
Langages formels (11X003) - Automne 2025

12. Universalité et indécidabilité

Enseignant: Arnaud Casteigts Assistants: A.-Q. Berger & M. Marseloo
Moniteurs: N. Beghdadi & E. Bussod

Dans le cours précédent, nous avons évoqué la thèse de Church-Turing, qui stipule que les
machines de Turing peuvent modéliser n’importe quel traitement physiquement réalisable.
Il est alors très pertinent de s’interroger sur les capacités de ces machines. Peuvent-elles
tout calculer ? Peuvent-elles reconnâıtre n’importe quel langage ? Nous allons aujourd’hui
présenter la notion de machine de Turing universelle, qui joue un rôle clé dans ces réflexions.
Nous ferons également la distinction entre les langages Turing-reconnaissables et les lan-
gages Turing-décidables. Enfin, nous plongerons dans la démonstration d’Alan Turing, qui a
montré en 1936 que certaines questions naturelles ne sont pas décidables par ces machines
(et accessoirement, par nos ordinateurs actuels).

12.1 Machine de Turing universelle

Les machines de Turing représentent-elles des programmes ou des ordinateurs ? Nous
avons maintenu cette ambiguité jusqu’à présent, c’était volontaire.

À première vue, les ordinateurs sont plus généraux, car ils ne correspondent pas à un seul
programme, ils peuvent exécuter n’importe quel programme qu’on leur donne à exécuter,
tandis qu’une machine de Turing correspond à un seul programme, non ? En fait non, c’est
la même chose : on peut concevoir une machine de Turing universelle MU , qui prend en
entrée la description ⟨M⟩ d’une autre machine de Turing M la description d’une entrée E
pour M , et qui simule l’exécution de M(E). Les machines de Turing correspondent donc à
la fois à nos ordinateurs et aux programmes qu’ils exécutent !

Cela signifie aussi, et c’est bien pratique, que l’on peut concevoir des machines qui utilisent
d’autres machines, de la même manière qu’un programme utilise des fonctions.

12.2 Reconnaissable ou décidable ?

La semaine dernière, nous avons vu un exemple de machine (sur l’alphabet Σ = {0, 1})
qui ne termine pas systématiquement, cela dépend du mot d’entrée :

1

q0 qaccept qreject

0 → R
1 → L

→ S

Quel langage cette machine reconnâıt-elle ? En fait, elle reconnâıt exactement le langage
L = {0i | i ≥ 0}. En effet, tout mot de L sera accepté, et aucun mot de L ne sera accepté.
La nouveauté est qu’il y a deux manière possibles de ne pas accepter un mot : soit on le
rejette, soit on boucle à l’infini (comme avec le mot 01 pour cette machine). Cela donne lieu
à deux notions différentes :

Une machine M reconnâıt un langage L ssi :

� Pour tout mot w ∈ L, M accepte w.

� Pour tout mot w ∈ L, soit M rejette w, soit elle boucle à l’infini.

Une machine M décide un langage L ssi :

� Pour tout mot w ∈ L, M accepte w.

� Pour tout mot w ∈ L, M rejette w.

Décider un langage est donc une notion plus forte que reconnâıtre un langage. La machine
ci-dessus reconnâıt bien L = {0i | i ≥ 0}, mais elle ne le décide pas. En revanche, la machine
suivante le décide :

q0 qaccept qreject

0 → R

⊔ → S

1 → S

Cette distinction entre reconnâıtre et décider n’existait pas pour les AF et les AP, c’est
une nouveauté. Cela donne lieu à deux familles de langages distinctes :

Un langage est Turing-reconnaissable (aussi appelé récursivement énumérable) s’il existe
une machine de Turing qui le reconnâıt.

Un langage est Turing-décidable (aussi appelé récursif) s’il existe une machine de Turing
qui le décide.

On enlève souvent le préfixe “Turing-”. Par définition, tous les langages décidables sont
reconnaissables. Existe-t-il des langages non-décidables et/ou non-reconnaissables ?

2

12.3 Problème de l’arrêt

Comme évoqué plus haut pour les machines universelles, on peut fournir à une machine
la description d’une autre machine. Il devient alors pertinent de s’intéresser à des langages
de machines, par exemple L = {⟨M⟩ | M écrit sur la bande} ou L = {⟨M⟩ | M a 5 états},
en se demandant si ces langages peuvent être reconnus ou décidés par une machine.

En particulier, Turing s’est intéressé au langage suivant :

LH = {(⟨M⟩, E) | M termine sur l’entrée E} (H pour “Halt”)

Turing s’est demandé s’il existe une machine capable de décider LH .

Commençons doucement, et demandons-nous d’abord si LH est reconnaissable.

Oui ! Étant donné ⟨M⟩ et E, on peut utiliser la machine universelle MU qui simule M(E)
(M sur l’entrée E), puis accepte quand M(E) termine :

MH(⟨M⟩, E) :

MU(⟨M⟩, E)
Accepter

Clairement, une telle machine accepte (⟨M⟩, E) si et seulement si (⟨M⟩, E) ∈ LH . Le
langage LH est donc reconnaissable. Mais que se passe-t-il si (⟨M⟩, E) /∈ LH . Dans ce cas,
MU bouclera. C’est quand même embêtant, car vous ne pouvez pas distinguer les entrées
dont l’exécution est longue de celles qui ne s’arrêtent pas.

Le langage LH est-il décidable ? Hélas...

12.3.1 Indécidabilité

Pour démontrer cela, Turing effectue un raisonnement par l’absurde. Il suppose d’abord
qu’il existe une machine MH capable de décider le langage LH , puis il en déduit une contra-
diction. Regardons cela plus en détails !

Supposons que MH existe.

Intéressons-nous à un cas particulier : est-ce qu’une machine donnée termine lorsqu’elle
prend sa propre description comme entrée ? Cela correspond au langage LS suivant :

LS = {⟨M⟩ | M termine sur l’entrée ⟨M⟩} (S comme “Self”)

Ce problème est bien un cas particulier du problème de l’arrêt, on devrait donc pouvoir
le décider facilement si l’on dispose de la machine MH . En effet :

MS(⟨M⟩) :

3

Si MH(⟨M⟩, ⟨M⟩) accepte, alors :
Accepter

Sinon :
Rejeter

On récapitule : si MH existe, alors MS existe. Très bien.

On voudrait maintenant créer une troisième machine MC (C comme “Contradictoire”),
qui ressemble un peu à MS, c’est à dire qu’elle prend ⟨M⟩ en entrée et s’intéresse au com-
portement de M(⟨M⟩). Mais au lieu de décider si M(⟨M⟩) termine, on veut que MC fasse
l’inverse de M(⟨M⟩) : Si M(⟨M⟩) boucle à l’infini, alors MC doit terminer, et si M(⟨M⟩)
termine, MC doit boucler.

Là encore, si l’on dispose de MH , c’est facile, il suffit de l’utiliser comme suit :

MC(⟨M⟩) :
Si MH(⟨M⟩, ⟨M⟩) accepte, alors :

Boucler à l’infini
Sinon :

Terminer

Jusqu’ici, tout va bien. Euh, tout va bien ?

Que se passe-t-il maintenant si l’on exécute MC(⟨MC⟩) ? Tout d’abord, cela va causer
l’appel MH(⟨MC⟩, ⟨MC⟩). Deux possibilités :

� Si MH accepte, cela implique que MC(⟨MC⟩) est censée terminer, mais dans ce cas elle
boucle à l’infini.

� Si MH rejette, cela implique que MC(⟨MC⟩) est censée boucler à l’infini, mais dans ce
cas elle termine.

Mais c’est une contradiction ! Nos hypothèses de départ étaient donc mauvaises : MH ne
peut pas exister (ou si elle existe, elle se trompe).

Le langage LH n’est donc pas décidable.

12.4 Autres problèmes non décidables / non reconnaissables

Il existe de nombreux problèmes “naturels” qui ne sont pas décidables. Par exemple,
déterminer si une équation diophantienne admet des solutions entières est indécidable. Un
autre exemple célèbre est celui du problème de correspondance de Post (PCP). Plus proche
de ce cours : savoir si un automate à pile (dont la description est donnée) accepte tous les
mots est indécidable. Et plus généralement, le théorème de Rice nous dit que toute question
“non-triviale” (dans un sens précis) sur un programme informatique est indécidable. Bien

4

sûr, cela ne veut pas dire qu’on y arrive jamais, seulement qu’il n’existe pas d’algorithme qui
fonctionne pour toutes les entrées possibles.

Au final, nous avons la hiérarchie suivante :

reconnaissable

décidable

contex.

h.c.

reg.

Figure 1 – Hiérarchie de familles de langages.

Tous les langages sont-ils reconnaissables ?

Hum... le nombre de langages possibles est non-dénombrable (cardinalité de l’infini des
nombres réels), alors que le nombre de machines de Turing est dénombrable (cardinalité de
l’infini des nombres entiers). Chaque machine reconnaissant un seul langage, cela implique
que la majorité des langages ne sont pas reconnaissables. Fort heureusement, beaucoup
d’entre eux ne sont pas intéressants non plus.

FIN

5

