
Langages formels (11X003) - Automne 2025

7. Automates à pile

Enseignant: Arnaud Casteigts Assistants: A.-Q. Berger & M. Marseloo
Moniteurs: N. Beghdadi & E. Bussod

(La partie sur les grammaires régulières a été ajoutée aux notes de la semaine dernière,
Cours 6 sur les grammaires formelles).

Dans ce cours, nous revenons sur les machines. Nous avons vu que certains langages ne
peuvent pas être reconnus par des automates finis. Certains de ces langages, comme le langage
L = {anbn | n ∈ N}, peuvent cependant être décrits par une grammaire hors-contexte. Nous
allons voir aujourd’hui un modèle de machine plus puissant, qui est capable de reconnâıtre
tous les langages hors-contextes. Ce modèle est celui des automates à pile.

7.1 Description intuitive

Let automates que nous connaissons sont composés de deux parties : la partie contenant
les états et les transitions et la partie sur laquelle on lit le mot en entrée, composée d’une
bande (tape, en anglais) et d’une tête de lecture, ces deux éléments n’étant souvent pas des-
sinés (Figure 1a). La principale limitation de ces automates est qu’ils n’ont pas de mémoire.
Les automates à pile (AP) consistent à augmenter ces machines avec une mémoire, mani-
pulée comme une pile (ou stack, en anglais). À chaque transition, en plus de ses opérations
habituelles, l’automate peut empiler ou dépiler un symbole au sommet de la pile. Et
surtout, l’activation ou non d’une transition peut dépendre de la valeur qui s’y trouve (voir
la Section 7.5 si vous ne connaissez pas les piles en général).

(a) Automate fini (b) Automate à pile

Figure 1 – Représentation d’automates finis ou à pile.

Mis à part la pile, les APs fonctionnent comme des AFs. Il existe une version déterministe
(APD) et non-déterministe (APN). Cependant, les deux ne sont pas équivalents : ici, le non-
déterminisme augmente réellement les capacités de la machine. On appelle langages hors

1



contexte déterministes les langages reconnaissables par des APDs. Les APNs, quant à eux,
correspondent exactement aux langages hors contextes. Par défaut, un AP désigne un APN.

7.2 Automate à pile (non-déterministe)

La différence entre un AF classique et un AP se résume à deux changements : 1) il y
a un alphabet supplémentaire pour désigner les symboles que l’on utilise dans la pile et 2)
la fonction de transition devient plus complexe. Formellement, un automate à pile non
déterministe est un 6-tuple (Q,Σ,Γ, δ, q0, F ) où

� Q est un ensemble fini d’états,

� Σ est l’alphabet d’entrée (habituel),

� Γ est l’alphabet de pile,

� δ : Q× Σε × Γε → P(Q× Γε) est la fonction de transition (discutée plus bas),

� q0 est l’état initial,

� F est l’ensemble des états finaux avec F ⊆ Q,

Rappelons-nous que Σε désigne Σ ∪ {ε}. Pour les AFNs, cet ajout permet de définir des
transitions où l’on ne lit aucun symbole (ε-transitions). De la même manière, on définit Γε

comme étant Γ∪{ε}, ce qui permet de définir des transitions qui utilisent la pile et d’autres
qui ne l’utilisent pas.

Examinons la signature de la fonction de transition δ, à savoir Q×Σε×Γε → P(Q×Γε).
Le domaine est Q × Σε × Γε. Concrètement, une transition dépend de 1) l’état courant,
2) le symbole lu sur l’entrée (ou rien, si ε), et 3) la valeur lue au sommet de la pile (ou
rien, si ε). La lecture d’un symbole sur la pile a toujours pour effet de le dépiler (il est
enlevé de la pile). Le co-domaine de δ est P(Q × Γε), ce qui signifie que plusieurs actions
sont potentiellement possibles et seront toutes effectuées de manière non-déterministe. Pour
chacune de ces actions, l’automate tout entier (incluant la pile) peut être vu comme
dupliqué dans un univers parallèle. Chaque action, elle-même de la forme Q × Γε, revient
à se déplacer sur un nouvel état et empiler au passage un symbole sur la pile (ou rien, si ε).

7.3 Exemples

7.3.1 AP reconnaissant le langage {anbn | n ≥ 1}

Intuitivement, on peut reconnâıtre ce langage comme suit : au départ, on empile un
symbole ⊥ (qui représentera le fond de la pile), puis, tant qu’on lit des a, on empile le
symbole a. Puis, tant qu’on lit des b, on dépile les symboles a précédemment empilé. Si le

2



sommet de la pile vaut ⊥ quand le mot se termine, on accepte (on a lu autant de b que le
nombre de a empilés).

Plus concrètement, on considère l’alphabet d’entrée Σ = {a, b} et l’alphabet de pile
Γ = {a,⊥}. Notre automate a 4 états Q = {q0, q1, q2, q3}, avec q0 l’état initial et q3 le seul
état final. Les transitions sont comme illustrées sur l’automate suivant :

q0 q1 q2 q3
ε, ε → ⊥ b, a → ε

a, ε → a

ε,⊥ → ε

b, a → ε

Chaque transition est représentée sous la forme x, y → z, où x correspond au symbole
lu sur le mot d’entrée (comme d’habitude), y correspond au symbole requis au sommet de
la pile, qui sera dépilé (ou ε si l’on ne souhaite pas consulter la pile), et z correspond au
symbole que l’on empilera au sommet de la pile si la transition est effectuée (ou ε si l’on ne
souhaite rien ajouter à la pile). Ainsi, la description b, a → ε signifie “si on lit b sur le mot
d’entrée et que le sommet de la pile vaut a, alors on dépile ce symbole a (c’est implicite) et
on empile rien à la place”.

Prenons chaque étape l’une après l’autre : depuis l’état q0, sans ne rien lire sur le mot
d’entrée ni sur la pile, on empile le symbole ⊥ et on passe dans l’état q1. Puis, sur l’état
q1, si on lit a, on ne dépile rien et on empile a. (Potentiellement, cela se répète plusieurs
fois.) Toujours depuis q1, si on lit un b sur le mot d’entrée ET que le sommet de la pile
vaut a, alors ce a est dépilé, on empile rien à la place, et on passe dans l’état q2. La même
transition peut se répéter sur q2. Enfin, si l’on rencontre le symbole ⊥ sur le sommet de la
pile, alors sans rien lire et sans rien empiler, on passe sur l’état q3. On accepte alors si le mot
est terminé. Comme pour les AFNs et les AFDs, les transitions non spécifiées reviennent à
rejetter le mot directement, par exemple, si on lit un a sur l’entrée depuis l’état q2, ou si on
continue à lire des choses depuis q3, le mot est rejeté.

7.3.2 AP reconnaissant les palindromes de longueur paire

L’automate suivant reconnâıt le langage L = {w · wR | w ∈ {a, b}∗}, autrement dit les
palindromes de longueur paire sur l’alphabet Σ = {a, b} :

q0 q1 q2 q3
ε, ε → ⊥ ε, ε → ε

a, ε → a

b, ε → b

ε,⊥ → ε

a, a → ε
b, b → ε

3



Le principe est le suivant : sur la première moitié du mot, on empile les symboles lus.
Puis, sur l’autre moitié, on vérifie en dépilant qu’on a bien les mêmes symboles (dans l’ordre
inverse). Mais comment sait-on où se trouve la moitié ? C’est là que le non-déterminisme est
essentiel. Grâce au non-déterminisme (incarné ici par la transition entre q1 et q2), l’automate
se dédouble à chaque passage sur q1, de sorte qu’au moins une exécution passe sur q2 quand le
vrai milieu est atteint et le mot sera accepté (s’il s’agit d’un palindrome). Rappelons qu’avec
le non-déterminisme, il est suffisant qu’une des exécutions accepte le mot.

7.4 APD versus APN?

Dans ce cours, nous nous sommes concentrés sur les automates à pile non-déterministes
(APN), car ils correspondent aux grammaires hors contexte, tandis que les APD ne recon-
naissent qu’un sous-ensemble des langages hors contexte. Par ailleurs, il est plus facile de
voir les APDs comme des cas particuliers d’APNs.

La subtilité est que les APDs, bien que déterministes, utilisent quand même le symbole
ε dans la définitions de leurs transitions (c’est une différence importante avec les AFDs).
Pourquoi ? Parce-qu’on pourrait vouloir effectuer des traitements sur la pile (empiler ou
dépiler) sans pour autant lire de symbole sur l’entrée, ou inversement, on pourrait vouloir lire
un symbole sur l’entrée sans toucher à la pile, le tout sans jamais engendrer deux exécution
distinctes. En effet, le point important est que l’automate ne doit avoir qu’une exécution
possible, c’est tout ! Un APD est donc un cas particulier d’APN pour lequel un seul choix
de transition existe depuis chaque état.

Notez que c’est le cas, par exemple, de l’AP reconnaissant le langage anbn plus haut : bien
qu’il utilise des ε un peu partout, l’exécution ne prendra qu’un seul chemin. Cet AP est donc
un APD. L’AP reconnaissant les palindromes, en revanche, est réellement non-déterministe,
et nous avons besoin de cela pour deviner où se trouver le milieu du mot.

7.5 Annexe : utilisation d’une pile

Les piles sont des structures de données très utilisées en informatique. Elles se fondent
sur le principe “dernier arrivé, premier sorti” (en anglais LIFO pour last in, first out), ce
qui veut dire que le dernier élément ajouté à la pile est toujours le premier à en ressortir. Ce
fonctionnement est moins puissant qu’une mémoire où l’on pourrait accéder à tout élément
de manière directe. Parfois, cette limitation est intrinsèquement voulue, comme ici, pour
reconnâıtre les langages hors contexte, mais rien de plus (nous montrerons cela la semaine
prochaine). Parfois, cela simplifie juste le traitement à effectuer.

Quelques exemples d’utilisation :

� Lorsqu’une fonction dans un programme appelle une autre fonction, qui appelle une
autre fonction, cette exécution est gérée par le système d’exploitation à l’aide d’une

4



pile (la pile d’exécution). À chacun de ces appels, on sauvegarde le contexte de la
fonction appelante (les valeurs actuelles de ses variables, l’endroit où l’on se trouve
de l’exécution, etc.) sur la pile, puis on commence l’exécution de la nouvelle fonction.
Si cette dernière en appelle une autre, on empile à nouveau. Puis, lorsqu’une de ces
fonctions termine, on dépile la précédente pour reprendre son exécution là où elle s’était
arrêtée.

� On peut aussi utiliser une pile, par exemple, pour inverser facilement le contenu d’un
tableau : parcourir tout le tableau en empilant ses éléments au fur et à mesure dans
une pile, puis le parcourir à nouveau en y écrivant les éléments dépilées au fur et à
mesure, ce qui aura pour effet d’inverser l’ordre des élements dans le tableau.

� Une pile d’assiette dans votre armoire fonctionne également comme cela.

5


