Rappels de complexité algorithmique

Arnaud Casteigts

Bachelor en sciences informatiques,
Université de Geneve

Complexité algorithmique ?
Ressources nécessaires pour résoudre un probleme.
Quel type de ressources ?
» Temps (nombre d'opérations)

P Espace (quantité de mémoire)
>

Les valeurs exactes dépendent du modele de machine considéré. On en parlera peu.

Point de vue asymptotique
P Croissance de ces quantités en fonction de la taille n de I'entrée, quand n — co
P Notations O(-), Q(+), ©(-) (ignore les facteurs constants et les termes dominés)
Intuition < > = Ex : 3n* +5n+ 4 = ©(n?)

P Quelques adjectifs (ici pour O(+)) :

Constant 0(1) Quadratique O(n?)

Logarithmique ~ O(log n) Exponentiel 0(2")

Linéaire O(n) Factoriel Oo(n!

Quasi-linéaire O(nlog n) Polynomial 0o(n°) = n°W ~ rapide

En général, on s'intéresse au pire cas, ou parfois au cas moyen (p.ex. sur des instances aléatoires).
Dans les deux cas, on se contentera souvent dans ce cours d'utiliser la notation O().

Exercice 1 : ordres de grandeur

True | False
4n* —5n+1 = O(n?) v’
4n* —5n+1 = 0(n?) v’
nlog n = Q(n) v’
nlog n = O(n?) v’
nlogn = ©()? N/A | N/A
nlog n® = ©()? || N/A | N/A
500 = ©(1) v’
170 4+ 3 = 0(n®W) v’
V/n=0(n) v’
nl = Q(2") v’

Exercice 2 : complexité de quelques problemes

Quelle est la complexité en temps de ces problemes (dans le pire cas) ?

1. Décider si une liste de taille n contient un élément donné? O(n)
2. Décider si une liste triée de taille n contient un élément donné? O(log n)
3. Vérifier si une liste est triée? O(n)
4. Trier une liste? O(nlog n)
5. Décider si une liste contient des doublons? naif : O(n?), mieux : O(nlog n)
6. Parcourir la matrice d’'adjacence d'un graphe a n sommets? o(n?)
7. Enumérer tous les sous-ensembles d’un ensemble de taille n? 0(2")
8. Idem, en énumérant seulement les sous-ensembles de taille 37 o(n®)
9. Enumérer tous les ordres de visite possibles entre n villes ? O(n!)
10. Décider si un graphe a n sommets contient une clique de taille 17 o(n'")
11. Décider si un graphe donné est 3-colorable ? naif : O(3"), mieux : O(1.3289")

Types de problémes

» Décision : {0,1}" — {0,1}
Ex : est-ce que la photo représente un chat?
Ex : existe-t-il un chemin de A vers B?

» Recherche : {0,1}* — {0,1}*
Ex : trouver un chat
Ex : trouver un chemin quelconque de A vers B

» Dénombrement (comptage) : {0,1}* — N
Ex : combien y-a-t'il de chats?
Ex : combien y-a-t'il de chemins de A vers B

» Optimisation : {0,1}* — {0,1}"
Ex : trouver le chat le plus mignon.
Ex : trouver le plus court chemin de A vers B

Principales classes de problemes (de décision)

» P : problémes résolubles en temps polynomial.
> NP : problémes vérifiables en temps polynomial.

— Si la réponse est OUI, il existe une preuve de cela qui peut &tre vérifiée rapidement

Exemple : 3-COLORING

|

\ |
Un graphe donné peut-il étre NP-Difficile /
colorié avec 3 couleurs? \

— difficile a résoudre

— mais facile a vérifier 3 /@'@'\
[®} [®}

NG/

\'\/// o ©

Prover Verifier

» NP-difficile (NP-hard) : au moins aussi difficile & résoudre que tout probleme de NP

» NP-complet : a la fois NP-difficile et dans NP

Exemples : 3-COLORING, CLIQUE, TsP, SAT, SET COVER. ..
et de nombreux autres dont on reparlera.

La grande question : est-ce que P = NP ? (on n'en parlera pas ici)

Dans ce cours, on gardera en téte qu'on ne sait pas résoudre un probléeme NP-complet rapidement
et dans tous les cas. On le fera quand méme, lentement ou dans des cas spécifiques.

On s'intéressera aussi a de nombreux problemes de faible complexité.

