Maintaining a Spanning Forest in Highly Dynamic Networks: The synchronous case

M. Barjon, A. Casteigts, S. Chaumette, C. Johnen, Y. M. Neggaz

University of Bordeaux

OPODIS'14 Cortina, Italy

Highly dynamic networks.

How changes are perceived?

- Faults and Failures?
- Nature of the system. Change is normal.
- The network is partitioned most of the time.

Highly dynamic networks.

How changes are perceived?

- Faults and Failures?
- Nature of the system. Change is normal.
- The network is partitioned most of the time.

Highly dynamic networks.

How changes are perceived?

- Faults and Failures?
- Nature of the system. Change is normal.
- The network is partitioned most of the time.

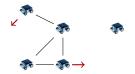
Example scenario (Wireless mobile robots)

Highly dynamic networks.

How changes are perceived?

- Faults and Failures?
- Nature of the system. Change is normal.
- The network is partitioned most of the time.

Example scenario



Highly dynamic networks.

How changes are perceived?

- Faults and Failures?
- Nature of the system. Change is normal.
- The network is partitioned most of the time.



Example scenario

Highly dynamic networks.

How changes are perceived?

- Faults and Failures?
- Nature of the system. Change is normal.
- The network is partitioned most of the time.



Example scenario

Highly dynamic networks.

How changes are perceived?

- Faults and Failures?
- Nature of the system. Change is normal.
- The network is partitioned most of the time.



Example scenario

Highly dynamic networks.

How changes are perceived?

- Faults and Failures?
- Nature of the system. Change is normal.
- The network is partitioned most of the time.



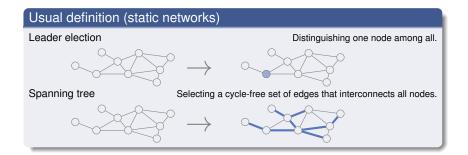
Example scenario

Highly dynamic networks.

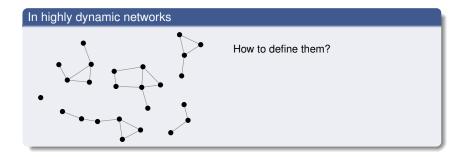
How changes are perceived?

- Faults and Failures?
- Nature of the system. Change is normal.
- The network is partitioned most of the time.

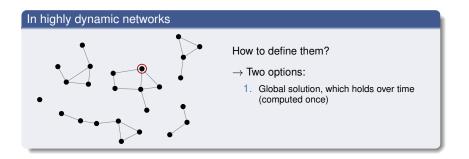
Ex. with two classical problems : ELECTION, SPANNINGTREE



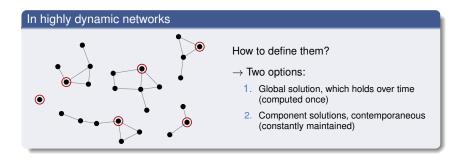
Ex. with two classical problems : LEADERELECTION, SPANNINGTREE



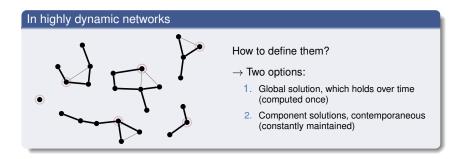
Ex. with two classical problems : LEADERELECTION, SPANNINGTREE



Ex. with two classical problems : LEADERELECTION, SPANNINGTREE



Ex. with two classical problems : LEADERELECTION, SPANNINGTREE



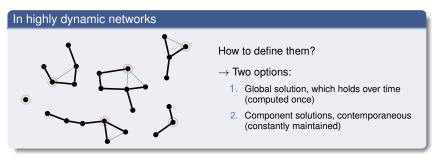
4

Ex. with two classical problems : LEADERELECTION, SPANNINGTREE



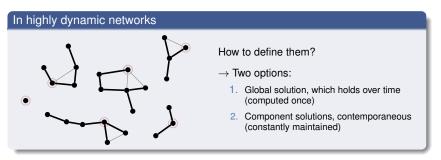
 \rightarrow This line of work : Maintaining a forest of spanning trees (and a leader, incidently).

Ex. with two classical problems : LEADERELECTION, SPANNINGTREE



 \rightarrow This line of work : Maintaining a forest of spanning trees (and a leader, incidently). What assumptions?

Ex. with two classical problems : LEADERELECTION, SPANNINGTREE

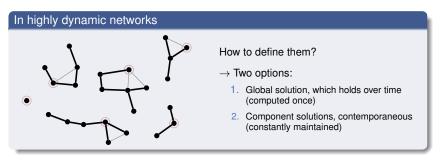


 \rightarrow This line of work : Maintaining a forest of spanning trees (and a leader, incidently). What assumptions?

- No stability period
- No restriction on the rate of events

No recomputation from scratch.
$$\Rightarrow$$
 & Decision should be purely local!

Ex. with two classical problems : LEADERELECTION, SPANNINGTREE



 \rightarrow This line of work : Maintaining a forest of spanning trees (and a leader, incidently). What assumptions?

- No stability period
- No restriction on the rate of events

What can we still expect in such a setting?

 \Longrightarrow No recomputation from scratch. \Longrightarrow & Decision should be purely local!

Related works (1) – Weak dynamism

Occasional failures (self-stabilization):

Ex: [Burman and Kutten, 2007] ... [Gërtner, 2013] (Survey)

- Minimum spanning tree
- When the graph changes:
 - \rightarrow Reset and recompute everything from scratch

Related works (1) – Weak dynamism

Occasional failures (self-stabilization):

Ex: [Burman and Kutten, 2007] ... [Gërtner, 2013] (Survey)

- Minimum spanning tree
- When the graph changes:
 - \rightarrow Reset and recompute everything from scratch

- A bit more "dynamic": [Abbas et al. 2003], [Baala et al. 2006] (based on coalescing random walks)
 - Non-minimum (rooted) spanning tree
 - When the tree is impacted by a graph change
 - \implies Reset and recomputes the *orphan* part
 - If there is no token left:
 - \implies Regenerates one based on expected cover time ($O(n^3) + n$ is known)

Related works (2) – Mild dynamism

• Mild dynamism:

[Bernard et al. 2013]

- Same coalescing process as before, but then..
- ..the tree keeps being redefined continuously as the token(s) move
 Tolerates slow dynamics
- If there is no token left:

 \implies regenerates one based on expected cover time ($O(n^3) + n$ is known)

Related works (2) – Mild dynamism

Mild dynamism:

[Bernard et al. 2013]

- Same coalescing process as before, but then..
- ..the tree keeps being redefined continuously as the token(s) move
 Tolerates slow dynamics
- If there is no token left:

 \implies regenerates one based on expected cover time ($O(n^3) + n$ is known)

- Strong(er) dynamicity:
 - Minimum spanning tree
 - When the graph changes:
 - \rightarrow updates the previous solution in O(n) time & message
 - If high rate of change:
 - \implies events are queued and processed one after another
 - $(\rightarrow$ Implicitely assumes that strong dynamism is episodical.)

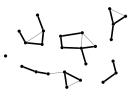
[Awerbuch et al. 2008]

6

Related works (3) - Unrestricted dynamism

The spanning forest principle [C. et al. 2013]

- Non-minimum (rooted) spanning trees
- Purely localized, instant decision
- No restriction on the dynamics



Related works (3) – Unrestricted dynamism

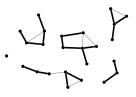
The spanning forest principle [C. et al. 2013]

- Non-minimum (rooted) spanning trees
- Purely localized, instant decision
- No restriction on the dynamics
- → Coarse-grain model (atomic pairwise interaction) inspired from graph relabellings systems [Litovsky et al., 1999] (~ population protocols)

Related works (3) – Unrestricted dynamism

The spanning forest principle [C. et al. 2013]

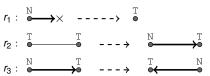
- Non-minimum (rooted) spanning trees
- Purely localized, instant decision
- No restriction on the dynamics
- → Coarse-grain model (atomic pairwise interaction) inspired from graph relabellings systems [Litovsky et al., 1999] (~ population protocols)



Can be seen as a general (i.e. abstract) principle, explained next.

[C. et al. 2013]

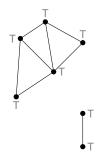
3 rules :



initial states:

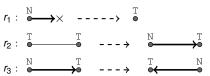
I for every node,

- T: a token is on this node
- N: no token is on this node
- \rightarrow : relation from child to parent



[C. et al. 2013]

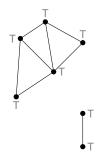
3 rules :



initial states:

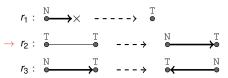
I for every node,

- T: a token is on this node
- N: no token is on this node
- \rightarrow : relation from child to parent



[C. et al. 2013]

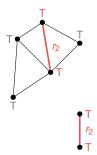
3 rules :



initial states:

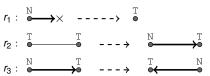
I for every node,

- T: a token is on this node
- N: no token is on this node
- \rightarrow : relation from child to parent



[C. et al. 2013]

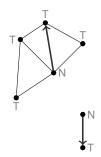
3 rules :



initial states:

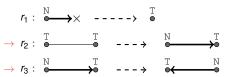
I for every node,

- T: a token is on this node
- N: no token is on this node
- \rightarrow : relation from child to parent



[C. et al. 2013]

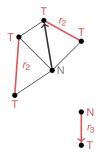
3 rules :



initial states:

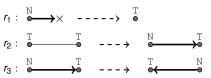
I for every node,

- T: a token is on this node
- N: no token is on this node
- \rightarrow : relation from child to parent



[C. et al. 2013]

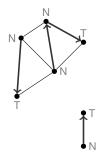
3 rules :



initial states:

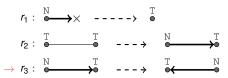
I for every node,

- T: a token is on this node
- N: no token is on this node
- \rightarrow : relation from child to parent



[C. et al. 2013]

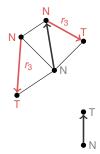
3 rules :



initial states:

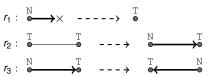
I for every node,

- T: a token is on this node
- N: no token is on this node
- \rightarrow : relation from child to parent



[C. et al. 2013]

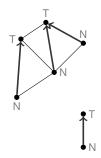
3 rules :



initial states:

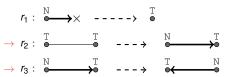
I for every node,

- T: a token is on this node
- N: no token is on this node
- \rightarrow : relation from child to parent



[C. et al. 2013]

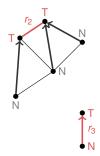
3 rules :



initial states:

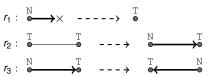
I for every node,

- T: a token is on this node
- N: no token is on this node
- \rightarrow : relation from child to parent



[C. et al. 2013]

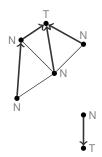
3 rules :



initial states:

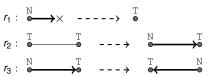
I for every node,

- T: a token is on this node
- N: no token is on this node
- \rightarrow : relation from child to parent



[C. et al. 2013]

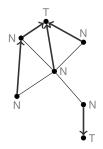
3 rules :



initial states:

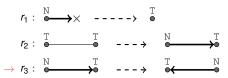
T for every node,

- T: a token is on this node
- N: no token is on this node
- \rightarrow : relation from child to parent



[C. et al. 2013]

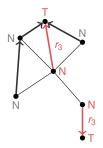
3 rules :



initial states:

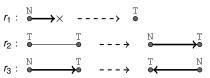
I for every node,

- T: a token is on this node
- N: no token is on this node
- \rightarrow : relation from child to parent



[C. et al. 2013]

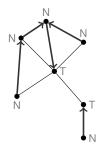
3 rules :



initial states:

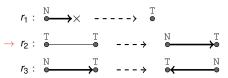
I for every node,

- T: a token is on this node
- N: no token is on this node
- \rightarrow : relation from child to parent



[C. et al. 2013]

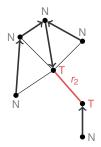
3 rules :



initial states:

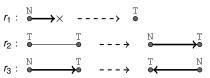
I for every node,

- T: a token is on this node
- N: no token is on this node
- \rightarrow : relation from child to parent



[C. et al. 2013]

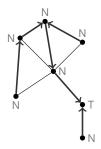
3 rules :



initial states:

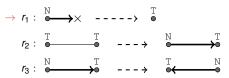
I for every node,

- T: a token is on this node
- N: no token is on this node
- \rightarrow : relation from child to parent



[C. et al. 2013]

3 rules :



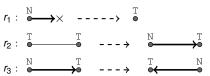
initial states:

I for every node,

- T: a token is on this node
- N: no token is on this node
- \rightarrow : relation from child to parent

[C. et al. 2013]

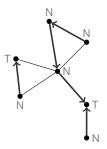
3 rules :



initial states:

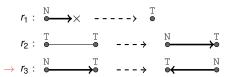
I for every node,

- T: a token is on this node
- N: no token is on this node
- \rightarrow : relation from child to parent



[C. et al. 2013]

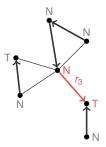
3 rules :



initial states:

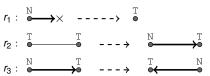
T for every node,

- T: a token is on this node
- N: no token is on this node
- \rightarrow : relation from child to parent



[C. et al. 2013]

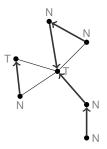
3 rules :



initial states:

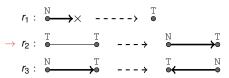
I for every node,

- T: a token is on this node
- N: no token is on this node
- \rightarrow : relation from child to parent



[C. et al. 2013]

3 rules :



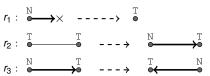
initial states:

I for every node,

- T: a token is on this node
- N: no token is on this node
- \rightarrow : relation from child to parent

[C. et al. 2013]

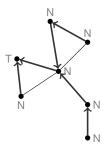
3 rules :



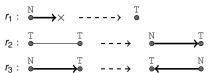
initial states:

I for every node,

- T: a token is on this node
- N: no token is on this node
- \rightarrow : relation from child to parent



[C. et al. 2013]

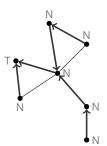


initial states:

I for every node,

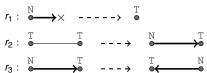
meaning of the states:

- T: a token is on this node
- N: no token is on this node
- \rightarrow : relation from child to parent



Properties that hold permanently:

[C. et al. 2013]



initial states:

I for every node,

meaning of the states:

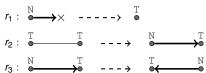
- T: a token is on this node
- N: no token is on this node
- \rightarrow : relation from child to parent

Properties that hold permanently:

- Each node belongs to exactly one tree
- There is exactly one token per tree
- There are no cycles

9

[C. et al. 2013]



initial states:

I for every node,

meaning of the states:

- T: a token is on this node
- N: no token is on this node
- \rightarrow : relation from child to parent

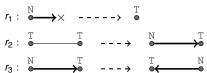
Properties that hold permanently:

- Each node belongs to exactly one tree
- There is exactly one token per tree
- There are no cycles

How about performance?

- Convergence is not expected
- → metric of interest: # trees per components (in normal regime)

[C. et al. 2013]



initial states:

I for every node,

meaning of the states:

- T: a token is on this node
- N: no token is on this node
- \rightarrow : relation from child to parent

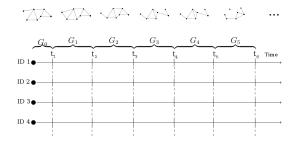
Properties that hold permanently:

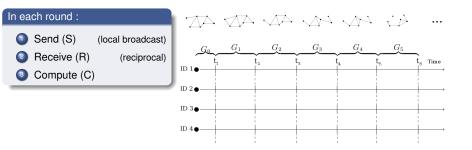
- Each node belongs to exactly one tree
- There is exactly one token per tree
- There are no cycles

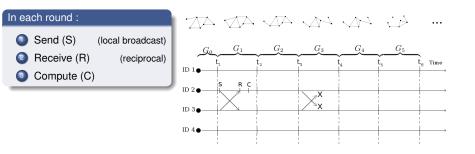
How about performance?

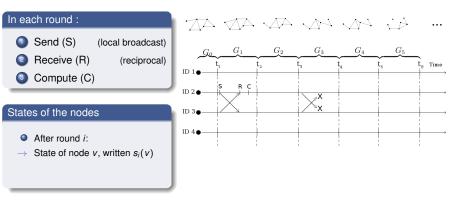
- Convergence is not expected
- metric of interest: # trees per components (in normal regime)

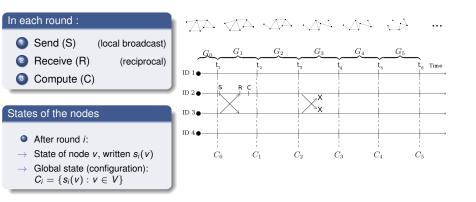
OK, now the message passing version...

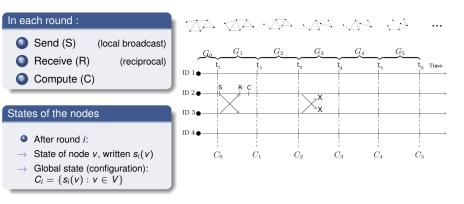




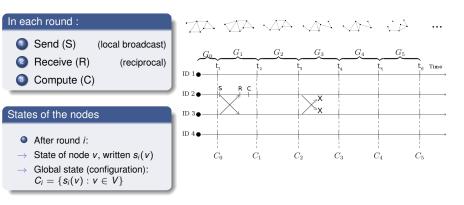








+assumption of unique identifiers



+assumption of unique identifiers

Properties that used to hold permanently in the coarse-grain model... ... become properties that hold at the end of each round (i.e. in the C_is).

Local state of a node

- parent
- Children
- status (T|N) has token or not
- score (discussed later)
- neighbors
 in the current round
- contender neighbor to be selected as parent

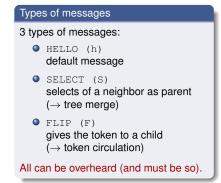
< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Loca	l state of a node	(initial value)
٩	parent	(上)
٩	children	(Ø)
٩	status (T N) has token or not	(T)
٩	score (discussed later)	(ID)
٩	neighbors in the current round	(Ø)
٩	contender neighbor to be selecte	(\perp) ed as parent

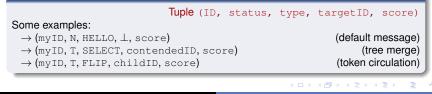
Loca	l state of a node	(initial value)
٩	parent	(上)
٩	children	(Ø)
٩	status (T N) has token or not	(T)
٩	score (discussed later)	(ID)
٩	neighbors in the current round	(Ø)
٩	contender neighbor to be select	(\perp) ed as parent

Types of messages		
3 types of messages:		
 HELLO (h) default message 		
 SELECT (S) selects of a neighbor as parent (→ tree merge) 		
 FLIP (F) gives the token to a child (→ token circulation) 		
All can be overheard (and must be so).		

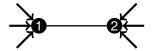
Loca	l state of a node	(initial value)
٩	parent	(上)
٩	children	(Ø)
٩	status (T N) has token or not	(T)
٩	score (discussed later)	(ID)
٩	neighbors in the current round	(Ø)
٩	contender neighbor to be select	(\perp) ed as parent



Structure of a message



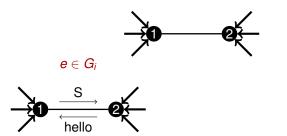
Merging of two trees (SELECT message). Survive of the fittest (largest). 2 cases :



 C_{i-1}

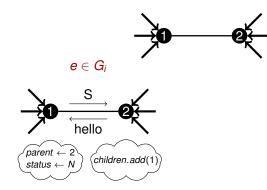
Merging of two trees (SELECT message). Survive of the fittest (largest). 2 cases :

 C_{i-1}

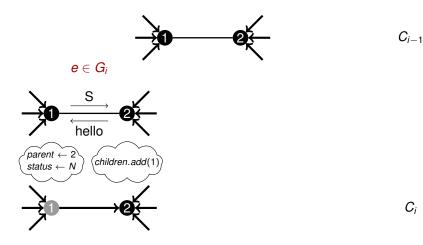


Merging of two trees (SELECT message). Survive of the fittest (largest). 2 cases :

 C_{i-1}

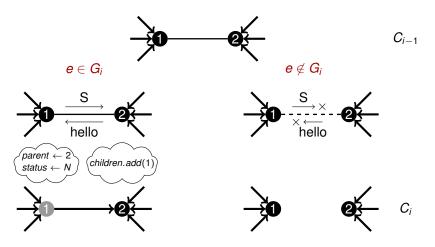


Merging of two trees (SELECT message). Survive of the fittest (largest). 2 cases :

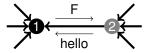


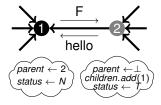
 C_i

Merging of two trees (SELECT message). Survive of the fittest (largest). 2 cases :

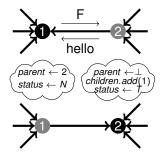


 C_{i-1}



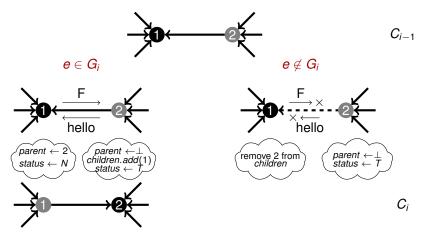


Circulation of the token, within the tree (FLIP messages). The child is taken at random. 2 cases:



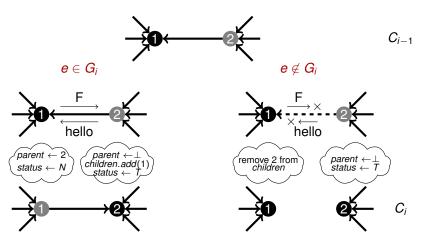
 C_{i-1}

 C_i



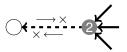
Local operations (2): Token circulation

Circulation of the token, within the tree (FLIP messages). The child is taken at random. 2 cases:



Local operations (3): Token regeneration

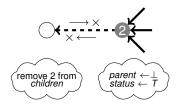
Local regeneration of token.



A (10) A (10)

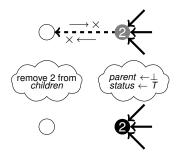
Local operations (3): Token regeneration

Local regeneration of token.



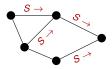
Local operations (3): Token regeneration

Local regeneration of token.



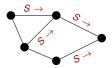
- A node can be involved in several operations at the same time
 - \Rightarrow arbitrary long chain of selections

- A node can be involved in several operations at the same time
 - \Rightarrow arbitrary long chain of selections



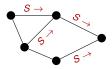
Loss of atomicity:

- A node can be involved in several operations at the same time
 - \Rightarrow arbitrary long chain of selections



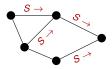
Initial merging process is faster, but

- A node can be involved in several operations at the same time
 - \Rightarrow arbitrary long chain of selections

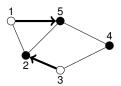


- Initial merging process is faster, but
- tricky configurations :

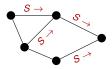
- A node can be involved in several operations at the same time
 - \Rightarrow arbitrary long chain of selections



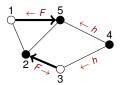
- Initial merging process is faster, but
- tricky configurations :



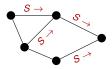
- A node can be involved in several operations at the same time
 - \Rightarrow arbitrary long chain of selections



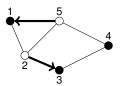
- Initial merging process is faster, but
- tricky configurations :



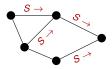
- A node can be involved in several operations at the same time
 - \Rightarrow arbitrary long chain of selections



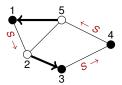
- Initial merging process is faster, but
- tricky configurations :



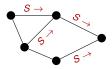
- A node can be involved in several operations at the same time
 - \Rightarrow arbitrary long chain of selections



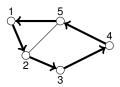
- Initial merging process is faster, but
- tricky configurations :



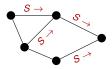
- A node can be involved in several operations at the same time
 - \Rightarrow arbitrary long chain of selections



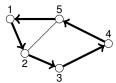
- Initial merging process is faster, but
- tricky configurations :

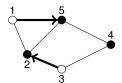


- A node can be involved in several operations at the same time
 - \Rightarrow arbitrary long chain of selections

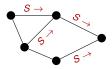


- Initial merging process is faster, but
- tricky configurations :

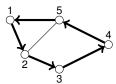


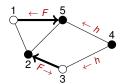


- A node can be involved in several operations at the same time
 - \Rightarrow arbitrary long chain of selections

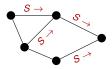


- Initial merging process is faster, but
- tricky configurations :

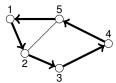


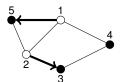


- A node can be involved in several operations at the same time
 - \Rightarrow arbitrary long chain of selections

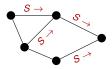


- Initial merging process is faster, but
- tricky configurations :

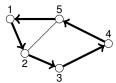


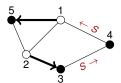


- A node can be involved in several operations at the same time
 - \Rightarrow arbitrary long chain of selections

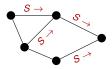


- Initial merging process is faster, but
- tricky configurations :

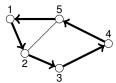


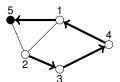


- A node can be involved in several operations at the same time
 - \Rightarrow arbitrary long chain of selections



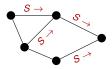
- Initial merging process is faster, but
- tricky configurations :



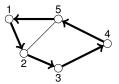


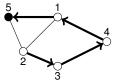
Loss of atomicity:

- A node can be involved in several operations at the same time
 - \Rightarrow arbitrary long chain of selections

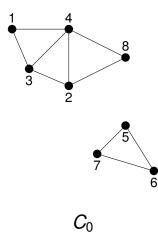


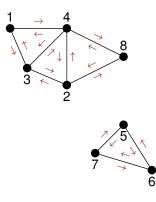
- Initial merging process is faster, but
- tricky configurations :



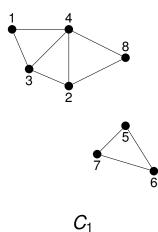


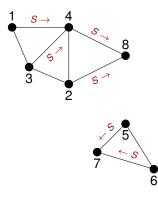
Lemma: scores remain a permutation of IDs !



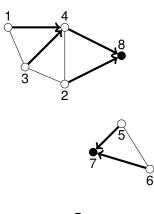


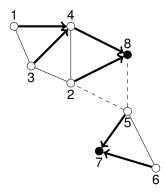
round₁

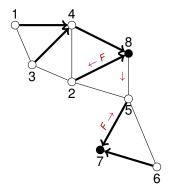




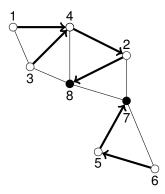
round₂

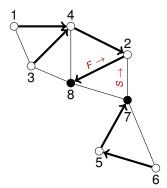




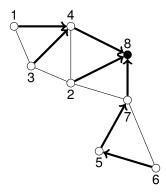


round₃



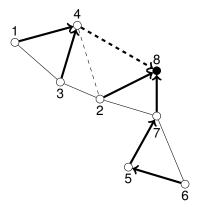


round₄



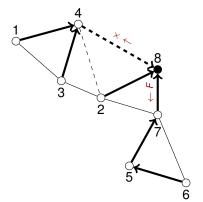
 C_4

25

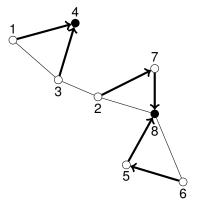


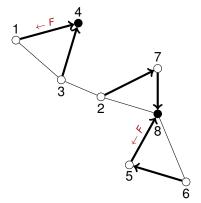
 C_4

26

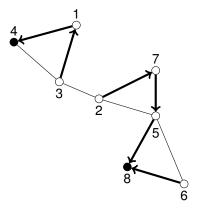


round₅





round₆



Intermediate Lemmas

Consistency and state equivalences

(at the end of each round)

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- *u.parent* $= \bot \iff u.state = T$
- $u.parent = v \iff u \in v.children$

Intermediate Lemmas

Consistency and state equivalences

(at the end of each round)

(helping definitions)

- *u.parent* $= \perp \iff u.state = T$
- $u.parent = v \iff u \in v.children$

Pseudo trees

- Pseudo tree : graph in which the outdegree is at most 1
- Pseudo forest : every node belongs to a pseudo tree
- Correct tree : no cycle & exactly one root
- Correct forest : every node belongs to a correct tree

Intermediate Lemmas

Consistency and state equivalences

(at the end of each round)

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

(helping definitions)

- *u.parent* $= \perp \iff u.state = T$
- $u.parent = v \iff u \in v.children$

Pseudo trees

- Pseudo tree : graph in which the outdegree is at most 1
- Pseudo forest : every node belongs to a pseudo tree
- Correct tree : no cycle & exactly one root
- Correct forest : every node belongs to a correct tree

Lemmas on pseudo trees and pseudo forests

- In all configurations, the parent relation defines a pseudo forest
- \rightarrow It is sufficient to prove that a root exists in the pseudo tree of every node after each round (node validity)

Node validity

(recursive definition)

A node is valid in C_i if "at least one" token can be found in its pseudo-tree.

That is, if either u.status = T or u.parent is itself a valid node.

Node validity

(recursive definition)

A node is valid in C_i if "at least one" token can be found in its pseudo-tree.

That is, if either u.status = T or u.parent is itself a valid node.

Conclusion of the proof(by induction on the number of rounds)• In C_0 , all nodes are valid.If all nodes are valid in C_i , then so are they in C_{i+1} (main Theorem) \rightarrow In each C_i every node belongs to a correct tree.And in particular:• Each node belongs to exactly one tree.• There is exactly one token per tree.

• There can be no cycles.

See long version for details (CoRR, abs/1410.4373)

We tested the algorithm on a real data-set: Infocom06.

(This trace includes Bluetooth sightings by groups of users carrying small devices – iMotes – for four days at the IEEE Infocom 2006 Conference.)

Summary of the setting:

- 78 people equipped with bluetooth devices.
- More than 190 000 contacts between the devices.
- The detection of the new connections is done every seconds.
- The detection of the disconnections is done only every minute.
- \rightarrow We used the JBotSim library (distributed algorithms in dynamic networks)

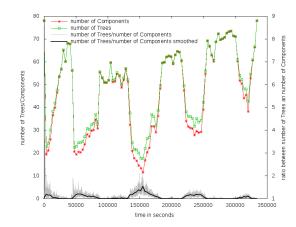
Results (1): Assuming 1 round per seconds

Number of trees per component:

Mean value: 1.08

Maximal value: 8.58

The time spent with one tree per component: 32.68%



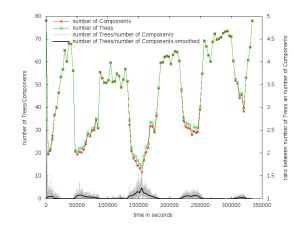
Results (2): Assuming 10 rounds per seconds

Number of trees per component:

Mean value: 1.03

Maximal value: 2.77

The time spent with one tree per component: 46.89%



Conclusion and Future works

Conclusion

- Spanning forest principle in unrestricted dynamics
- Correctness is proved and behavior validated experimentally
- From graph relabelings to (synchronous) message-passing

Future works

- Complexity analysis remains open.
- → what model of dynamics to use?
 (e.g. edge-markovian evolving graphs)
- Less synchronism?

Thank you !