Impact of Network Dynamics on the Feasibility of Distributed Problems

Overview of Early Results

Arnaud Casteigts

University of Bordeaux

 21° Jornadas de Concurrencia y Sistemas Distribuidos (JCSD 2013)

UPV/EHU, San Sebastian

Distributed Computing

Collaboration of distinct entities to perform a common task.

No centralization available. Direct interaction only.

(Think globally, act locally)

Examples of problems

Consensus, naming, routing, exploration, ...

Dynamic Networks

イロト イポト イヨト イヨト

2

Dynamic networks?

In fact, highly dynamic networks.

How changes are perceived ?

- Faults and Failures ?-
- Nature of the system. Change is normal.

Example of scenario (say, exploration by mobile robots)

Dynamic Graphs

Also called evolving graphs or time-varying graphs.

Graph-centric

Sequence of static graphs $\mathcal{G} = G_0, G_1, ...$ [+table of association with dates in \mathbb{T}]

Edge-centric

 $\mathcal{G} = (V, E, \mathbb{T}, \rho),$ with ρ being a *presence function* $(\rho : E \times \mathbb{T} \to \{0, 1\})$ a <u>10, 11</u> c <u>12, 41</u> e <u>1, 0, 11</u> c <u>12, 41</u> e <u>1, 0, 11</u> d

 \rightarrow Both are theoretically equivalent if ρ is countable (e.g. not like this \rightarrow

 \rightarrow Further extensions possible (latency function, node-presence function, ...)

For references, see (Ferreira, 2004) and (C., Flocchini, Quattrociocchi, Santoro, 2012)

Basic graph concepts

⇒ Paths become temporal (*a.k.a. journey*) Ex : ((*ac*, t_1), (*cd*, t_2), (*de*, t_3)) with $t_{i+1} \ge t_i$ and $\rho(e_i, t_i) = 1$

- \implies Temporal connectivity. Not symmetrical ! (e.g. $a \rightsquigarrow e$, but $e \not \rightsquigarrow a$)
- ⇒ *Strict* journeys *vs. non-strict* journeys. (Important for analysis.)

In the literature : Schedule-conforming path (Berman, 1996); Time-respecting path (Kempe et al., 2008; Holme, 2005); Temporal path (Chaintreau et al., 2008); Journey (Bui-Xuan et al., 2003).

Many other concepts... (ask me !).

Analytical approach

Feasibility, Complexity, Correctness, Necessary conditions, ...

General results & understandability.

Abstracting Communications

Coarse-grain interaction

 \rightarrow Atomic and localized

(Population protocols (Angluin et al., 2004); Graph relabeling systems (Litovsky et al., 1999))

Ex: $\stackrel{T}{\longrightarrow} \stackrel{N}{\longrightarrow} \stackrel{T}{\longrightarrow} \stackrel{T}{\longrightarrow} (Spanning tree algorithm with a distinguished root)$

Note : In these models, scheduling is not part of the algorithm !

 \rightarrow It is, e.g., probabilistic, adversarial, or even abstracted.

... in dynamic networks?

An execution is an alternated sequence of interactions and topological events :

 $X = \mathcal{I}_k \circ Event_{k-1} \circ .. \circ Event_2 \circ \mathcal{I}_2 \circ Event_1 \circ \mathcal{I}_1(G_0)$ Non deterministic !

 $ightarrow \mathcal{X}$: set of all possible executions (for a given algorithm and graph \mathcal{G}).

 \rightarrow <u>Necessary condition</u> : $\neg \mathcal{P}(\mathcal{G}) \implies \forall X \in \mathcal{X}$, failure(X).

 \rightarrow Sufficient condition : $\mathcal{P}(\mathcal{G}) \implies \forall X \in \mathcal{X}$, success(X). (+ schedul. assumption)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Toy examples (1)

Basic broadcast

- Initial states : I (source node), N (other nodes)
- Final states : I everywhere
- Algorithm : $\stackrel{I}{\bullet} \stackrel{N}{\longrightarrow} \stackrel{I}{\longrightarrow} \stackrel{I}{\bullet} \stackrel{I}{\longrightarrow}$

Necessary condition for success?

 $\rightarrow \mathcal{P}_{\mathcal{N}}$: there exists a journey from the source node to all others (noted $\textit{src} \rightsquigarrow *$).

Sufficient condition?

 $\rightarrow \mathcal{P}_{\mathcal{S}}$: there exists a <u>strict</u> journey from the source to all others (noted *src* $\stackrel{st}{\rightsquigarrow}$ *).

Classes of dynamic graphs

- $\rightarrow \mathcal{C}_1: \mathcal{P}_\mathcal{N}$ is satisfied by at least one node (noted 1 \rightsquigarrow *).
- $\rightarrow \mathcal{C}_2: \mathcal{P}_\mathcal{N}$ is satisfied by all nodes (* \rightsquigarrow *).
- $ightarrow \mathcal{C}_3: \mathcal{P}_{\mathcal{S}}$ is satisfied by at least one node (1 $\stackrel{st}{\leadsto} *$).
- $\rightarrow \mathcal{C}_4 : \mathcal{P}_S$ is satisfied by all nodes (* $\stackrel{st}{\rightsquigarrow}$ *).

Toy Examples (2)

Counting with a selected counter

- Initial states : (C, 1) (counter node), N (other nodes).
- Final states : (C, |V|) (counter node).

• Algorithm :
$$\overset{C, i}{\bullet} \overset{N}{\longrightarrow} \overset{O, i+1}{\bullet} \overset{F}{\bullet}$$

Necessary or sufficient conditions

 P_N: there exists an edge, at some time, between the counter and every other node (noted cpt-*).

•
$$\mathcal{P}_{\mathcal{S}} = \mathcal{P}_{\mathcal{N}}.$$

Classes of dynamic graphs

- $\rightarrow C_5$: at least one node verifies \mathcal{P} , (noted 1–*).
- $\rightarrow \mathcal{C}_6$: all the nodes verify \mathcal{P} , (noted *-*).

Tightness of a condition?

(Marchand de Kerchove, Guinand, 2012)

Tight Sufficient condition	
• Satisfied \implies success is guaranteed	$(\nexists X, failure(X))$
• Not satisfied \implies failure is possible	$(\exists X, failure(X))$

Remark : necessary and sufficient conditions do not always exist !

Ex. basic broadcast :

 \rightarrow src \rightsquigarrow * is a tight necessary condition (i.e. maximal)

 \rightarrow src $\stackrel{st}{\rightsquigarrow}$ * is a tight sufficient condition (i.e. minimal)

In between : outcome is uncertain... might succeed or fail (depending on scheduling/adversary).

Toy examples (3)

Counting without a selected counter

- Initial states : 1 (all nodes).
- Final states : |V| (one node), 0 (anywhere else).

• Algorithm :
$$\stackrel{i \neq 0}{\bullet} \stackrel{j \neq 0}{\longrightarrow} \stackrel{i+j}{\bullet} \stackrel{0}{\longrightarrow}$$

Conditions and classes of graphs

• Necessary condition C_N : at least one node can be reached by all (* \rightsquigarrow 1).

 $\rightarrow~\mathcal{C}_7$: graphs having this property.

Sufficient condition C_S : all pairs of nodes must be neighbors at some time (*-*).

 $\rightarrow~\mathcal{C}_6$ (already seen before).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Classifying dynamic networks

15/20

Classifying dynamic networks

15/20

Classifying dynamic networks

- ightarrow Comparison of algorithms on a formal basis
- \rightarrow Decision making (what algorithm to use ?)
 - ightarrow e.g. using automated property checking on network traces).
- → Formal proofs ? (Coq)

Q : How far beyond toy examples ?

(C., Flocchini, Quattrociocchi, Santoro, 2012)

Extending the hierarchy

 \rightarrow Foremost, Shortest, and Fastest broadcast

Node *a* wants to reach *d* at time 0. Which way is optimal?

- -shortest journey : using as few hops as possible
- -foremost journey : arriving as early as possible
- -fastest journey : crossing as fast as possible

Offline problem (Bui-Xuan et al., 2003);

Distributed version (C. et al., 2013)

(C., Flocchini, Quattrociocchi, Santoro, 2012)

Extending the hierarchy

Ex : Bounded broadcast in $(*-^{*}-*)$

(O'Dell and Wattenhofer, 2005)

The graph is arbitrarily dynamic, as long as every G_i remains connected :

$$\gg$$
 $|$ \vee $|$ \rtimes $|$ $>$ $|$ $>$

Min cut of size 1 between informed and uninformed nodes : \rightarrow At least one new node informed in each step.

イロン 不通 と イヨン イヨン

(C., Flocchini, Quattrociocchi, Santoro, 2012)

Extending the hierarchy

- (1) Complete graph of interaction (Angluin, Aspnes, Diamadi, Fischer, Peralta, 2004)
- (2) T-interval connectivity (Kuhn, Lynch, Oshman, 2010)
- (3) Constant connectivity (O'Dell and Wattenhofer, 2005)
- (4) Eventual connectivity (Ramanathan, Basu, and Krishnan, 2007)
- (5) Eventual routability (Ramanathan, Basu, and Krishnan, 2007)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

(C., Flocchini, Quattrociocchi, Santoro, 2012)

Real mobility contexts

How to proceed?

- \rightarrow Generate connection traces
 - \rightarrow Test for properties

Gracias, Milesker, Merci!

References (external) :

I. Litovsky, Y. Métivier, and E. Sopena., Graph relabelling systems and distributed algorithms., Handbook of graph grammars and computing by graph transformation, 1999.

- F. Marchand de Kerchove and F. Guinand., Strengthening Topological Conditions for Relabeling Algorithms in Evolving Graphs, Technical report, Université Le Havre, 2012.
- B. Bui-Xuan, A. Ferreira, and A. Jarry., Computing shortest, fastest, and foremost journeys in dynamic networks, JFCS 14(2): 267-285, 2003.
- A. Ferreira, Building a Reference Combinatorial Model for manets, IEEE Network 18(5) : 24-29, 2004.
- R. O'Dell and R. Wattenhofer, Information dissemination in highly dynamic graphs, DIALM-POMC, 2005.
- F. Kuhn, N. Lynch, R. Oshman, Distributed computation in dynamic networks, STOC, 2010.
- R. Ramanathan, P. Basu, and R. Krishnan, Towards a Formalism for Routing in Challenged Networks, CHANTS, 2007.
- D. Angluin, J. Aspnes, Z. Diamadi, M. J. Fischer, R. Peralta, Computation in networks of passively mobile finite-state sensors, PODC, 2004.
- J. Chalopin, Algorithmique Distribuée, Calculs Locaux et Homomorphismes de Graphes, PhD Thesis, University of Bordeaux, 2006.

References (internal) :

A. Casteigts, S. Chaumette, A. Ferreira., Characterizing Topological Assumptions of Distributed Algorithms in Dynamic Networks, SIROCCO, 2009. (Long version in CoRR abs/1102.5529, 2012.)

- A. Casteigts, P. Flocchini, W. Quattrociocchi, N. Santoro., Time-Varying Graphs and Dynamic Networks., IJPEDS 27(5): 387-408, 2012.
- A. Casteigts, P. Flocchini, B. Mans, N. Santoro., Measuring Temporal Lags in Delay-Tolerant Networks, IEEE Transactions on Computer, 2013.

A. Casteigts, P. Flocchini, B. Mans, N. Santoro, Deterministic computations in time-varying graphs : Broadcasting under unstructured mobility, IFIP TCS, 2010. (Long version in CoRR abs/1210.3277, 2012.)