Langages formels (11X003) - Automne 2025

12. Universalité et indécidabilité

Enseignant: Arnaud Casteigts Assistants: A.-Q). Berger & M. Marseloo
Moniteurs: N. Beghdadi & E. Bussod

Dans le cours précédent, nous avons évoqué la these de Church-Turing, qui stipule que les
machines de Turing peuvent modéliser n’importe quel traitement physiquement réalisable.
Il est alors tres pertinent de s’interroger sur les capacités de ces machines. Peuvent-elles
tout calculer 7 Peuvent-elles reconnaitre n’importe quel langage? Nous allons aujourd’hui
présenter la notion de machine de Turing universelle, qui joue un role clé dans ces réflexions.
Nous ferons également la distinction entre les langages Turing-reconnaissables et les lan-
gages Turing-décidables. Enfin, nous plongerons dans la démonstration d’Alan Turing, qui a
montré en 1936 que certaines questions naturelles ne sont pas décidables par ces machines
(et accessoirement, par nos ordinateurs actuels).

12.1 Machine de Turing universelle

Les machines de Turing représentent-elles des programmes ou des ordinateurs? Nous
avons maintenu cette ambiguité jusqu’a présent, c¢’était volontaire.

A premiere vue, les ordinateurs sont plus généraux, car ils ne correspondent pas a un seul
programme, ils peuvent exécuter n’importe quel programme qu’on leur donne a exécuter,
tandis qu'une machine de Turing correspond a un seul programme, non ? En fait non, c’est
la méme chose : on peut concevoir une machine de Turing universelle M, qui prend en
entrée la description (M) d’une autre machine de Turing M la description d’une entrée F
pour M, et qui simule 'exécution de M (F). Les machines de Turing correspondent donc a
la fois a nos ordinateurs et aux programmes qu’ils exécutent !

Cela signifie aussi, et ¢’est bien pratique, que I’on peut concevoir des machines qui utilisent
d’autres machines, de la méme maniere qu'un programme utilise des fonctions.

12.2 Reconnaissable ou décidable ?

La semaine derniere, nous avons vu un exemple de machine (sur l'alphabet ¥ = {0,1})
qui ne termine pas systématiquement, cela dépend du mot d’entrée :

0— R
1—>L

o— S
— Gaccept

Quel langage cette machine reconnait-elle 7 En fait, elle reconnait exactement le langage
L ={0"]4 > 0}. En effet, tout mot de L sera accepté, et aucun mot de L ne sera accepté.
La nouveauté est qu’il y a deux maniere possibles de ne pas accepter un mot : soit on le
rejette, soit on boucle a U'infini (comme avec le mot 01 pour cette machine). Cela donne lieu
a deux notions différentes :

Une machine M reconnait un langage L ssi :

e Pour tout mot w € L, M accepte w.

e Pour tout mot w € L, soit M rejette w, soit elle boucle & I'infini.

Une machine M décide un langage L ssi :

e Pour tout mot w € L, M accepte w.

e Pour tout mot w € L, M rejette w.

Décider un langage est donc une notion plus forte que reconnaitre un langage. La machine
ci-dessus reconnait bien L = {0" | ¢ > 0}, mais elle ne le décide pas. En revanche, la machine
suivante le décide :

0—=R 19

— Gaccept

Cette distinction entre reconnaitre et décider n’existait pas pour les AF et les AP, c’est
une nouveauté. Cela donne lieu a deux familles de langages distinctes :

Un langage est Turing-reconnaissable (aussi appelé récursivement énumérable) s'il existe
une machine de Turing qui le reconnait.

Un langage est Turing-décidable (aussi appelé récursif) s'il existe une machine de Turing
qui le décide.

On enleve souvent le préfixe “Turing-”. Par définition, tous les langages décidables sont
reconnaissables. Existe-t-il des langages non-décidables et/ou non-reconnaissables ?

12.3 Probleme de ’arrét

Comme évoqué plus haut pour les machines universelles, on peut fournir & une machine
la description d’une autre machine. Il devient alors pertinent de s’intéresser a des langages
de machines, par exemple L = {(M) | M écrit sur la bande} ou L = {(M) | M a 5 états},
en se demandant si ces langages peuvent étre reconnus ou décidés par une machine.

En particulier, Turing s’est intéressé au langage suivant :

Ly ={((M),E) | M termine sur 'entrée E} (H pour “Halt”)
Turing s’est demandé s’il existe une machine capable de décider L.
Commencons doucement, et demandons-nous d’abord si Ly est reconnaissable.

Oui! Etant donné (M) et E, on peut utiliser la machine universelle My qui simule M (E)
(M sur l'entrée E), puis accepte quand M (FE) termine :

My((M), E)
Accepter

Clairement, une telle machine accepte ((M), F) si et seulement si ((M),F) € Ly. Le
langage Ly est donc reconnaissable. Mais que se passe-t-il si ((M), E) ¢ Ly. Dans ce cas,
My bouclera. C’est quand méme embétant, car vous ne pouvez pas distinguer les entrées
dont I'exécution est longue de celles qui ne s’arrétent pas.

Le langage Ly est-il décidable ? Hélas...

12.3.1 Indécidabilité

Pour démontrer cela, Turing effectue un raisonnement par ’absurde. Il suppose d’abord
qu’il existe une machine My capable de décider le langage Ly, puis il en déduit une contra-
diction. Regardons cela plus en détails!

Supposons que My existe.

Intéressons-nous a un cas particulier : est-ce qu'une machine donnée termine lorsqu’elle
prend sa propre description comme entrée ? Cela correspond au langage Lg suivant :

Ls ={(M) | M termine sur l'entrée (M)} (S comme “Self”)

Ce probleme est bien un cas particulier du probleme de 'arrét, on devrait donc pouvoir
le décider facilement si l'on dispose de la machine My. En effet :

Ms((M)) :

Si My ((M), (M)) accepte, alors :
Accepter

Sinon :
Rejeter

On récapitule : si My existe, alors Mg existe. Tres bien.

On voudrait maintenant créer une troisieme machine M¢ (C comme “Contradictoire”),
qui ressemble un peu a Mg, c’est a dire qu’elle prend (M) en entrée et s’intéresse au com-
portement de M ((M)). Mais au lieu de décider si M({M)) termine, on veut que M¢ fasse
I'inverse de M ({M)) : Si M({M)) boucle a l'infini, alors M doit terminer, et si M({M))

termine, Mo doit boucler.
La encore, si 'on dispose de My, c’est facile, il suffit de I'utiliser comme suit :

Mc((M)) :
Si My ((M),(M)) accepte, alors :
Boucler a l'infini
Sinon :
Terminer

Jusqu’ici, tout va bien. Euh, tout va bien ?

Que se passe-t-il maintenant si 'on exécute Mo ((M¢))? Tout d’abord, cela va causer
lappel My ({(Mc), (M¢)). Deux possibilités :
e Si My accepte, cela implique que M¢((M¢)) est censée terminer, mais dans ce cas elle

boucle a I'infini.

e Si My rejette, cela implique que Mc({Mc)) est censée boucler a I'infini, mais dans ce
cas elle termine.

Mais c’est une contradiction! Nos hypotheses de départ étaient donc mauvaises : My ne
peut pas exister (ou si elle existe, elle se trompe).

Le langage Ly n’est donc pas décidable. O]

12.4 Autres problémes non décidables / non reconnaissables

Il existe de nombreux problemes “naturels” qui ne sont pas décidables. Par exemple,
déterminer si une équation diophantienne admet des solutions entieres est indécidable. Un
autre exemple célebre est celui du probleme de correspondance de Post (PCP). Plus proche
de ce cours : savoir si un automate a pile (dont la description est donnée) accepte tous les
mots est indécidable. Et plus généralement, le théoreme de Rice nous dit que toute question
“non-triviale” (dans un sens précis) sur un programme informatique est indécidable. Bien

4

str, cela ne veut pas dire qu’on y arrive jamais, seulement qu’il n’existe pas d’algorithme qui
fonctionne pour toutes les entrées possibles.

Au final, nous avons la hiérarchie suivante :

reconnaissable

décidable

F1GURE 1 — Hiérarchie de familles de langages.

Tous les langages sont-ils reconnaissables 7

Hum... le nombre de langages possibles est non-dénombrable (cardinalité de U'infini des
nombres réels), alors que le nombre de machines de Turing est dénombrable (cardinalité de
'infini des nombres entiers). Chaque machine reconnaissant un seul langage, cela implique
que la majorité des langages ne sont pas reconnaissables. Fort heureusement, beaucoup
d’entre eux ne sont pas intéressants non plus.

FIN

