Langages formels (11X003) - Automne 2025

6. Grammaires formelles

Enseignant: Arnaud Casteigts Assistants: A.-Q). Berger & M. Marseloo
Moniteurs: N. Beghdadi & E. Bussod

Nous entamons une partie du cours a cheval entre la linguistique et 'informatique, a
savoir I’étude des grammaires formelles. Ces dernieres permettent de décrire des langages
de maniere générative, par I'utilisation de regles de production. Les grammaires sont plus
puissantes que les expressions régulieres et les automates finis, elles permettent notamment
de représenter des langages non réguliers (et bien plus).

6.1 Grammaires formelles en général

Intuitivement, une grammaire formelle est un ensemble de regles qui permettent de créer
des motifs textuels par remplacement successifs. Chaque regle est de la forme o — [ou
a est le motif a remplacer (appelé partie gauche de la regle) et § est le motif qui va
remplacer « (appelé partie droite). Voici un exemple de grammaire comportant deux regles
de production :

Grammaire Gy :

S — aShb
S — e

Il y a deux types de symboles dans une grammaire : des symboles terminaux et des va-
riables (aussi appelés symboles non-terminaux). Les symboles terminaux sont généralement
représentés en minuscule, comme ici a et b et sont issus d'un alphabet ¥ comme ceux que
I'on connait déja. Les variables sont représentées en majuscule, comme ici S, et font par-
tie d'un autre alphabet V. Ces variables ont vocation a étre remplacées ultérieurement. La
grammaire spécifie aussi quel est le symbole initial a partir duquel on va générer tous les
mots, ici S également.

La génération consiste donc a partir du symbole initial et d’appliquer des regles jusqu’a
ce qu’il n'y ait que des symboles terminaux. On a alors généré (ou engendré) un mot du
langage. Lorsque plusieurs regles sont applicables, on peut utiliser I'une ou l'autre.

Dans cet exemple, nous partons de S et nous avons le choix d’appliquer la premiere ou
la seconde regle. Si nous utilisons la seconde regle directement, cela produit le mot vide &
et nous avons terminé car il n’y a plus de variable a remplacer. Si nous utilisons plutot la
premiere regle, cela produit le mot intermédiaire aSb. Nous pouvons alors recommencer en

remplacant le S de ce mot. Si on utilise ici la seconde regle, qui remplace le S' du milieu par
e, cela donnera le mot ab et nous aurons terminé. Si on continue a utiliser la premiere regle,
cela donnera le mot aa Sbb, et ainsi de suite. Quel est I’ensemble de tous les mots que 1’'on
peut obtenir 7 On se convaincra assez facilement qu’il s’agit des mots ¢, ab, aabb, aaabbb, . . .,
autrement dit, le langage L(G;) = {a"b" | n € N}, qui nous le savons, n’est pas régulier!
(c.f. cours précédent).

Dans leur version la plus générale, les grammaires formelles peuvent utiliser des regles
de productions qui transforment n’importe quel motif (combinant variables et symboles
terminaux) en n’importe quel autre motif. Ces grammaires étant tres expressives, on se
restreint souvent a des versions particulieres qui sont moins puissantes. Le type de grammaire
le plus répandu est celui des grammaires hors-contexte, qui sont tres utilisées en théorie des
langages de programmation (notamment pour le parsing et la compilation), ainsi que dans
les protocoles réseaux.

6.2 Cas particulier : Grammaires hors-contexte

Les grammaires hors-contexte (aussi appelées grammaires non contextuelles) sont des
cas particuliers de grammaires formelles, qui imposent que la partie gauche de chaque regle
consiste en une variable seulement (et rien d’autre), c’est le cas de I’exemple donné plus haut.
On les appelle hors-contexte parce qu’elles ne tiennent pas compte de ce qu’il y a autour de
la variable a remplacer.

Formellement, une grammaire hors-contexte est définie par :

Un alphabet V' de variables (symboles non terminaux),

Un alphabet Y de symboles terminaux,

Un symbole de départ dans V,
e Un ensemble fini de régles de production P de la forme o« — 5, ona € Vet g € (VUX)*.

Par exemple, la grammaire GG; donnée plus haut correspond a V- = {S},X = {a,b}, le
symbole de départ S € V et les regles de productions P = {S — aSb, S — ¢}.

Lorsque plusieurs regles ont la méme partie gauche, on peut les regrouper en utilisant une
barre verticale, comme S — aSb | ¢, qui se lit “S donne aSb ou €”. (Il s’agit quand méme
de deux regles différentes.) Et pour étre encore plus compact, on écrit parfois directement :

G = ({5}, {a,b}, S, {S — aSb | £}).

L’application d’une ou plusieurs regles d’une grammaire est appelé une dérivation. Voici
une dérivation possible de la grammaire G :

S = aSb = aaSbb = aaaSbbb = aaabbb.

Notez la différence entre les symboles — (spécification de la regle, dans la définition de
la grammaire) et = (son application sur un mot). Nous appelerons mot intermédiaire

2

les mots qui contiennent au moins une variable, et mot terminal ceux qui n’ont que des
symboles terminaux. S'il existe une dérivation d’un mot w; vers un mot ws (terminal ou
non), on note w; = w, et on dit qu’on peut dériver wy depuis w;. L’ensemble des mots
terminaux que 'on peut dériver depuis le symbole de départ définit le langage engendré
par la grammaire. Autrement dit, le langage L(G) engendré par une grammaire G avec
symbole de départ S est :

LG) = {we s |S=w)

Un langage est hors-contexte s’il existe une grammaire hors-contexte (GHC) qui 'en-
gendre.

6.3 Exemples et autres notions

Voici quelques exemples de grammaires hors contexte. Nous en profitons pour illustrer
quelques notions supplémentaires, comme les arbres de dérivation, les dérivations gauches
(ou droite), et les grammaires ambigués.

6.3.1 Mots binaires se terminant par 0 (nombres pairs)

On peut représenter le langage des mots binaires se terminant par 0 par une grammaire

hors-contexte Gy = ({S},{0,1},5,{S — 0S5 | 15| 0})
Exemple de dérivation : S = 15 = 105 = 1015 = 1010

On peut se convaincre assez facilement que tout mot binaire se terminant par 0 peut étre
généré par cette grammaire. Autrement dit, L(G2) est le langage régulier correspondant a
I'expression (0 U 1)*0. Comme déja évoqué, les grammaires hors-contexte peuvent générer
des langages non réguliers, mais elles peuvent bien str aussi générer des langages réguliers !
(Qui peut le plus, peut le moins...)

6.3.2 Mots bien parenthésés

On peut représenter l'’ensemble des mots bien parenthésés par une grammaire Gz =
(V={S1LX={()}LS,P=4{S = (S)| SS | e}}. Cette grammaire produit tous les mots
constitués de parentheses correctement entrelacées, p.ex. (),(()),)(),(0)0), (0))(),... Elle
ne produit pas, en revanche, les mots tels que (, ou)(, ou encore ())(.

Exemple de dérivation : S = (S) = (SS) = ((5)S) = (()S) = (O(S)) = ()

On peut représenter la dérivation d’'un mot par un arbre de dérivation, comme suit :

</£\>
/N

S S
VZANRNANN
sy (s
| !

€ 9

En fait, cet arbre représente plusieurs dérivations possibles, mais qui sont toutes équivalentes.
Par exemple, dans la dérivation précédente, nous avons systématiquement utilisé la variable
la plus a gauche pour dériver. Une telle dérivation est appelée dérivation gauche. Elle cor-
respond a un parcours en profondeur de la gauche vers la droite dans I’arbre de dérivation.
Mais nous aurions aussi pu effectuer une dérivation droite, correspondant a un parcours
en profondeur de la droite vers la gauche comme suit :

§ = (5) = (55) = (5(5)) = (50) = ((5)() = (00)

Ou encore prendre les variables dans un ordre arbitraire... La notion d’arbre de dérivation
est importante et mérite d’étre bien comprise. Nous y reviendrons plus bas.

Notez que L(G3) n’est pas un langage régulier. Vous le prouverez peut-étre en exercices en
utilisant le lemme de 1’étoile. En revanche, c¢’est bien évidemment un langage hors-contexte,
puisque la grammaire qui le génere est hors-contexte.

6.3.3 Expressions arithmétiques
Voici un exemple de regles qui produisent des expressions arithmétiques avec les opérations
+ et x a partir du chiffre 2, alphabet terminal étant ¥ = {x,+,2,(,)} :
EFE—-E+E|EXE|(E)|2
Par exemple, voici une dérivation gauche qui produit le mot 2 x (2 4 2) :
EFE=FExE=2xE=2x(E)=2x(E+E)=2x(2+F)=2x(2+2).

Comme précédemment, nous aurions pu aussi utiliser une dérivation droite, ces dérivations
revenant in fine au méme arbre de dérivation. Cependant, il est cette fois possible qu'un méme
mot admette deux arbres de dérivations différents! Prenons 'exemple de 2 x 2 + 2 (sans les
parentheses). On peut 'obtenir via les arbres :

A

Si cela peut se produire pour au moins un mot, alors on dit que ce mot est ambigu et
que la grammaire elle-méme est une grammaire ambigué. En général, on essaie d’éviter
cela, par exemple, dans les langages de programmation, il est préférable qu’il n’y ait qu’une
fagon possible d’analyser syntaxiquement (= de “parser”) le code.

Le langage humain est naturellement ambigu, p.ex : “j’ai vu sa main avec un mirroir”
peut signifier “j’ai vu [sa main avec un mirroir]” ou “[j’ai vu sa main| avec un mirroir”.

Dans certains cas, une grammaire peut étre modifiée pour étre rendue non-ambigiie, mais
ce n’est pas toujours possible. Ici, c’est possible, la grammaire suivante engendre le méme
langage, sans ambiguité (au prix d’utiliser trois variables au lieu d’une) :

E—-E+T|T
T—TxF|F
F— (E)|2

6.3.4 Langage humain ?

On pourrait utiliser des variables du genre V"= {PHRASE, GROUPENOMINAL, GROUPEVERBAL,
COMPLEMENT, NOM, VERBE} et des terminaux ¥ = {a...z, .} avec des regles du type :

PHRASE — GROUPENOMINAL GROUPEVERBAL
GROUPEVERBAL — VERBE COMPLEMENT
VERBE — manger, dormir,

Ce type de grammaires est utilisée en linguistique pour modéliser les langues naturelles.
Elles ont longtemps servi de base au traitement automatique des langues (pour la traduction,
la rédaction, etc.). Elles ont récemment été supplantées par les méthodes statistiques (réseaux
de neurones, notamment), mais peuvent continuer a étre utilisées en conjonction avec ces
dernieres.

6.4 Cas particulier : grammaires régulieres (deuxiéme semaine)

Les grammaires régulieéres sont un cas particulier de grammaires hors-contexte, qui
imposent une restriction supplémentaire sur la forme des regles. La partie gauche n’est pas
affectée (on a toujours aw € V'), mais la partie droite (3 est plus restreinte. En fait, on distingue
deux types de grammaires régulieres : les grammaires régulieres a gauche et les grammaires
régulieres a droite (les deux ayant la méme expressivité). Les grammaires réguliéres a
gauche imposent que pour toute regle @ — 3, la partie droite S doit étre de la forme Xs,
ou bien s, ou bien ¢, avec X € V et s € X. Pour les grammaires réguliéres a droite,
c’est I'inverse : 3 est de la forme s X, ou s, ou . Autrement dit, chaque régle ne peut générer
qu’au plus une variable et au plus un symbole terminal, qui sera toujours du méme coté.

Par exemple, la grammaire G5 (déja vue plus haut) qui génére les mots binaires se
terminant par 0 est une grammaire réguliere. Ses trois regles sont S — 0S | 1S | 0, ce
qui respecte bien les contrainte d’une grammaire réguliére (en l'occurrence, a droite). On
aurait aussi pu générer ce langage avec une grammaire réguliere a gauche, en utilisant deux
variables et quatre regles comme suit : G, = ({S,T},{0,1},5,{S = 70, T - T0 | T1 |e}).

6.4.1 Equivalence entre grammaires réguliéres et langages réguliers

Les grammaires régulieres correspondent exactement aux langages réguliers. Cela peut se
démontrer (comme souvent) par des transformations. En l'occurrence, n’importe quel AFD
peut étre converti en grammaire réguliere et n'importe quelle grammaire réguliere peut étre
convertie en AFN (et donc en AFD, par déterminisation).

Transformation d’un AFD vers une grammaire réguliere

Soit un AFD A = (Q, X, 4, qo, F'). On peut construire une grammaire réguliere a droite
G = (V,%,5,P) qui génere exactement L(A), en la définissant comme suit :

Les variables correspondent aux états de 'automate (V = @Q),

Les symboles terminaux correspondent a l'alphabet de 'automate,

Le symbole de départ S correspond a 1’état initial ¢,

Pour chaque transition (g;, s, ¢;), on crée une regle ¢; — sqj,
e Pour chaque état final ¢ € F', on créé une regle ¢ — €.

Il existe une construction similaire pour transformer l'automate A en une grammaire
réguliere a gauche.

Transformation d’une grammaire réguliere vers un AFN

Soit une grammaire réguliere a droite G = (V,%,S,P), on peut construire un AFN
A=(Q,%,0,q, F) qui reconnait exactement L(G), en le définissant comme suit :

Les ¢tats de I'automate correspondent aux variables V' + un état final ¢y,
L’état initial ¢o correspond a la variable de départ S,
L’alphabet de I'automate correspond aux symboles terminaux de la grammaire,

Pour chaque regle de la forme A — sB, on ajoute une transition depuis 1’état corres-
pondant a A vers I’état correspondant a B avec le symbole s,

Pour chaque regle de la forme A — s, on ajoute une transition depuis ’état correspon-
dant a A vers ¢y avec le symbole s,

Pour chaque regle de la forme A — ¢, on ajoute une e-transition depuis 1’état corres-
pondant a A vers gy.

Il existe une construction similaire pour transformer une grammaire réguliere a gauche
vers un AFN.

6.5

Hiérarchie de Chomsky (apergu)

La hiérarchie de Chomsky met en relation quatre types de grammaires différentes avec
quatre types de machines capable de connaitre les langages correspondants. Traduction :
context-free = hors-contexte ; push-down automaton = automate a pile.

grammars (generators) automata (acceptors)

* more complex
* more powerful
* less restricted

!

recursively Turing
enumerable machine

context- linear bounded
sensitive automaton

context- push-down
free automaton

regular finite
grammar automaton

