
Langages formels (11X003) - Automne 2025

10. Machines de Turing (déterministes)

Enseignant: Arnaud Casteigts Assistants: A.-Q. Berger & M. Marseloo
Moniteurs: N. Beghdadi & E. Bussod

Nous avons vu jusqu’à présent plusieurs modèles de machines. Nous avons commencé par
les automate finis déterministes et non-déterministes, les deux permettant de reconnâıtre la
même famille de langages (langages réguliers). Puis, nous avons vu les automates à piles,
qui utilisent une mémoire infinie, mais limitée dans son usage (la pile). Ces derniers sont
plus puissants et correspondent aux langage hors-contextes (pouvant être engendrés par des
grammaires hors-contexte). Nous allons maintenant parler du modèle de machine le plus
puissant : les machines de Turing.

Introduites la première fois par Alan Turing en 1936, ces machines peuvent être vues
comme un modèle de nos ordinateurs. Elles sont en effet capables de calculer tout ce qu’un
ordinateur peut calculer.

10.1 Description informelle

Une machine de Turing a un fonctionnement proche de celui d’un automate à pile. La
différence principale est que sa mémoire est une bande qui peut être lue ou écrite à n’importe
quel endroit. En voici deux représentations :

(Tom Dunne, 2002)

La partie “contrôle” fonctionne comme celle d’un automate (états & transitions), elle
commande en outre une tête de lecture qui pointe sur une certaine case mémoire de la
bande. Les transitions de l’automate dépendent, comme d’habitude, de l’état courant et du

1



symbole pointé sur la bande. La nouveauté est qu’une transition peut causer l’écriture d’un
symbole sur cette bande ainsi qu’un déplacement à gauche ou à droite de la tête de lecture
(si l’on essaie d’aller plus à gauche que le début, la tête de lecture ne bouge pas). L’auto-
mate possède un état initial et deux autres états spéciaux : qaccept et qreject, qui terminent
immédiatement l’exécution lorsqu’on s’y trouve. Ce fonctionnement est différent de celui
d’un automate car l’exécution s’arrête quelle que soit la position de la tête de lecture.

Au début de l’exécution, le mot d’entrée se trouve au début de la bande, suivi d’une infi-
nité de symboles (espaces), qui est un symbole réservé (interdit dans l’alphabet d’entrée Σ
mais présent dans l’alphabet de bande Γ). La tête de lecture se trouve sur le premier sym-
bole. La machine peut lire les symboles, les modifier, ainsi que lire et écrire arbitrairement
loin sur la bande en remplaçant les espaces. Les possibilités sont nombreuses.

Prenons un exemple très simple, par exemple, la reconnaissance des mots qui représentent
des nombres pairs sur l’alphabet binaire, décrits par l’expression régulière L = (0 ∪ 1)∗0.
Intuitivement, on souhaiterait que la machine se déplace pour aller lire le dernier symbole,
puis accepte le mot si ce symbole est un 0. On peut faire cela avec 4 états q0, q1, qaccept, qreject
en utilisant la machine ci-dessous. On peut commencer par avoir une transition qui boucle
sur l’état initial q0, déclenchée si le symbole courant est différent de et qui déplace la tête
de lecture vers la droite. Cette transition va se répéter jusqu’à ce que le symbole courant
soit . On sait alors que le dernier symbole vient d’être dépassé, on retourne donc un cran
à gauche pour se positionner dessus. Enfin, selon le symbole courant, on transitionne vers
l’état qaccept ou qreject selon qu’il vaut 0 ou 1 (et la tête de lecture reste là où elle est).

q0 q1

qaccept

qreject

0 → R
1 → R

→ L

0 → S

→ S

1 → S

10.2 Définition formelle

Il existe plusieurs définitions équivalentes, voici la plus simple. Une machine de Turing
est un 7-tuple (Q,Σ,Γ, δ, q0, qaccept, qreject) où :

� Q est un ensemble fini d’états,

� Σ est l’alphabet d’entrée (ne contenant pas ),

� Γ est l’alphabet de bande (contenant au moins Σ et ),

� δ : Q× Γ → Q× Γ× {L,R, S} est la fonction de transition,

2



� q0 ∈ Q est l’état initial,

� qaccept ∈ Q et qreject ∈ Q sont deux états distincts qui terminent l’exécution (en accep-
tant ou rejetant, respectivement).

La fonction de transition δ se lit comme suit : en fonction de l’état actuel et du symbole
lu sur la bande, la machine va vers un certain état, écrit un certain symbole au même
endroit, puis déplace la tête de lecture vers la gauche (L pour left), vers la droite (R pour
right), ou reste sur place (S pour stay). Si le symbole reste inchangé, on peut l’omettre de
la représentation, comme dans la machine précédente. Autrement, on l’indique en séparant
par un espace le symbole écrit et le mouvement à effectuer, p.ex. a → b, R représente une
transition qui s’active si le symbole lu est a, écrit b à la place et se déplace vers la droite.

La machine précédente se définit donc avec Q = {q0, q1, qaccept, qreject}, Σ = {0, 1}, Γ =
{0, 1, } et δ =

État de départ Symbole lu État d’arrivée Symbole écrit Mouvement
q0 0 q0 0 R
q0 1 q0 1 R
q0 q1 L
q1 0 qaccept 0 S
q1 1 qreject 1 S

Comme pour les automates, on peut aussi donner δ par une suite de tuples : (q0, 0, q0, 0, R),
(q0, 1, q0, 1, R), . . . , ou encore : δ(q0, 0) = (q0, 0, R), δ(q0, 1) = (q0, 1, R), . . . , tout cela est
équivalent.

10.2.1 Langages reconnus

À tout moment, l’état global de la machine correspond à trois éléments : 1) l’état courant
dans Q ; 2) le contenu de la bande ; 3) la position de la tête de lecture. Le tout est appelé
une configuration. Il existe une notation compacte pour représenter les configurations. Par
exemple, la configuration uqv signifie que la machine est dans l’état q et que le contenu de
la bande est le mot uv, avec la tête de lecture qui pointe sur le premier symbole de v.

Pour une machine de Turing M , on dit qu’une configuration C donne une configuration
C ′ si le passage de l’une à l’autre est compatible avec la fonction de transition de M . Une
exécution pour un mot d’entrée w donné correspond alors à une suite de configurations
C1, C2, . . . telle que :

� C1 = q0w

� Ci donne Ci+1 pour tout i < k

De plus, si la dernière configuration a pour état qaccept, alors on dit que la machine M
accepte le mot w. Enfin, le langage reconnu parM est l’ensemble des mots queM accepte,
noté L(M).

3



Un langage est dit Turing-reconnaissable s’il existe une machine de Turing qui le re-
connâıt. La famille des langages Turing-reconnaissables est plus grande que celle des langages
hors-contextes (car les machines de Turing peuvent simuler les automates à pile).

Pour finir cette section, voici un exemple d’exécution de la machine précédente si le mot
0110 est initialement présent sur la bande :

q00110
0q0110
01q010
011q00
0110q0
011q10
011qaccept0

10.3 Palindromes sur l’alphabet {a, b}

Le principal atout des machines de Turing (par rapport aux piles, notamment) est d’être
capable d’aller et venir sur la bande sans en détruire le contenu, on parle alors de zigzags.
Intuitivement, reconnâıtre un palindrome est assez facile si l’on peut faire des zigzags : on
regarde le premier symbole, on l’efface, puis on va vérifier si le dernier est identique et on
l’efface à son tour. Puis on se remet au début du mot, et on recommence. Voyons comment
faire cela plus précisément. Supposons que le mot d’entrée est ababa. On commence par lire
et effacer le premier a, puis on se déplace vers la droite (en se souvenant, via un état dédié de
l’automate, que c’est bien un a qu’on a lu). Quand on tombe sur un espace, on revient d’un
cran vers la gauche et on vérifie que le symbole correspondant est bien un a et on l’efface
(sinon, on rejette). On revient alors à gauche jusqu’à rencontrer un espace, on fait un cran
vers la droite, on est maintenant prêts à refaire un nouveau zigzag pour vérifier le second
symbole, etc. Pour détecter que le travail est terminé, plusieurs options :

� Soit le mot est de longueur impaire, et il sera vide après avoir lu la première lettre lors
d’un zigzag : on détectera alors qu’après l’arrivée à droite (en l’occurrence immédiate,
mais on a pas besoin de le savoir) et le petit cran à gauche, la case est toujours vide.

� Soit le mot est de longueur paire, et il sera vide après avoir lu la deuxième lettre lors
d’un zigzag : on détectera alors qu’après le retour à gauche (idem) et le petit cran à
droite, la case est toujours vide.

Dans les deux cas, on peut le détecter et partir immédiatement sur l’état qaccept. La
machine correspondante est la suivante :

4



q0

q1 q2

q3

q5 q4

qrejectqaccept

a → , R

b → , R

→ L

a → , L

b → , L

→ L

b → S

a → S

→ R

a → L
b → L

a → R
b → R

a → R
b → R

→ S

→ S

→ S

Voici une trace d’exécution pour le mot ababa :

Zigzag 1 Zigzag 2 Zigzag 3
q0ababa q0bab q0a
q1baba q5ab q1
bq1aba aq5b q2
baq1ba abq5 qaccept
babq1a aq4b
babaq1 q3a
babq2a q3 a

baq3b
bq3ab
q3bab
q3 bab

Spécifier des machines de Turing en détail peut rapidement être compliqué. Nous ne le
ferons que rarement pour des exemples simples. Le reste du temps, nous tâcherons d’expliquer
leur fonctionnement par une description à haut niveau, comme celle donnée ci-dessus.

5



10.4 Autre versions du modèle

� La tête de lecture ne peut aller qu’à gauche ou à droite (mais pas rester sur place) :

δ : Q× Γ → Q× Γ× {L,R}

� Existence de plusieurs bandes

δ : Q× Γk → Q× Γk × {L,R, S}

� Bande infinie des deux côtés

� Non-déterminisme (semaine prochaine)

En fait, tous ces modèles peuvent sont équivalents en termes de langages reconnaissables.
Techniquement, on peut montrer que n’importe lequel de ces modèles peut simuler tous les
autres, c’est à dire mimer leur comportement (avec parfois un ralentissement).

6


