temporal
graph H with same reachability graph as G cannot be built in the strict setting. First,
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G “
a b c d1 1,2 2 RpGq “

a b c d

observe that the arc pa, cq in RpGq exists only in one direction. Thus, a and c cannot be
neighbors in H. Since H is simple and the journeys are strict (and a has no other neighbors
in RpGq), the arc pa, cq can only result from the label of ab being strictly less than bc. The
same argument holds between bc and cd with respect to the arc pb, dq in RpGq. As a result,
the labels of ab, bc, and cd must be strictly increasing, which is impossible since pa, dq does
not exist in RpGq.

As simple graphs are a particular case of non-simple graphs, the following follows.

Corollary 1. The “simple & strict” setting is strictly less expressive than the “strict”
setting in terms of reachability graphs.

3.1.2 “Non-strict” vs. “simple & strict”

Lemma 3. There is a graph in the “simple & strict” setting whose reachability graph cannot
be obtained from a graph in the “non-strict” setting.

Proof. Consider the following simple temporal graph G (left) in a strict setting and the
corresponding reachability graph (right). Note that a and c are not neighbors in RpGq, due
to strictness. For the sake of contradiction, let H be a temporal graph whose non-strict
reachability graph is isomorphic to that of G. First, observe that the footprint of H must be

G “
a b c1 1 RpGq “

a b c

isomorphic to the footprint of G, as otherwise it is either complete or not connected. Call b
the vertex of degree two in H. If λHpabq ‰ λHpbcq, then either a can reach c or c can reach
a, and if λHpabq “ λHpbcq, then both can reach each other through a non-strict journey. In
both cases, RpHq contains more arcs than RpGq.

As stated in the end of the section, the reverse direction is left open.

3.1.3 “Simple & non-strict” vs. “proper”

Lemma 4. There is a graph in the “proper” setting whose reachability graph cannot be
obtained from a graph in the “simple & non-strict” setting.

Proof. Consider the following proper temporal graph G (left). Its reachability graph (right)
is a graph on four vertices, with an edge between any pair of vertices except a and d (i.e., a
diamond). For the sake of contradiction, let H be a simple temporal graph in the non-strict
setting, whose reachability graph is isomorphic to that of G. First, observe that no arcs

G “
a b c d2 1,3 2 RpGq “

a b c d
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exist between a and d in the reachability graph, thus a and d must be at least at distance
3 in the footprint (Lemma 1), which is only possible if the footprint is a graph isomorphic
to P4 (i.e. a path graph on four vertices) with endpoints a and d. Now, let t1, t2, and
t3 be the labels of ab, bc, and cd respectively. Since ta, b, cu is a clique in the reachability
graph (whatever the way identifiers b and c are assigned among the two remaining vertices),
they must be temporally connected in H, which forces that t1 “ t2 (otherwise both edges
could be travelled in only one direction). Similarly, the fact that tb, c, du is a clique in the
reachability graph forces t2 “ t3. As a result, there must be a non-strict journey between a
and d, which contradicts the absence of arc between a and d in the reachability graph.

The next corollary follows by inclusion of proper graphs in the non-strict setting.

Corollary 2. The “simple & non-strict” setting is strictly less expressive than the “non-
strict” setting in terms of reachability graphs.

3.1.4 “simple & proper (i.e. happy)” vs. “simple & non-strict”

Lemma 5. There is a graph in the “simple & non-strict” setting whose reachability graph
cannot be obtained in the “happy” setting.

Proof. Consider the following simple temporal graph G (left) in a non-strict setting and the
corresponding reachability graph (right). For the sake of contradiction, let H be a happy
temporal graph whose reachability graph is isomorphic to that of G.

G “

a

b c d e

1 1

2 3 2

RpGq “

a

b c d e

Since a is not isolated in the reachability graph, it has at least one neighbor in H.
Vertices b and e cannot be such neighbors, the arc being oneway in the reachability graph,
so its neighbors are either c, d, or both c and d. Wlog, assume that c is a neighbor (the
arguments hold symmetrically for d), we first prove an intermediate statement

Claim 5.1. The edge bd does not exists in the footprint of H.

Proof of Claim 5.1 (by contradition). If bd P H, then de R H, as otherwise b and e would be
at distance 2 and share at least one arc in the reachability graph (Lemma 1). However, e
must have at least one neighbor, thus ce P H, and by Lemma 1 again bc R H. At this point,
the footprint of H must look like the following graph, in which the status of ad and cd is
not settled yet.

a

b c d e
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In fact, ad must exist, as otherwise there is no way of connecting d to a and a to d. Also note
that the absence of pe, aq in the reachability graph forces λpacq ă λpceq (remember that H
is both proper and simple), which implies that no journey exists from e to d unless cd is also
added to H with a label λpcdq ą λpceq. In the opposite direction, d needs that λpadq ă λpacq
to be able reach e. Now, c needs that λpcdq ă λpbdq to reach b. In summary, we must have
λpadq ă λpacq ă λpceq ă λpcdq ă λpbdq, which implies that b cannot reach c.

By this claim, bd R H, thus bc P H and consequently cd R H (by Lemma 1). From the
absence of pb, aq in the reachability graph, we infer that λpbcq ą λpacq. In order for b to reach
d, we need that cd exists with label λpcdq ą λpbcq. To make d to b mutually reachable, there
must be an edge ad with time λpadq ă λpacq. Now, the only way for c to reach e is through
the edge de, and since there is no arc pe, aq, its label must satisfy λpdeq ą λpadq. Finally, c
can reach e (but not through a), so λpdeq ą λpcdq and c cannot reach e, a contradiction.

By inclusion of happy graphs in the “simple & non-strict” setting, we have

Corollary 3. The “simple & proper (i.e. happy)” setting is strictly less expressive than the
“simple & non-strict” setting in terms of reachability graphs.

3.2 Transformations

In this section, we present three transformations. First, we present a transformation from the
general non-strict setting to the setting of proper graphs, called the dilation technique. Since
proper graphs are contained in both the non-strict and strict settings, this transformation
implies that the strict setting is at least as expressive as the non-strict setting. This trans-
formation is support-preserving, but it suffers from a significant blow-up in the size of the
lifetime. Another transformation called the saturation technique is presented from the (gen-
eral) non-strict setting to the (general) strict setting, which is only reachability-preserving
but preserves the size of the lifetime. Finally, we present an induced-reachability-preserving
transformation, called the semaphore technique, from the general strict setting to happy
graphs. If the original temporal graph is non-strict, one can compose it with one of the
first two transformations, implying that all temporal graphs can be turned into a happy
graph whose reachability graph contains that of the original temporal graph as an induced
subgraph. This shows that happy graphs are universal in a weak (in fact, induced) sense.

3.2.1 Dilation technique: “non-strict” Ñ “proper”

Given a temporal graph G in the non-strict setting, we present a transformation that creates
a proper temporal graph H that is support-equivalent to G (and thus also reachability-
equivalent). We refer to this transformation as the dilation technique.

The transformation operates at the level of the snapshots, taken independently, one after
the other. It consists of isolating, in turn, every snapshot Gt where some non-strict journeys
are possible, and “dilating” it over more time steps in such a way these journeys can be
made strict (note that this needs be applied only if Gt contains at least one path of length
larger than 1). The subsequent snapshots are shifted in time accordingly. The dilation of
a snapshot Gt goes as follows. Without loss of generality, assume that t “ 1 (otherwise,
shift the labels used below by the sum of lifetimes resulting from the dilation of the earlier
snapshots). First, we transform Gt into a non-proper temporal graph Gt whose footprint is
Gt itself, and the edges of which are assigned labels 1, 2, ..., k, where k is the longest path
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in Gt (with k ď |V | ´ 1). As argued in the proof below, there is a strict journey in Gt if and
only if there is a path (and thus a non-strict journey) in Gt. Now, Gt can be turned into a
proper graph as follows. By Vizing’s theorem, the edges of a graph of maximum degree ∆
can be properly colored using at most ∆ ` 1 colors. Let c : Et Ñ r0,∆s be such a coloring,
and let ϵ be a fixed value less than 1{p∆ ` 1q. Each label of each edge e of Et is “tilted” in
Gt by a quantity equal to cpeqϵ. The transformation is illustrated in Figure 3.

1, 3

1
,2

1

3, 4 2

1, 2, 3

1
`
ϵ,

2
`
ϵ,

3
`
ϵ

1, 2, 3

1, 3, 5, 8

2
,4

,6
,7

1, 3, 5

8, 9 7

G G1 G1 H

Figure 3: Dilation of the labels of G. Here, a single snapshot, namely G1 contains paths
whose length is larger than 1, so the dilation is only applied toG1. The transformed snapshot
G1 has 6 labels (instead of 1). It is then recomposed with the other snapshots, whose time
labels are shifted accordingly (by 5 time unit), resulting in graph H.

Lemma 6 (Dilation technique). Given a temporal graph G, the dilation technique transforms
G into a proper temporal graph H such that there is a non-strict journey in G if and only if
there is a strict journey in H with same support.

Proof. (Properness.) Every snapshot is dealt with independently and chronologically, the
subsequent snapshots being shifted as needed to occur after the transformed version of the
formers, so each snapshot becomes a temporal subgraph of H whose lifetime occupies a
distinct subinterval of the lifetime of H. Moreover, the tilting method based on a proper
coloring of the edges guarantees that each of these temporal graphs is proper. Thus, H is
proper.
(Preservation of journeys.) Given a snapshot Gt considered independently, the longest path
in G has length k ď |V | ´ 1 and every edge has all the labels from 1 to k, so for every path
of length ℓ in G, there is a strict journey in this graph, along the same sequence of edges,
going over labels 1, 2, ..., ℓ (up to the tilts, which are all less than 1). Moreover, if a journey
exists in Gt, then its underlying path also exists in Gt (since Gt is the footprint of Gt),
thus, the dilation of a snapshot is support-preserving. Finally, as all the snapshots occupy
a distinct subinterval of the lifetime of H, and the order among snapshots is preserved, the
composability of journeys over different snapshots is also unaffected.

Let us clarify a few additional properties of the transformation. In particular,

Lemma 7. The running time of the dilation technique is polynomial.

Proof. For any reasonable representation of G in memory, one can easily isolate a particular
snapshot by filtering the contacts for the corresponding label (if the representation is itself
snapshot-based, this step is even more direct). Then, each snapshot has at most Opn2q edges,
so assigning the n required labels to each of them takes at most Opn3q operations. Using
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Misra and Gries coloring algorithm [29], a proper coloring of the edges can be obtained
in Opn3q time per snapshot. Applying the tilt operation takes essentially one operation
per label in the transformed snapshot, so Opn3q again. Finally, these operations must be
performed for all snapshots, which incurs a additional global factor of τ , resulting in a total
running time of essentially Opn3τq. (The exact running time may depend on the actual data
structure. It could also be characterized more finely by considering the number of contacts k
(temporal edges) as a parameter instead of the rough approximation above, leading to a
complexity of Opknq time steps, e.g. with adjacency lists to describe the snapshots.)

Finally, observe that the dilation technique may incur a significant blow up in the lifetime
of the graph. More precisely,

Lemma 8. Let ∆ be the maximum degree of a vertex in any of the snapshot. Then, τH ď

τGp∆ ` 1qpn ´ 1q.

Proof. There are τG snapshots, each one can be turned into a temporal graph that uses up
to n ´ 1 nominal labels tilted in ∆ ` 1 different ways.

3.2.2 Saturation technique: “non-strict” Ñ “strict”

As already explained, the dilation transformation described above makes it possible to
transform any temporal graph in the non-strict setting into a proper graph, which is de
facto included in both the strict and non-strict setting. Thus, it can be seen as a support-
preserving transformation from the non-strict setting to the strict setting, at the cost of a
significant blow-up of the lifetime. In this section, we present a weaker transformation called
the saturation method. This transformation is only reachability-preserving, but it keeps the
lifetime constant. An additional benefit is that it is pretty simple. A similar technique was
used in [5] to test the temporal connectivity of a temporal graph with non-strict journeys.

Theorem 1. Let G be a temporal graph with n vertices, m contacts and a lifetime of size τ ,
considered in the non-strict setting. There exists a temporal graph H with n vertices, lifetime
τ and at most pnpn`1qτq{2 contacts in the strict setting that results in the same reachability
graph.

Proof. Let G be seen as a sequence of snapshots G1, ..., Gτ . The transformation consists
of transforming independently every snapshot Gi of G by turning every path of Gi into an
edge. In other words, turning each snapshot Gi into its own (path-based) transitive closure.
The resulting graph H “ H1, ...,Hτ has the same lifetime as G and the same set of vertices.
We will now prove that there is a (non-strict) journey from u to v in G if and only if there
is a strict journey from u to v in H.

(Ñ) Let j be a journey in G. If any part of j uses consecutive edges at the same time
step t (say, from a to b), then there is a corresponding path in the snapshot Gt, implying an
edge ab in Ht, thus, this part of j can be replaced by a contact pta, bu, tq in H. Repeating
the argument implies a strict journey.

(Ð) Let j1 be a journey in H. By construction of H, for any contact pta, bu, tq in j1,
either the same contact already exists in G, or there exists a path between a and b in Gt. If
non-strict journeys are allowed, this path can replace the contact. Repeating the argument
implies a non-strict journey.
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3.2.3 Semaphore technique: “strict” Ñ “simple & proper” (happy)

In this section, we describe a transformation called the semaphore technique, which trans-
forms any graph in the strict setting into a happy graph, while preserving the reachabil-
ity between the vertices of the input graph, thus this transformation implies an induced-
reachability equivalence. Our transformation is inspired by a reduction due to Bhadra and
Ferreira [7] that reduces the Clique problem to the problem of finding maximum compo-
nents in temporal graphs. However, their reduction takes as input a graph that is (morally)
simple, and produces temporal graphs that are neither simple nor proper. Thus, our trans-
formation differs significantly.

Theorem 2. Let G be a temporal graph with n vertices and m contacts in the strict setting.
There exists a happy graph H with n`2m vertices and 4m edges and a mapping σ : VG Ñ VH
such that pu, vq P RpGq if and only if pσpuq, σpvqq P RpHq.

Proof. Intuitively, the transformation consists of turning every contact of G, say x “

ptu, vu, txq, into a “semaphore” gadget in H that consists of a copy of u and v, plus two
auxiliary vertices ux and vx linked by 4 edges tu, uxu, tux, vu, tu, vxu, tvx, vu, whose labels
create a journey from u to v through ux, and from v to u through vx. The labels are
chosen in such a way that these journeys can replace x for the composition of journeys in
H. For simplicity, our construction uses fractional label values, which can subsequently be
renormalized into integers. A basic example is shown in Figure 4.

u v w1,2 1

u
v

w

1
´
ϵ 1 `

ϵ

1 ` ϵ 1 ´
ϵ

2 ´
ϵ 2 ` ϵ

2 `
ϵ 2

´
ϵ

1 ´ 2ϵ 1 ` 2ϵ

1 ` 2ϵ 1 ´ 2ϵ

G H

Figure 4: The semaphore technique, turning a non-proper graph G (in the strict setting),
into a happy graph H whose reachability preserves the relation among original vertices.

Since we consider strict journeys in G, if two adjacent time edges share the same time
label, it should be forbidden to take the two of them consecutively. To ensure this, the
time labels of tu, uxu, tux, vu, tu, vxu, tvx, vu are respectively tx ´ ϵ, tx ` ϵ, tx ` ϵ, tx ´ ϵ
(with 0 ă ϵ ă 1{2), enabling the journeys from u to v and from v to u without making two
such journeys composable if the two original labels are the same. The created edges have a
single label, but the graph might not yet be proper. To ensure properness, we tilt slightly
the time labels by multiples of ϵ, in a similar spirit as in the dilation technique presented
above. More precisely, consider a proper edge-coloring of the footprint of G using ∆ ` 1
colors in t1, ...,∆ ` 1u (where ∆ is the maximum degree in the footprint), such a coloring
being guaranteed by Vizing’s theorem. For each edge e of the footprint, note ce its color.
Now the time labels in H associated to x “ pe, txq are tx ´ ceϵ, te ` ceϵ with 0 ă ϵ ă 1

2p∆`1q
.

The semaphore gadget is applied for each contact of G with the corresponding color, so
if there was n vertices and m time edges in G, then H will have n ` 2m vertices and 4m
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time edges. It is easy to see that H is now simple and proper. We will now prove that, for
any u and v, u can reach v in G if and only if u can reach v in H.

(Ñ) First note that for any pair of adjacent vertices u, v P VG , we can go from u to v
in H by following one side of the ”semaphore” and from v to u by following the other side.
Furthermore, for any two u, v P VG such that there is a strict journey from u to v in G, there
is a sequence of edges e1, e2, . . . , ek with labels t1, t2, . . . , tk in G such that e1 is incident to u,
ek is incident to v, ei is adjacent to ei`1 and ti ă ti`1. Then u can reach v inH by a sequence
of edges with increasing labels t1 ´ ce1ϵ, t1 ` ce1ϵ, t2 ´ ce2ϵ, t2 ` ce2ϵ, . . . , tk ´ cekϵ, tk ` cekϵ.

(Ð) First note that from any original vertex a, seen in H, we must first move to an
auxiliary vertex b by the edge e1 “ ta, bu and then to another original vertex c by edge
e2 “ tb, cu. The labels on the edges must be t ´ cϵ and t ` cϵ for some t, where t is the
original time of the contact of G and c the color of the underlying edge. Then, we again
reach an auxiliary vertex d from c at time t1 ´ c1ϵ, where t ` cϵ ă t1 ´ c1ϵ, and then another
original vertex e at time t1 ` c1ϵ. Since t ă t1, we can go from a to e through c in G using
contacts pta, cu, tq and ptc, eu, t1q, respectively. Hence for all original u and v, if we have a
temporal path from u to v in H, then we can follow the above process multiple times to get
a temporal path from u to v in G.

Observe that the semaphore technique is, in a quite relaxed way, also support-preserving,
in the sense that a journey in G can be mapped into a journey inH that traverses the original
vertices in the same order (and vice versa), albeit with auxiliary vertices in between.

3.3 Summary and discussions

Let S1 and S2 be two different settings, we define an order relation ĺ so that S1 ĺ S2 means
that for any graph G1 in S1, one can find a graph G2 in S2 such that RpG1q » RpG2q. We
write S1 ň S2 if the containment is proper (i.e., there is a graph in S2 whose reachability
graph cannot be obtained from a graph in S1). Finally, we write S1 « S2 if both sets
of reachability graphs coincide. Several relations follow directly from containment among
graph classes, e.g. the fact that simple graphs are a particular case of non-simple graphs.
The above separations and transformations also imply a number of relations, and their
combination as well. For example, proper graphs are contained both in the strict and non-
strict settings, and since there is a transformation from non-strict graphs (in general) to
proper graphs, we have the following striking relation:

Corollary 4. “Proper” « “non-strict”.

Similarly, combining the fact that “simple & non-strict” is strictly contained in “non-
strict” (by Corollary 2), and there exists a reachability-preserving (in fact, support-preserving)
transformation from “non-strict” to “proper”, we also have that

Corollary 5. “Simple & non-strict” ň “proper”.

Finally, the fact that there is a reachability-preserving transformation from “non-strict”
to “strict” (the saturation technique), and some reachability graphs from “simple & strict”
are unrealizable in “non-strict” (by Lemma 3), we also have

Corollary 6. “Non-strict” ň “strict”.

A summary of the relations is shown in Figure 5, where green thick edges represent
the transformations that are support-preserving, green thin edges represent transformations
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Figure 5: Separations, transformations, and inclusions among settings.

that are reachability-preserving, red edges with a cross represent separations (i.e. the im-
possibility of such a transformation), black dashed edges represent the induced-reachability-
preserving transformation to happy graphs. Finally, inclusions of settings resulting from
containment of graph classes are depicted by short blue edges. Some questions remain
open. In particular,

Open question 1. Does “non-strict” ĺ “simple & strict”? In other words, is there a
reachability-preserving transformation from the former to the latter?

By Lemma 3, we know that both settings are not equivalent, but are they comparable?
If not, a similar question holds for “simple & non-strict”:

Open question 2. Does “simple & non-strict” ĺ “simple & strict”? In other words, is
there a reachability-preserving transformation from the former to the latter?

To conclude this section, Figure 6 depicts a hierarchy of the settings ordered by the
above relation ĺ; i.e. by the sets of reachability graph they can achieve.

4 Strengthening existing results to happy graphs

From the previous section, happy graphs are the least expressive setting. In this section,
however, we argue that they remain expressive enough to strengthen existing negative results
for at least two well-studied problems. First, we show that the construction from [4] can be
made happy, which implies that opn2q-sparse spanners do not always exist in happy graphs.
We also show that the reduction from clique to temporal component from [7] can be made
happy, which implies that temporal component is NP-complete even in happy graphs (for
both open and closed components). Finally, to further motivate studies on happy graphs,
we list a few open questions.
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Figure 6: Ordering of temporal graph settings in terms of reachability graphs.

4.1 Temporal Component remains hard

The temporal component problem can be defined as follows in temporal graphs.

Temporal Component
Input: A temporal graph G “ pV,E, λq, an integer k
Output: Is there a set V 1 Ď V of size k in G such that all vertices of V 1 can reach each
other by a temporal path?

Due to the non-transitive nature of reachability, two versions are typically considered,
depending on whether the vertices of V 1 can rely (open version) or not (closed version) on
vertices outside of V 1 for reaching each other.

In [7], Bhadra and Ferreira show that both versions of the problem are NP-complete.
Interestingly, although the authors consider a strict setting in the paper, their construction
works indistinctly for both the strict or the non-strict setting. However, it is neither proper
nor simple. In this section, we explain how to adapt their construction to happy graphs. Our
reduction works for both the open and closed version, for the simple fact that it produces
an instance where the maximum open and closed components are the same.

Let pG, kq be an instance of the clique problem, where G is a static undirected graph
and k some integer, the reduction in [7] transforms G into a temporal graph G as follows.
The first step of the transformation corresponds to a simplified version of the semaphore
technique, where two auxiliary vertices are created for each pair of neighbors u and v in G,
such that u can reach v in G through one of these vertices and v can reach u through the
other, using labels 2 on the first edge and 3 on the second (on both sides). Observe that
two adjacent semaphores have labels which are not proper. The second step is to connect
all pairs of auxiliary vertices x and y using an edge xy with two labels 1 and 4 for each
pair (thus G is not simple). The purpose of these contacts is to make all auxiliary vertices
reachable from each other, and to create journeys between each auxiliary vertex and each
original vertex (both ways). As a result, an SCC of size 2m ` k exists in G (where m is the
number of edges of G) if and only if a clique of size k exists in G.

Theorem 3. Temporal Component is NP-complete in happy graphs.

Proof. Our proof consists of making the transformation from [7] both simple and proper,
while preserving the size of the maximum component within (which is the same for the open
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and closed versions). First, observe that the non-proper labels of the semaphores in G can
easily be turned into proper labels by tilting the labels in the same way as explained in
the semaphore technique (Theorem 2 on page 13), namely, by coloring properly the edges
of the footprint of G, and adding the corresponding multiple of ϵ to every label. Since the
quantity added to each label is less than 1, the reachability among original vertices, and
between original and auxiliary vertices, is unaffected. The conversion of the labels 1 and 4
between auxiliary vertices is slightly more complicated. These vertices in G form a clique,
each edge of which have labels 1 and 4. First, using Lemma B.1 in [4], any clique of 2m
vertices may be decomposed into m hamiltonian paths. We need only 4 such paths for the
construction, which is guaranted as soon as m ě 4 (our adaptation does not need to hold
for smaller graphs in order to conclude that the problem is NP-complete). Thus, take four
edge-disjoint hamiltonian paths among auxiliary vertices. We will use two of them, say p1
and p2 to replace the contacts having label 1 (the same technique applies for label 4). Pick
a vertex u in p1 and assign time labels to p1 so that all vertices in p1 can reach u through
ascending labels (towards u). Then proceed similarly in p2 with ascending labels from u
towards all the vertices of p2. Choose these labels so that they remain sufficiently close to
1 and do not interfere with the rest of the construction. Proceed similarly for the two other
hamiltonian paths with respect to label 4. The resulting construction is happy and preserves
the journeys between auxiliary vertices, while preserving the composability of journeys with
the rest of the construction.

4.2 Happy graphs do not always admit opn2q-sparse spanners

In [4] (Theorem 3.1), Axiotis and Fotakis construct an infinite family of temporal graphs in
the “simple & non-strict” setting that does not admit a opn2q-sparse spanner. The goal of
this section is to show that their construction can be strengthened to happy graphs.

The construction G in [4] consists of three parts of n vertices each (thus N “ 3n vertices
in total), namely a clique of vertices A “ a1, ..., an; an independent set H “ h1, ..., hn; and
a set M “ m1, ...,mn of additional vertices. The idea is to make every edge of A critical to
provide connectivity among some vertices of H, so that removing any of these edge breaks
temporal connectivity and every spanner thus contains Θpn2q edges. The purpose of the
vertices in M is only to make the rest of G temporally connected without affecting these
relations between A and H. In this construction, every edge receives a single label, so G is
already simple. However, the inner labeling of the clique A is not proper. We claim that
this labeling can be made proper without affecting the main properties of the construction.
The following statement is identical to Theorem 3.1 in [4], except that the adjective happy
is inserted.

Theorem 4. For any even n ě 2, there is a happy connected temporal graph with N “ 3n

vertices, npn`9q

2 ´ 3 edges and lifetime at most npn`5q

2 ´ 1, so that the removal of any subset
of 5n edges results in a disconnected temporal graph.

Proof (sketch). The complete construction from [4] is not presented here in detail. However,
the fact that it can be made proper relies on a simple observation. In [4], the clique A is
decomposed into n

2 hamiltonian paths p1, p2, ..., pn{2, each of which is assigned label i. For
every path pi, vertices h2i´1 and h2i are connected to the endpoints of pi (one on each
side), and the main requirement is that this path is the only way for h2i´1 to reach h2i.
Interestingly, although every path pi is non-strict in [4] and thus could be travelled in both
directions, it turns out that only one direction is needed, because h2i can reach h2i´1 (for
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every i) using temporal paths outside of the clique. Therefore, our adaptation consists of
assigning to every path i a strictly increasing sequence of labels, while shifting all the larger
labels of the graph appropriately, so that all other temporal paths are unaffected and G
becomes proper. The full proof would require a complete description of the construction
in [4], which would be identical up to the above change.

4.3 Further questions

To conclude this section, we state a few open questions related to spanners in happy graphs.
The first question is structural, namely,

Open question 3. Do happy cliques always admit Opnq-sparse spanners? If so, do they
admit spanners of size 2n ´ 3?

It was shown in [17] that happy cliques (or alternatively, all temporal cliques in the
non-strict setting) always admit spanners of size Opn log nq, but no counterexamples were
found so far that rule out size Opnq.

On the algorithmic side, two independent results establish that Min-Label Spanner
is hard in temporal graphs [4, 2]. However, the proofs in these papers rely on constructions
which are not happy, and it is not clear that these constructions can be strengthened to
happy graphs in a similar way as the above problems. Thus,

Open question 4. Is Min Spanner tractable in happy graphs?

As already explained, both the Min-Edge Spanner and Min-Label Spanner versions
of the problem coincide in simple graphs (and thus in happy graphs), which makes them a
single problem.

5 Concluding remarks

In this paper, we explored the impact of three particular aspects of temporal graphs: strict-
ness, properness, and simpleness. Comparing their expressivity in terms of reachability
graphs, we showed that these aspects really matter and that separations exist between the
expressivity of some settings, while others can be shown equivalent through transforma-
tions. Then, we focused on the simplest model (happy graphs), where all these distinctions
vanish, and showed that this model still captures interesting features of general temporal
graphs. Our results imply a few striking facts, such as the fact that the “proper” setting is
as expressive as the “non-strict” setting. Some relations remain unknown, in particular, it
is open whether the “non-strict” setting is comparable to “simple & strict” setting. Finally,
despite their extreme simplicity, several basic questions remain open on happy graphs, which
we think makes them a natural target for further studies. We conclude by stating a few
questions of more general scope, related to the present paper.

Open question 5 (Realizability of a reachability graph). Given a static digraph, how hard
is it to decide whether it can be realized as the reachability graph of a temporal graph?

The structural analog of this question could be formulated as follows

Open question 6 (Characterization of the reachability graphs). Characterize the set of
static directed graphs that are the reachability graphs of some temporal graph.
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Questions 5 and 6 can be declined into several versions, one for each setting. Finally, the
work in this paper focused on undirected temporal graphs. It would be interesting to see if
the expressivity of directed temporal graphs shows similar separations and transformations.

Open question 7 (Directed temporal graphs). Does the expressivity of directed temporal
graphs admit similar separations and transformations as in the undirected case?
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