
1/6

Rappels de complexité algorithmique

Arnaud Casteigts

Bachelor en sciences informatiques,
Université de Genève

2/6

Complexité algorithmique ?

Ressources nécessaires pour résoudre un problème.

Quel type de ressources ?

▶ Temps (nombre d’opérations)

▶ Espace (quantité de mémoire)

▶ . . .

Les valeurs exactes dépendent du modèle de machine considéré. On en parlera peu.

Point de vue asymptotique

▶ Croissance de ces quantités en fonction de la taille n de l’entrée, quand n → ∞
▶ Notations O(·),Ω(·),Θ(·) (ignore les facteurs constants et les termes dominés)

Intuition ≤ ≥ = Ex : 3n2 + 5n + 4 = Θ(n2)

▶ Quelques adjectifs (ici pour O(·)) :

Constant O(1)

Logarithmique O(log n)

Linéaire O(n)

Quasi-linéaire O(n log n)

Quadratique O(n2)

Exponentiel O(2n)

Factoriel O(n!)

Polynomial O(nc) = nO(1) ≈ rapide

En général, on s’intéresse au pire cas, ou parfois au cas moyen (p.ex. sur des instances aléatoires).
Dans les deux cas, on se contentera souvent dans ce cours d’utiliser la notation O().

3/6

Exercice 1 : ordres de grandeur

True False

4n2 − 5n + 1 = O(n2)

4n2 − 5n + 1 = Θ(n2)

n log n = Ω(n)

n log n = O(n2)

n log n = Θ() ? N/A N/A

n log n2 = Θ() ? N/A N/A

500 = Θ(1)

17n2 + 3 = O(nΘ(1))
√
n = O(n)

n! = Ω(2n)

4/6

Exercice 2 : complexité de quelques problèmes

Quelle est la complexité en temps de ces problèmes (dans le pire cas) ?

1. Décider si une liste de taille n contient un élément donné ? O(n)

2. Décider si une liste triée de taille n contient un élément donné ? O(log n)

3. Vérifier si une liste est triée ? O(n)

4. Trier une liste ? O(n log n)

5. Décider si une liste contient des doublons ? näıf : O(n2), mieux : O(n log n)

6. Parcourir la matrice d’adjacence d’un graphe à n sommets ? O(n2)

7. Énumérer tous les sous-ensembles d’un ensemble de taille n ? O(2n)

8. Idem, en énumérant seulement les sous-ensembles de taille 3 ? O(n3)

9. Énumérer tous les ordres de visite possibles entre n villes ? O(n!)

10. Décider si un graphe à n sommets contient une clique de taille 17 O(n17)

11. Décider si un graphe donné est 3-colorable ? näıf : O(3n), mieux : O(1.3289n)

5/6

Types de problèmes

▶ Décision : {0, 1}∗ → {0, 1}
Ex : est-ce que la photo représente un chat ?
Ex : existe-t-il un chemin de A vers B ?

▶ Recherche : {0, 1}∗ → {0, 1}∗

Ex : trouver un chat
Ex : trouver un chemin quelconque de A vers B

▶ Dénombrement (comptage) : {0, 1}∗ → N
Ex : combien y-a-t’il de chats ?
Ex : combien y-a-t’il de chemins de A vers B

▶ Optimisation : {0, 1}∗ → {0, 1}∗

Ex : trouver le chat le plus mignon.
Ex : trouver le plus court chemin de A vers B

6/6

Principales classes de problèmes (de décision)

▶ P : problèmes résolubles en temps polynomial.

▶ NP : problèmes vérifiables en temps polynomial.
→ Si la réponse est OUI, il existe une preuve de cela qui peut être vérifiée rapidement

Exemple : 3-coloring

Un graphe donné peut-il être
colorié avec 3 couleurs ?

→ difficile à résoudre
→ mais facile à vérifier

▶ NP-difficile (NP-hard) : au moins aussi difficile à résoudre que tout problème de NP

▶ NP-complet : à la fois NP-difficile et dans NP

Exemples : 3-coloring, Clique, Tsp, Sat, Set Cover. . .
et de nombreux autres dont on reparlera.

La grande question : est-ce que P = NP ? (on n’en parlera pas ici)

Dans ce cours, on gardera en tête qu’on ne sait pas résoudre un problème NP-complet rapidement
et dans tous les cas. On le fera quand même, lentement ou dans des cas spécifiques.

On s’intéressera aussi à de nombreux problèmes de faible complexité.

