
Langages formels (11X003) - Automne 2025

8. Équivalence AP - GHC

Enseignant: Arnaud Casteigts Assistants: A.-Q. Berger & M. Marseloo
Moniteurs: N. Beghdadi & E. Bussod

Pour rappel, nous désignons par AP un automate à pile non-déterministe (APN). Dans ce
cours, nous allons montrer que n’importe quel langage engendré par une grammaires hors-
contexte (GHC) peut être reconnu par un AP. Une transformation des AP vers les GHC
existe aussi, ce qui établit que les GHC et les AP sont bien capables de décrire les mêmes
langages. Nous ne verrons pas cette seconde transformation, qui est compliquée.

8.1 Automates à pile (complément)

Nous commençons par une illustration complète du fonctionnement d’un APN. Puis
nous mentionnons un modèle légèrement plus pratique (mais équivalent) qui permet d’écrire
plusieurs symboles sur la pile d’un seul coup.

8.1.1 Illustration d’une exécution

Voici l’AP de la semaine dernière, qui reconnâıt les palindromes de longueur paire sur
l’alphabet Σ = {a, b}, autrement dit le langage L = {wwR | w ∈ Σ∗}. Cet automate possède
notamment une transition non-déterministe entre q1 et q2 qui lui sert à “deviner” où se trouve
le milieu du mot d’entrée.

q0 q1 q2 q3
ε, ε → ⊥ ε, ε → ε

a, ε → a

b, ε → b

ε,⊥ → ε

a, a → ε
b, b → ε

Observons l’exécution de cet automate lorsqu’on lit le mot abba. Pour simplifier, nous
représentons la configuration de l’automate à un instant donné par deux éléments :

contenu de la pile
mot restant à lire

Pour le “contenu de la pile”, le symbole le plus à gauche corres-
pond au sommet de la pile. Le “mot restant à lire” correspond aux
symboles qui n’ont pas encore été lus sur le mot d’entrée.

1

Initialement, le contenu de la pile est vide et le mot restant à lire est le mot d’entrée
lui-même, ici abba. L’exécution étant non-déterministe, on peut la représenter par un arbre,
où chaque branchement sur plusieurs successeurs correspond à un choix parmi plusieurs
transitions possibles.

q0

⊥
abba

q1

a⊥
bba

q1
⊥

abba
q2

×

ba⊥
ba

q1
a⊥
bba

q2

×

bba⊥
a

q1
ba⊥
ba

q2

bba⊥
a

q2

×

abba⊥ q1

×

a⊥
a

q2

abba⊥ q2

×

⊥ q2

q3 (accept!)

ε, ε → ⊥

a, ε → a

b, ε → b

b, ε → b

a, ε → a

ε, ε → ε

ε, ε → ε

ε, ε → ε

ε, ε → ε

ε, ε → ε

b, b → ε

a, a → ε

ε,⊥ → ε

2

8.1.2 Empilement de plusieurs symboles d’un coup

Dans certains cas, il est plus pratique d’autoriser des transitions qui empilent plusieurs
symboles à la fois. C’est juste par facilité, car on peut toujours convertir un tel automate en
un AP normal qui n’empile qu’un symbole à la fois (en ajoutant des états intermédiaires).
Concrètement, cela permet des transitions du type x, y → z, où x est un symbole d’entrée
(ou ε) ; y est un symbole de pile (ou ε) ; et z est un mot sur l’alphabet de pile. Ce mot
est empilé de la dernière à la première lettre. Par exemple, “ε, a → bc” transforme la pile
comme suit (mentalement, a est remplacé par bc) :

a

...
→

b

c

...

8.2 Grammaire hors-contexte → Automate à pile

Soit une grammaire hors-contexte G = (V,Σ, S,P), nous allons transformer G en un
automate à pile A = (Q,Σ,Γ, δ, q0, F) (qui peut empiler plusieurs symboles d’un coup) tel
que A reconnâıt un mot si et seulement si ce mot peut être engendré par G.

Intuitivement, l’automate simule les dérivations possibles de la grammaire, le mot in-
termédiaire étant stocké dans la pile. Lorsqu’une variable se trouve au sommet de la pile,
une transition la remplace selon l’une des règles de G. Par exemple, si la grammaire possède
une règle S → aSa et si S est au sommet de la pile, S peut être remplacé par aSa comme
suit (indépendamment du reste de la pile) :

S
...

→

a

S
a

...

Si plusieurs règles sont applicables, on les considère toutes de manière non-déterministe,
chaque transition engendrant un branchement distinct dans un nouvel univers. Ainsi, pour
chaque dérivation possible de la grammaire, il existe une exécution correspondante.

La difficulté est de savoir quoi faire des symboles terminaux qui se trouvent au sommet
de la pile, qui nous empêchent d’accéder aux variables plus bas. L’astuce ici est de réaliser
que ces symboles ne changeront plus et il correspondent exactement aux symboles qu’il faut
lire sur l’entrée à ce stade du mot. On utilise donc d’autres transitions qui “consomment”
ces symboles en avançant la lecture du mot, et ce, jusqu’à ce qu’une variable remonte au
sommet. Ainsi, on alterne les transitions qui simulent la grammaire et celles qui lisent le mot
d’entrée. Si le mot d’entrée se termine en même temps que la pile est vide, c’est qu’il existe

3

une dérivation de la grammaire qui produit ce mot. L’automate accepte donc ce mot. Si à
tout moment les symboles terminaux ne correspondent pas au mot d’entrée, l’exécution de
cette branche non-déterministe est détruite. Le mot d’entrée est considéré comme accepté si
au moins une branche de l’exécution l’accepte (comme pour les AFNs).

Prenons à nouveau l’exemple des palindromes de longueur paire sur l’alphabet Σ = {a, b},
en supposant qu’on ne connâıt pas l’automate correspondant, mais seulement la grammaire
qui l’engendre. En l’occurence, nous partons donc de la grammaire S → aSa | bSb | ε. La
technique est la même pour toutes les grammaires : on construit un automate à pile qui a
trois états q0, q1, q2. La transition de q0 à q1 commence par ajouter un symbole ⊥ au fond de
la pile et à empiler le symbole de départ S par dessus. Ensuite, on ajoute un certain nombre
de transitions qui bouclent sur q1, à savoir :

� Une transition “ε, α → β” pour chaque règle α → β de la grammaire.

� Une transition “s, s → ε” pour chaque symbole s ∈ Σ.

Puis on ajoute une transitions de q1 vers q2 qui atteint l’état final si la pile est vide. Dans
notre exemple, cela donne l’automate suivant :

q0 q1 q2
ε, ε → S⊥

ε, S → aSa
ε, S → bSb
ε, S → ε
a, a → ε
b, b → ε

ε,⊥ → ε

Les trois premières transitions qui bouclent sur q1 simulent la grammaire lorsqu’une
variable est au sommet de la pile. Les deux autres font avancer la lecture du mot d’entrée
lorsque des symboles terminaux sont au sommet (à condition que les deux soient identiques).

Cet automate acceptera un mot w si et seulement si S
∗⇒ w (c.à.d. w peut être dérivé depuis

S), ce qui correspond bien à l’objectif.

Observons maintenant l’exécution de cet automate sur un mot d’entrée, en prenant à
nouveau l’exemple du mot abba.

4

q0

S⊥
abba

aSa⊥
abba

bSb⊥
abba

⊥
abba

Sa⊥
bba

× ×

aSaa⊥
bba

bSba⊥
bba

a⊥
bba

× Sba⊥
ba

×

.
ba⊥
ba

a⊥
a

⊥

q3 (accept!)

ε, ε → S⊥

ε, S → aSa
ε, S → bSb

ε, S → ε

a, a → ε

ε, S → aSa
ε, S → bSb

ε, S → ε

b, b → ε

ε, S → ε

b, b → ε

a, a → ε

ε,⊥ → ε

5

8.3 Automate à pile → Grammaire hors-contexte

Cette transformation n’est pas au programme, vous n’êtes donc pas tenus de la connâıtre,
cependant vous devez savoir qu’elle existe !

8.4 Remarques générales sur les langages hors-contextes

Si L1 et L2 sont des langages hors-contextes, alors :

� L1 ∪ L2 est hors-contexte

� L1 ◦ L2 est hors-contexte

� L∗ est hors-contexte

� L1 ∩ L2 n’est pas forcément hors-contexte

� L1 et L2 ne sont pas forcément hors-contexte

Par ailleurs, si L1 est régulier et L2 est hors-contexte, alors L1 ∩ L2 est hors-contexte.

Les opérations sur les langages hors-contextes sont donc à manipuler avec précaution,
car elles ne sont pas toutes closes par les opérations usuelles. Notamment, l’intersection et
la complémentation de langages hors-contextes peuvent produire des langages qui ne le sont
pas. Vous reviendrez sur certaines de ces propriétés lors des exercices.

6

