
Langages formels (11X003) - Automne 2025

11. Machines de Turing non-déterministes (et autres)

Enseignant: Arnaud Casteigts Assistants: A.-Q. Berger & M. Marseloo
Moniteurs: N. Beghdadi & E. Bussod

Dans ce cours, nous allons voir différentes notions liées aux machines de Turing, sans
lien particulier. Nous mentionnons d’abord différents modèles de machines de Turing, tous
équivalents. Nous discutons ensuite des machines de Turing non-déterministes. Puis, nous
parlons de machines de Turing qui effectuent des traitements autres que d’accepter et rejeter
des mots. Enfin, nous discutons brièvement de machines à plusieurs bandes et de machines
qui potentiellement ne s’arrêtent jamais.

11.1 Différents modèles équivalents

� La tête de lecture ne peut aller qu’à gauche ou à droite (mais pas rester sur place) :

δ : Q× Γ → Q× Γ× {L,R}

� Existence de plusieurs bandes (exemples plus loin)

δ : Q× Γk → Q× Γk × {L,R, S}

� Une bande infinie des deux côtés : Même fonction de transition que normalement. La
seule différence est qu’on peut se déplacer à gauche du point de départ.

� Machines non-déterministes (exemples plus loin)

δ : Q× Γ → P(Q× Γ× {L,R, S})

C’est un fait assez surprenant que tous ces modèles s’avèrent être équivalents en termes
de langages. Cela se démontre par simulation : chacun de ces modèles est capable d’imiter le
comportement des autres. Dans certain cas, cette simulation est très “lente” (les opérations
du modèle simulé requièrent de nombreuses opérations natives), mais hormis la rapidité, les
capacités sont les mêmes. On dit que chacun de ces modèles est Turing-complet.

De toutes ces équivalences, la plus surprenante est peut-être celle entre les machines de
Turing déterministes et non-déterministes. Pour simuler une machine non-déterminisme, une
machine déterministe peut en effet explorer méthodiquement toutes ses exécutions possibles
(nous verrons cela au second semestre).

Une autre nouveauté des machines de Turing par rapport aux autres modèles que l’on
connâıt est qu’elles peuvent effectuer d’autres traitements que d’accepter et rejeter des mots.
Nous allons voir quelques exemples.

1



11.2 Machines de Turing non-déterministes

D’une certaine manière, les machines de Turing non-déterministes n’existent pas (nos
ordinateurs sont déterministes). On pourrait donc être tentés d’ignorer leur étude. Mais ces
machines s’avèrent centrales pour plusieurs questions en informatique fondamentale. Elles
sont notamment à l’origine de la fameuse question P vs. NP, dont vous entendrez à nouveau
parler. Un autre intérêt du non-déterminisme, comme pour les AFN, est de permettre parfois
d’exprimer des traitements de manière plus simple.

Lors d’un branchement non-déterministe, c’est l’ensemble de la machine qui est dupliquée
dans plusieurs univers : l’état, la bande et la position de la tête de lecture. Autrement dit,
grâce au non-déterminisme, une configuration peut donner naissance à différentes configu-
rations dans des univers parallèles. Dans ce cas, on représente les différentes exécutions
possibles sous forme d’un arbre de configurations.

Comme pour les AFN et les APN, une telle machine accepte un mot si et seulement si
au moins une des branches d’exécution l’accepte.

Exemple

Voyons un exemple d’une telle machine : on reçoit en entrée une liste de mots binaires
séparés par des • et on veut déterminer si au moins l’un de ces mots représente un nombre
pair (termine par 0). Par simplicité, on supposera qu’un point supplémentaire est présent
après le dernier mot, par exemple, voici une entrée possible :

01101 • 0110 • 1010101 • 100100 •

Une machine déterministe pour ce problème examinerait chaque mot séquentiellement.
Avec le non-déterminisme, on peut créer différentes branches de calcul qui examinent chacune
un mot en parallèle. Plus précisément, lorsque le premier point est atteint, une branche non-
déterministe va examiner ce mot, tandis qu’une autre va se diriger directement vers le point
suivant (et ainsi de suite). La machine acceptera à condition qu’au moins une branche
atteigne l’état qaccept.

Voici la machine correspondante :

2



q0 q1

qaccept

qreject

0 → R
1 → R
• → R

• → L

0 → S

1 → S

→ S

Et la version déterministe, pour comparaison :

q0 q1 qaccept

qreject q2

0 → R
1 → R

• → L 0 → S

1 → R
• → R

→ R

11.3 Des machines qui ne terminent pas !

Soit la machine suivante, dont l’alphabet d’entrée est Σ = {0, 1} :

q0 qaccept qreject

0 → R
1 → L

→ S

Que fait cette machine ? Quel langage reconnâıt-elle ? Bizarrement, on découvre ici que
certains mots, par exemple 01, ne seront ni acceptés, ni rejetés, car cette machine ne termine
pas toujours, elle peut boucler à l’infini sur certains mots ! C’est une nouveauté pour nous.

Nous reviendrons la semaine prochaine sur ce problème, qui bouscule la notion habituelle
de langage reconnu par une machine. Nous distinguerons notamment deux notions : les
langages Turing-reconnaissables, et les langages Turing-décidables. Affaire à suivre...

3



11.4 Effectuer des traitements autres qu’accepter ou rejeter

Les machines de Turing sont capables de faire d’autres choses que d’accepter ou rejeter
des mots. Elles peuvent effectuer des traitements et produire des choses en sortie, comme nos
ordinateurs. Dans ces cas là, on considère généralement une autre définition où les états qaccept
et qreject sont remplacés par un seul état spécial qhalt, qui arrête l’exécution de la machine sans
accepter ni rejecter spécifiquement. On considère alors que la sortie de la machine correspond
au contenu de la bande à la fin de l’exécution. Dans le modèle à plusieurs bandes, on suppose
en général que le mot d’entrée est sur la première bande et qu’il faut écrire la sortie sur la
dernière bande (voir l’exemple 3 ci-dessous).

Exemple 1 : Multiplier un nombre binaire par 2 (modèle à une bande)

Description de la stratégie : aller au bout du mot, rajouter un 0, puis terminer.

q0 qhalt

0 → 0, R
1 → 1, R

→ 0, S

Exemple 2 : Concaténer deux mots (modèle à une bande)

On souhaite concaténer deux mots en entrée, disons sur l’alphabet Σ = {a, b,+}, où +
indique où effectuer la concaténation.

Par exemple : abba+bab doit produire abbabab.

Difficulté : une machine de Turing ne peut pas copier plusieurs symboles d’un coup. Il
faut décomposer le traitement en opérations élémentaires.

Idée générale : échanger le symbole + avec le symbole à sa droite. Répéter jusqu’à avoir
un espace à droite de +. Supprimer alors le + et terminer.

Description détaillée : on commence par se déplacer jusqu’au +. Ensuite, on va à droite et
on répète : remplacer le symbole courant par un +, en mémorisant ce symbole via un état de
l’automate et en reculant à gauche, remplacer l’ancien + par ce symbole en ré-avançant d’un
cran à droite pour recommencer. Si un espace est rencontré, on efface le + et on termine.

4



q0 q1

q2

q3

q4 qhalt

a → a, R
b → b, R

+ → +, R

a → +, L

b → +, L

+ → a,R

+ → b, R

→ L + → , S

État de la bande lors des passages sur q1 :

abba+bab → abbab+ab → abbaba+b → abbabab+

Exemple 3 : Concaténer deux mots (modèle à deux bandes)

Rappelons que dans le cas général, pour une machine à k bandes, la fonction de transition
devient δ : Q × Γk → Q × Γk × {L,R, S}k. On peut alors adopter la convention graphique
suivante pour dessiner les transitions sur cette machine (par exemple ici pour une machine
à deux bandes) : a, b → c, d[R,L], avec la signification suivante : si on lit a sur la première
bande et b sur la deuxième bande, alors on écrit c sur la première bande, d sur la deuxième
bande, on déplace la première tête de lecture vers la droite et la deuxième vers la gauche.
Les crochets servent à séparer les déplacement du reste, pour éviter toute ambiguité. Cette
notation peut être généralisée à n’importe quel nombre de bandes.

Revisitons l’exemple précédent (concaténation) en supposant que la machine a deux
bandes : une d’entrée (contenant les deux mots à concaténer avec un + entre eux) et une
bande de sortie, qui devra contenir le résultat de la concaténation. Le traitement à effectuer
devient plus simple, car il suffit de recopier les deux mots en s’abstenant simplement de
copier le séparateur. Cela donne la machine suivante :

q0 qhalt

a → a, a[R,R]
b → b, b[R,R]
+ → +, [R,S]

→ S

Exemple 4 : additionner deux nombres binaires

→ En séance d’exercices. La principale difficulté sera de gérer la retenue.

5


