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Distributed Computing

Collaboration of distinct entities to perform a common task.

No centralization available. Direct interaction only.

(Think globally, act locally)

Arnaud Casteigts Impact of Network Dynamics on Distributed Problems 2 / 20



Examples of problems

Broadcast Propagating a piece of information from one node to all others.

→
Election Distinguishing exactly one node among all.

→
Spanning tree Selecting a cycle-free set of edges that interconnects all nodes.

→
Counting Determining how many participants there are.

→ 9

Consensus, naming, routing, exploration, ...
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Dynamic Networks
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Dynamic networks ?

In fact, highly dynamic networks.

Ex :

How changes are perceived ?

- Faults and Failures ?

- Nature of the system. Change is normal.

Example of scenario
(say, exploration by mobile robots)
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Dynamic Graphs

Also called evolving graphs or time-varying graphs.

Graph-centric
Sequence of static graphs G = G0,G1, ... [+table of association with dates in T]

G0 G1 G2 G3

Edge-centric

G = (V ,E ,T, ρ),
with ρ being a presence function

(ρ : E × T→ {0, 1})

a
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d

e
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3
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2[ [0, 3[

[2, 4[

→ Both are theoretically equivalent if ρ is countable (e.g. not like this )

→ Further extensions possible (latency function, node-presence function, ...)

For references, see (Ferreira, 2004) and (C., Flocchini, Quattrociocchi, Santoro, 2012)
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Basic graph concepts
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=⇒ Paths become temporal (a.k.a. journey)

Ex : ((ac, t1), (cd , t2), (de, t3)) with ti+1 ≥ ti and ρ(ei , ti) = 1

=⇒ Temporal connectivity. Not symmetrical ! (e.g. a e, but e 6 a)

=⇒ Strict journeys vs. non-strict journeys. (Important for analysis.)

In the literature : Schedule-conforming path (Berman, 1996) ; Time-respecting
path (Kempe et al., 2008 ; Holme, 2005) ; Temporal path (Chain-
treau et al., 2008) ; Journey (Bui-Xuan et al., 2003).

Many other concepts... (ask me !).
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Analytical approach

Feasibility, Complexity, Correctness, Necessary conditions, ...

General results & understandability.
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Abstracting Communications

Coarse-grain interaction (Population protocols (Angluin et al., 2004) ;

→ Atomic and localized Graph relabeling systems (Litovsky et al., 1999))

Ex : T N T T (Spanning tree algorithm with a distinguished root)
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Note : In these models, scheduling is not part of the algorithm !

→ It is, e.g., probabilistic, adversarial, or even abstracted.

Scope of the models Relations between them (Chalopin, 2006)
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... in dynamic networks ? (C., Chaumette, Ferreira, 2009)

Interactions over a Dynamic Graph G = {G1,G2, ...,Gk}

time
︷ ︸︸ ︷

Interactions I1

G1

Topological event 1

︷ ︸︸ ︷
Interactions I2

G2

Topological event 2 Topological event

︷ ︸︸ ︷
Interactions Ik

Gk

. . .

. . .

An execution is an alternated sequence of interactions and topological events :

X = Ik ◦ Eventk−1 ◦ .. ◦ Event2 ◦ I2 ◦ Event1 ◦ I1(G0) Non deterministic !

→ X : set of all possible executions (for a given algorithm and graph G).

What makes a graph property P a necessary or sufficient condition for success on G ?

→ Necessary condition : ¬P(G) =⇒ ∀X ∈ X , failure(X).

→ Sufficient condition : P(G) =⇒ ∀X ∈ X , success(X). (+ schedul. assumption)
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Toy examples (1) (C., Chaumette, Ferreira, 2009)

Basic broadcast

Initial states : I (source node), N (other nodes)

Final states : I everywhere

Algorithm :
I N I I

Example of scenario :

Necessary condition for success ?
→ PN : there exists a journey from the source node to all others (noted src  ∗).

Sufficient condition ?

→ PS : there exists a strict journey from the source to all others (noted src st
 ∗).

Classes of dynamic graphs

→ C1 : PN is satisfied by at least one node (noted 1 ∗).
→ C2 : PN is satisfied by all nodes (∗ ∗).

→ C3 : PS is satisfied by at least one node (1 st
 ∗).

→ C4 : PS is satistied by all nodes (∗ st
 ∗).

a
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e
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2[ [0, 3[
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Toy Examples (2) (C., Chaumette, Ferreira, 2009)

Counting with a selected counter

Initial states : (C, 1) (counter node), N (other nodes).

Final states : (C, |V |) (counter node).

Algorithm :
C, i N C, i + 1 F

Necessary or sufficient conditions

PN : there exists an edge, at some time, between the counter and every other
node (noted cpt–∗).
PS = PN .

Classes of dynamic graphs

→ C5 : at least one node verifies P, (noted 1–∗).
→ C6 : all the nodes verify P, (noted ∗–∗).

Arnaud Casteigts Impact of Network Dynamics on Distributed Problems 12 / 20



Tightness of a condition ? (Marchand de Kerchove, Guinand, 2012)

Tight Necessary condition

Not satisfied =⇒ failure is guaranteed (@X , success(X))

Satisfied =⇒ success is possible (∃X , success(X)).

Tight Sufficient condition

Satisfied =⇒ success is guaranteed (@X , failure(X))

Not satisfied =⇒ failure is possible (∃X , failure(X))

Remark : necessary and sufficient conditions do not always exist !

Ex. basic broadcast :

→ src  ∗ is a tight necessary condition (i.e. maximal)

→ src st
 ∗ is a tight sufficient condition (i.e. minimal)

In between : outcome is uncertain... might succeed or fail (depending on
scheduling/adversary).
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Toy examples (3) (C., Chaumette, Ferreira, 2009)

Counting without a selected counter (Angluin et al., 2004)

Initial states : 1 (all nodes).

Final states : |V | (one node), 0 (anywhere else).

Algorithm :
i 6= 0 j 6= 0 i + j 0

Conditions and classes of graphs

Necessary condition CN : at least one node can be reached by all (∗ 1).

→ C7 : graphs having this property.

Sufficient condition CS : all pairs of nodes must be neighbors at some time (∗–∗).
→ C6 (already seen before).
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Classifying dynamic networks (C., Chaumette, Ferreira, 2009)

C6 C4

C5

C2

C3

C7

C1

∗ − ∗ ∗ st
 ∗

1− ∗ 1 st
 ∗

∗ ∗ ∗ 1

1 ∗

∀ =⇒ ∃ ∀ =⇒ ∃

∀ =⇒ ∃

∀ =⇒ ∃

− =⇒ Jstrict

− =⇒ Jstrict

Jstrict =⇒ J

Jstrict =⇒ J

− =⇒ J
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Classifying dynamic networks (C., Chaumette, Ferreira, 2009)

C6 C4

C5

C2

C3

C7

C1

∗ − ∗ ∗ st
 ∗

1− ∗ 1 st
 ∗

∗ ∗ ∗ 1

1 ∗

PN (countingv1) PN (countingv2)

PS(countingv1)

PS(countingv2) (←Marchand de Kerchove, Guinand, 2012)

→ Comparison of algorithms on a formal basis
→ Decision making (what algorithm to use ?)
→ e.g. using automated property checking on network traces).

→ Formal proofs ? (Coq)

Q : How far beyond toy examples ?
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Classifying further (C., Flocchini, Quattrociocchi, Santoro, 2012)

Extending the hierarchy

1 ∗
∗ ∗

1 st
 ∗

∗ st
 ∗

1–∗
∗–∗

∗ 1∗ ∗
∗R ∗

R–

B–P–

Foremost broadcast

Shortest broadcastFastest broadcast

→ Foremost, Shortest, and Fastest broadcast

a

b
c

d

e

f g

[1, 2)

[3, 4)

[5, 6)

[4, 5) [9, 10)

[7, 8)

[7, 8)

[7, 8)

Node a wants to reach d at time 0. Which way is
optimal ?

-shortest journey : using as few hops as possible

-foremost journey : arriving as early as possible

-fastest journey : crossing as fast as possible

shortest

foremost

fastest

Offline problem (Bui-Xuan et al., 2003) ; Distributed version (C. et al., 2013)
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Classifying further (C., Flocchini, Quattrociocchi, Santoro, 2012)

Extending the hierarchy

1 ∗
∗ ∗

1 st
 ∗

∗ st
 ∗

1–∗
∗–∗

∗ 1∗ ∗
∗R ∗

R–

B–P–

∗R–∗

R– –∗R– –∗∗ ∗– –∗

T-∗ ∗– –∗

Foremost broadcast

Shortest broadcastFastest broadcast

Population
protocols

“Static”
routing

“Static”
broadcast

Bounded
broadcast

Speed up for
some problems
(by a factor T )

Ex : Bounded broadcast in (∗ ∗––∗) (O’Dell and Wattenhofer, 2005)

The graph is arbitrarily dynamic, as long as every Gi remains connected :

Min cut of size 1 between informed and uninformed nodes :
→ At least one new node informed in each step.
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Classifying further (C., Flocchini, Quattrociocchi, Santoro, 2012)

Extending the hierarchy

1 ∗
∗ ∗

1 st
 ∗

∗ st
 ∗

1–∗
∗–∗

∗ 1∗ ∗
∗R ∗

R–

B–P–

∗R–∗

R– –∗R– –∗∗ ∗– –∗T-∗ ∗– –∗

Foremost broadcast

Shortest broadcastFastest broadcast

Population
protocols (1)

“Static” (5)
routing

“Static” (4)
broadcast

Bounded (3)
broadcast

Speed up for (2)
some problems
(by a factor T )

(1) Complete graph of interaction (Angluin, Aspnes, Diamadi, Fischer, Peralta, 2004)

(2) T-interval connectivity (Kuhn, Lynch, Oshman, 2010)

(3) Constant connectivity (O’Dell and Wattenhofer, 2005)

(4) Eventual connectivity (Ramanathan, Basu, and Krishnan, 2007)

(5) Eventual routability (Ramanathan, Basu, and Krishnan, 2007)
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Classifying further (C., Flocchini, Quattrociocchi, Santoro, 2012)

Real mobility contexts

1 ∗
∗ ∗

1 st
 ∗

∗ st
 ∗

1–∗
∗–∗

∗ 1∗ ∗
∗R ∗

R–

B–P–

∗R–∗

R– –∗R– –∗∗ ∗– –∗T-∗ ∗– –∗

?

? ?

How to proceed ?

→ Generate connection traces
→ Test for properties
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Gracias, Milesker, Merci !
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