
Langages formels (11X003) - Automne 2025

6. Grammaires formelles

Enseignant: Arnaud Casteigts Assistants: A.-Q. Berger & M. Marseloo
Moniteurs: N. Beghdadi & E. Bussod

Nous entamons une partie du cours à cheval entre la linguistique et l’informatique, à
savoir l’étude des grammaires formelles. Ces dernières permettent de décrire des langages
de manière générative, par l’utilisation de règles de production. Les grammaires sont plus
puissantes que les expressions régulières et les automates finis, elles permettent notamment
de représenter des langages non réguliers (et bien plus).

6.1 Grammaires formelles en général

Intuitivement, une grammaire formelle est un ensemble de règles qui permettent de créer
des motifs textuels par remplacement successifs. Chaque règle est de la forme α → β où
α est le motif à remplacer (appelé partie gauche de la règle) et β est le motif qui va
remplacer α (appelé partie droite). Voici un exemple de grammaire comportant deux règles
de production :

Grammaire G1 :

S → aSb
S → ε

Il y a deux types de symboles dans une grammaire : des symboles terminaux et des va-
riables (aussi appelés symboles non-terminaux). Les symboles terminaux sont généralement
représentés en minuscule, comme ici a et b et sont issus d’un alphabet Σ comme ceux que
l’on connâıt déjà. Les variables sont représentées en majuscule, comme ici S, et font par-
tie d’un autre alphabet V . Ces variables ont vocation à être remplacées ultérieurement. La
grammaire spécifie aussi quel est le symbole initial à partir duquel on va générer tous les
mots, ici S également.

La génération consiste donc à partir du symbole initial et d’appliquer des règles jusqu’à
ce qu’il n’y ait que des symboles terminaux. On a alors généré (ou engendré) un mot du
langage. Lorsque plusieurs règles sont applicables, on peut utiliser l’une ou l’autre.

Dans cet exemple, nous partons de S et nous avons le choix d’appliquer la première ou
la seconde règle. Si nous utilisons la seconde règle directement, cela produit le mot vide ε
et nous avons terminé car il n’y a plus de variable à remplacer. Si nous utilisons plutôt la
première règle, cela produit le mot intermédiaire aSb. Nous pouvons alors recommencer en

1

remplaçant le S de ce mot. Si on utilise ici la seconde règle, qui remplace le S du milieu par
ε, cela donnera le mot ab et nous aurons terminé. Si on continue à utiliser la première règle,
cela donnera le mot aaSbb, et ainsi de suite. Quel est l’ensemble de tous les mots que l’on
peut obtenir ? On se convaincra assez facilement qu’il s’agit des mots ε, ab, aabb, aaabbb, . . . ,
autrement dit, le langage L(G1) = {anbn | n ∈ N}, qui nous le savons, n’est pas régulier !
(c.f. cours précédent).

Dans leur version la plus générale, les grammaires formelles peuvent utiliser des règles
de productions qui transforment n’importe quel motif (combinant variables et symboles
terminaux) en n’importe quel autre motif. Ces grammaires étant très expressives, on se
restreint souvent à des versions particulières qui sont moins puissantes. Le type de grammaire
le plus répandu est celui des grammaires hors-contexte, qui sont très utilisées en théorie des
langages de programmation (notamment pour le parsing et la compilation), ainsi que dans
les protocoles réseaux.

6.2 Cas particulier : Grammaires hors-contexte

Les grammaires hors-contexte (aussi appelées grammaires non contextuelles) sont des
cas particuliers de grammaires formelles, qui imposent que la partie gauche de chaque règle
consiste en une variable seulement (et rien d’autre), c’est le cas de l’exemple donné plus haut.
On les appelle hors-contexte parce qu’elles ne tiennent pas compte de ce qu’il y a autour de
la variable à remplacer.

Formellement, une grammaire hors-contexte est définie par :

� Un alphabet V de variables (symboles non terminaux),

� Un alphabet Σ de symboles terminaux,

� Un symbole de départ dans V ,

� Un ensemble fini de règles de production P de la forme α → β, où α ∈ V et β ∈ (V ∪Σ)∗.
Par exemple, la grammaire G1 donnée plus haut correspond à V = {S},Σ = {a, b}, le

symbole de départ S ∈ V et les règles de productions P = {S → aSb, S → ε}.

Lorsque plusieurs règles ont la même partie gauche, on peut les regrouper en utilisant une
barre verticale, comme S → aSb | ε, qui se lit “S donne aSb ou ε”. (Il s’agit quand même
de deux règles différentes.) Et pour être encore plus compact, on écrit parfois directement :
G1 = ({S}, {a, b}, S, {S → aSb | ε}).

L’application d’une ou plusieurs règles d’une grammaire est appelé une dérivation. Voici
une dérivation possible de la grammaire G1 :

S ⇒ aSb ⇒ aaSbb ⇒ aaaSbbb ⇒ aaabbb.

Notez la différence entre les symboles → (spécification de la règle, dans la définition de
la grammaire) et ⇒ (son application sur un mot). Nous appelerons mot intermédiaire

2

les mots qui contiennent au moins une variable, et mot terminal ceux qui n’ont que des
symboles terminaux. S’il existe une dérivation d’un mot w1 vers un mot w2 (terminal ou

non), on note w1
∗⇒ w2 et on dit qu’on peut dériver w2 depuis w1. L’ensemble des mots

terminaux que l’on peut dériver depuis le symbole de départ définit le langage engendré
par la grammaire. Autrement dit, le langage L(G) engendré par une grammaire G avec
symbole de départ S est :

L(G) = {w ∈ Σ∗ | S ∗⇒ w}

Un langage est hors-contexte s’il existe une grammaire hors-contexte (GHC) qui l’en-
gendre.

6.3 Exemples et autres notions

Voici quelques exemples de grammaires hors contexte. Nous en profitons pour illustrer
quelques notions supplémentaires, comme les arbres de dérivation, les dérivations gauches
(ou droite), et les grammaires ambiguës.

6.3.1 Mots binaires se terminant par 0 (nombres pairs)

On peut représenter le langage des mots binaires se terminant par 0 par une grammaire
hors-contexte G2 = ({S}, {0, 1}, S, {S → 0S | 1S | 0})

Exemple de dérivation : S ⇒ 1S ⇒ 10S ⇒ 101S ⇒ 1010

On peut se convaincre assez facilement que tout mot binaire se terminant par 0 peut être
généré par cette grammaire. Autrement dit, L(G2) est le langage régulier correspondant à
l’expression (0 ∪ 1)∗0. Comme déjà évoqué, les grammaires hors-contexte peuvent générer
des langages non réguliers, mais elles peuvent bien sûr aussi générer des langages réguliers !
(Qui peut le plus, peut le moins...)

6.3.2 Mots bien parenthésés

On peut représenter l’ensemble des mots bien parenthésés par une grammaire G3 =
(V = {S},Σ = {(,)}, S,P = {S → (S) | SS | ε}}. Cette grammaire produit tous les mots
constitués de parenthèses correctement entrelacées, p.ex. (), (()), ()(), (()()), (())(), . . . Elle
ne produit pas, en revanche, les mots tels que (, ou)(, ou encore ())(.

Exemple de dérivation : S ⇒ (S) ⇒ (SS) ⇒ ((S)S) ⇒ (()S) ⇒ (()(S)) ⇒ (()())

On peut représenter la dérivation d’un mot par un arbre de dérivation, comme suit :

3

S

(S)

S S

(S) (S)

ε ε

En fait, cet arbre représente plusieurs dérivations possibles, mais qui sont toutes équivalentes.
Par exemple, dans la dérivation précédente, nous avons systématiquement utilisé la variable
la plus à gauche pour dériver. Une telle dérivation est appelée dérivation gauche. Elle cor-
respond à un parcours en profondeur de la gauche vers la droite dans l’arbre de dérivation.
Mais nous aurions aussi pu effectuer une dérivation droite, correspondant à un parcours
en profondeur de la droite vers la gauche comme suit :

S ⇒ (S) ⇒ (SS) ⇒ (S(S)) ⇒ (S()) ⇒ ((S)()) ⇒ (()())

Ou encore prendre les variables dans un ordre arbitraire... La notion d’arbre de dérivation
est importante et mérite d’être bien comprise. Nous y reviendrons plus bas.

Notez que L(G3) n’est pas un langage régulier. Vous le prouverez peut-être en exercices en
utilisant le lemme de l’étoile. En revanche, c’est bien évidemment un langage hors-contexte,
puisque la grammaire qui le génère est hors-contexte.

6.3.3 Expressions arithmétiques

Voici un exemple de règles qui produisent des expressions arithmétiques avec les opérations
+ et × à partir du chiffre 2, l’alphabet terminal étant Σ = {×,+, 2, (,)} :

E → E + E | E × E | (E) | 2

Par exemple, voici une dérivation gauche qui produit le mot 2× (2+ 2) :

E ⇒ E × E ⇒ 2× E ⇒ 2× (E) ⇒ 2× (E + E) ⇒ 2× (2+ E) ⇒ 2× (2+ 2).

Comme précédemment, nous aurions pu aussi utiliser une dérivation droite, ces dérivations
revenant in fine au même arbre de dérivation. Cependant, il est cette fois possible qu’un même
mot admette deux arbres de dérivations différents ! Prenons l’exemple de 2× 2+ 2 (sans les
parenthèses). On peut l’obtenir via les arbres :

4

E

E × E

E + E

2 2 2

E

E + E

E × E

2 2 2

Si cela peut se produire pour au moins un mot, alors on dit que ce mot est ambigu et
que la grammaire elle-même est une grammaire ambiguë. En général, on essaie d’éviter
cela, par exemple, dans les langages de programmation, il est préférable qu’il n’y ait qu’une
façon possible d’analyser syntaxiquement (= de “parser”) le code.

Le langage humain est naturellement ambigu, p.ex : “j’ai vu sa main avec un mirroir”
peut signifier “j’ai vu [sa main avec un mirroir]” ou “[j’ai vu sa main] avec un mirroir”.

Dans certains cas, une grammaire peut être modifiée pour être rendue non-ambigüe, mais
ce n’est pas toujours possible. Ici, c’est possible, la grammaire suivante engendre le même
langage, sans ambiguité (au prix d’utiliser trois variables au lieu d’une) :

E → E + T | T
T → T × F | F
F → (E) | 2

6.3.4 Langage humain ?

On pourrait utiliser des variables du genre V = {Phrase, GroupeNominal, GroupeVerbal,
Complement, Nom, Verbe} et des terminaux Σ = {a...z, } avec des règles du type :

Phrase → GroupeNominal GroupeVerbal
GroupeVerbal → Verbe Complement
Verbe → manger, dormir, ...

. . .

Ce type de grammaires est utilisée en linguistique pour modéliser les langues naturelles.
Elles ont longtemps servi de base au traitement automatique des langues (pour la traduction,
la rédaction, etc.). Elles ont récemment été supplantées par les méthodes statistiques (réseaux
de neurones, notamment), mais peuvent continuer à être utilisées en conjonction avec ces
dernières.

5

6.4 Cas particulier : grammaires régulières (deuxième semaine)

Les grammaires régulières sont un cas particulier de grammaires hors-contexte, qui
imposent une restriction supplémentaire sur la forme des règles. La partie gauche n’est pas
affectée (on a toujours α ∈ V), mais la partie droite β est plus restreinte. En fait, on distingue
deux types de grammaires régulières : les grammaires régulières à gauche et les grammaires
régulières à droite (les deux ayant la même expressivité). Les grammaires régulières à
gauche imposent que pour toute règle α → β, la partie droite β doit être de la forme Xs,
ou bien s, ou bien ε, avec X ∈ V et s ∈ Σ. Pour les grammaires régulières à droite,
c’est l’inverse : β est de la forme sX, ou s, ou ε. Autrement dit, chaque règle ne peut générer
qu’au plus une variable et au plus un symbole terminal, qui sera toujours du même côté.

Par exemple, la grammaire G2 (déjà vue plus haut) qui génère les mots binaires se
terminant par 0 est une grammaire régulière. Ses trois règles sont S → 0S | 1S | 0, ce
qui respecte bien les contrainte d’une grammaire régulière (en l’occurrence, à droite). On
aurait aussi pu générer ce langage avec une grammaire régulière à gauche, en utilisant deux
variables et quatre règles comme suit : G′

2 = ({S, T}, {0, 1}, S, {S → T0, T → T0 | T1 | ε}).

6.4.1 Équivalence entre grammaires régulières et langages réguliers

Les grammaires régulières correspondent exactement aux langages réguliers. Cela peut se
démontrer (comme souvent) par des transformations. En l’occurrence, n’importe quel AFD
peut être converti en grammaire régulière et n’importe quelle grammaire régulière peut être
convertie en AFN (et donc en AFD, par déterminisation).

Transformation d’un AFD vers une grammaire régulière

Soit un AFD A = (Q,Σ, δ, q0, F). On peut construire une grammaire régulière à droite
G = (V,Σ, S,P) qui génère exactement L(A), en la définissant comme suit :

� Les variables correspondent aux états de l’automate (V = Q),

� Les symboles terminaux correspondent à l’alphabet de l’automate,

� Le symbole de départ S correspond à l’état initial q0,

� Pour chaque transition (qi, s, qj), on crée une règle qi → sqj,

� Pour chaque état final q ∈ F , on créé une règle q → ε.

Il existe une construction similaire pour transformer l’automate A en une grammaire
régulière à gauche.

6

Transformation d’une grammaire régulière vers un AFN

Soit une grammaire régulière à droite G = (V,Σ, S,P), on peut construire un AFN
A = (Q,Σ, δ, q0, F) qui reconnait exactement L(G), en le définissant comme suit :

� Les états de l’automate correspondent aux variables V + un état final qf ,

� L’état initial q0 correspond à la variable de départ S,

� L’alphabet de l’automate correspond aux symboles terminaux de la grammaire,

� Pour chaque règle de la forme A → sB, on ajoute une transition depuis l’état corres-
pondant à A vers l’état correspondant à B avec le symbole s,

� Pour chaque règle de la forme A → s, on ajoute une transition depuis l’état correspon-
dant à A vers qf avec le symbole s,

� Pour chaque règle de la forme A → ε, on ajoute une ε-transition depuis l’état corres-
pondant à A vers qf .

Il existe une construction similaire pour transformer une grammaire régulière à gauche
vers un AFN.

6.5 Hiérarchie de Chomsky (aperçu)

La hiérarchie de Chomsky met en relation quatre types de grammaires différentes avec
quatre types de machines capable de connâıtre les langages correspondants. Traduction :
context-free = hors-contexte ; push-down automaton = automate à pile.

7

