
Finding Temporal Paths under Waiting Time1

Constraints2

3

4

Arnaud Casteigts5

LaBRI, Université de Bordeaux, CNRS, Bordeaux INP, France6

arnaud.casteigts@labri.fr7

Anne-Sophie Himmel8

Technische Universität Berlin, Algorithmics and Computational Complexity, Berlin, Germany9

anne-sophie.himmel@tu-berlin.de10

Hendrik Molter11

Technische Universität Berlin, Algorithmics and Computational Complexity, Berlin, Germany12

h.molter@tu-berlin.de13

Philipp Zschoche14

Technische Universität Berlin, Algorithmics and Computational Complexity, Berlin, Germany15

zschoche@tu-berlin.de16

Abstract17

Computing a (short) path between two vertices is one of the most fundamental primitives in graph18

algorithmics. In recent years, the study of paths in temporal graphs, that is, graphs where the19

vertex set is fixed but the edge set changes over time, gained more and more attention. A path is20

time-respecting, or temporal, if it uses edges with non-decreasing time stamps.21

We investigate a basic constraint for temporal paths, where the time spent at each vertex must22

not exceed a given duration ∆, referred to as ∆-restless temporal paths. This constraint arises23

naturally in the modeling of real-world processes like packet routing in communication networks and24

infection transmission routes of diseases where recovery confers lasting resistance.25

While finding temporal paths without waiting time restrictions is known to be doable in26

polynomial time, we show that the “restless variant” of this problem becomes computationally hard27

even in very restrictive settings. For example, it is W[1]-hard when parameterized by the feedback28

vertex number or the pathwidth of the underlying graph. The main question thus is whether the29

problem becomes tractable in some natural settings. We explore several natural parameterizations,30

presenting FPT algorithms for three kinds of parameters: (1) output-related parameters (here,31

the maximum length of the path), (2) classical parameters applied to the underlying graph (e.g.,32

feedback edge number), and (3) a new parameter called timed feedback vertex number, which captures33

finer-grained temporal features of the input temporal graph, and which may be of interest beyond34

this work.35

2012 ACM Subject Classification Mathematics of computing → Graph algorithms36

Keywords and phrases Temporal graphs, disease spreading, waiting-time policies, restless temporal37

paths, timed feedback vertex set, NP-hard problems, parameterized algorithms38

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2020.3039

Related Version Full version on arXiv: https://arxiv.org/abs/1909.06437.40

Funding Arnaud Casteigts: Supported by the ANR, project ESTATE (ANR-16-CE25-0009-03).41

Anne-Sophie Himmel: Supported by the DFG, project FPTinP (NI 369/16).42

Hendrik Molter : Supported by the DFG, project MATE (NI 369/17).43

© Arnaud Casteigts, Anne-Sophie Himmel, Hendrik Molter, Philipp Zschoche;
licensed under Creative Commons License CC-BY

31st International Symposium on Algorithms and Computation (ISAAC 2020).
Editors: Yixin Cao, Siu-Wing Cheng, and Minming Li; Article No. 30; pp. 30:1–30:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-7819-7013
mailto:arnaud.casteigts@labri.fr
https://orcid.org/0000-0001-7905-7904
mailto:anne-sophie.himmel@tu-berlin.de
https://orcid.org/0000-0002-4590-798X
mailto:h.molter@tu-berlin.de
https://orcid.org/0000-0001-9846-0600
mailto:zschoche@tu-berlin.de
https://doi.org/10.4230/LIPIcs.ISAAC.2020.30
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

30:2 Finding Temporal Paths under Waiting Time Constraints

1 Introduction44

A highly successful strategy to control (or eliminate) outbreaks of infectious diseases is contact45

tracing [18]—whenever an individual is diagnosed positively, every person who is possibly46

infected by this individual is put into quarantine. However, the viral spread can be too fast47

to be traced manually, e.g., if the disease is transmittable in a pre-symptomatic (or asymp-48

tomatic) stage, then it seems likely that an individual already caused infection chains when49

diagnosed positively. Hence, large-scale digital systems are recommended which use physical50

proximity networks based on location and contact data [20]—this allows fast and precise51

contact tracing while avoiding the harmful effect of mass quarantines to society [20]. Physical52

proximity networks can be understood as temporal graphs1 [13, 27, 29, 35, 39], that is, graphs53

where the vertex set (individuals) remains static but the edge set (physical contacts) may54

change over time. In this paper, we extend the literature on reachability in temporal graphs55

[4, 5, 10, 11, 26, 33, 38, 47] by a computational complexity analysis of an important variation56

of one of the most fundamental combinational problems arising in the above mentioned57

scenario: given a temporal graph and two individuals s and z, is a chain of infection from s58

to z possible, that is, is there a temporal path from s to z? In particular, we use a reachability59

concept that captures the standard 3-state SIR-model (Susceptible-Infected-Recovered), a60

canonical spreading model for diseases where recovery confers lasting resistance [6, 34, 41].61

In temporal graphs, the basic concepts of paths and reachability are defined in a time-62

respecting way [33]: a (strict) temporal path, also called “journey”, is a path that uses edges63

with non-decreasing (increasing) time steps. To represent infection chains in the SIR-model,64

we restrict the time of “waiting” or “pausing” at each intermediate vertex to a prescribed65

duration2. We call these paths restless temporal paths. They model infection transmission66

routes of diseases that grant immunity upon recovery [28]: An infected individual can transmit67

the disease until it is recovered (reflected by bounded waiting time) and it cannot be infected a68

second time afterwards since then it is immune (reflected by considering path instead of walk:69

every vertex can only be visited at most once). Another natural example of restless temporal70

paths is delay-tolerant networking among mobile entities, where the routing of a packet is71

performed over time and space by storing the packet for a limited time at intermediate nodes.72

In the following we give an example to informally describe our problem setting3. In73

Figure 1 we are given the depicted temporal graph, vertices s and z, and the time bound74

∆ = 2. We are asked to decide whether there is a restless temporal path from s to z, that75

is, a path which visits each vertex at most once and pauses at most ∆ units of time between76

consecutive hops. Here, (s, d, b, z) is a feasible solution, but (s, b, z) is not because the waiting77

time at b exceeds ∆. The walk (s, b, c, d, b, z) is not a valid solution because it visits vertex b78

twice. Finally, (s, a, c, d, b, z) is also a feasible solution.79

Related work. Several types of waiting time constraints have been considered in the80

temporal graph literature. An empirical study by Pan and Saramäki [43] based on phone81

calls datasets observed a threshold in the correlation between the duration of pauses between82

calls and the ratio of the network reached over a spreading process. Casteigts et al. [12]83

showed a dramatic impact of waiting time constraints to the expressivity of a temporal84

graph, when considering such a graph as an automaton and temporal paths as words. In85

the context of temporal flows, Akrida et al. [2] considered a concept of “vertex buffers”,86

1 Also known as time-varying graphs, evolving graphs, or link streams.
2 Note that the latent period of an infectious disease can be modeled by subdividing time edges.
3 We refer to Section 2 for a formal definition.

A. Casteigts, A.-S. Himmel, H. Molter, P. Zschoche 30:3

s

a

b

cd

z

2

1

4

22
4

4
6

2

Figure 1 Example of a temporal graph whose edges are labeled with time stamps. Bold edges
depict a 2-restless temporal (s, z)-path. (In general, multiple time stamps per edge are possible.)

which however pertains to the quantity of information that a vertex can store, rather than a87

duration. Enright et al. [19] considered deletion problems for reducing temporal connectivity.88

Closer related to our work, Himmel et al. [26] studied a variant of restless temporal paths89

where several visits to the same vertex are allowed, i.e., restless temporal walks. They showed,90

among other things, that such walks can be computed in polynomial time.91

Many path-related problems have been studied in the temporal setting and the nature92

of temporal paths significantly increase the computational complexity of many of them93

(compared to their static counterparts). In the temporal setting, reachability is not an94

equivalence relation among vertices which makes many problems more complicated. For95

example, finding a maximum temporally connected component is NP-hard [10]. We further96

have that in a temporal graph, spanning trees may not exist. In fact, even the existence97

of sparse spanners (i.e., subgraphs with o(n2)-many edges ensuring temporal connectiv-98

ity) is not guaranteed [5], unless the underlying graph is complete [14], and computing a99

minimum-cardinality spanner is APX-hard [3, 38]. Yet another example is the problem100

of deciding whether there are k disjoint temporal paths between two given vertices. In a101

seminal article, Kempe et al. [33] showed that this problem, whose classical analogue is102

(again) polynomial-time solvable, becomes NP-hard. They further investigated the related103

problem of finding temporal separators, which is also NP-hard [21, 33, 48].104

Our contributions. We introduce the problem Restless Temporal Path. To get a finer105

understanding of the computational complexity of this problem, we turn our attention to its106

parametrized complexity. In stark contrast to both restless temporal walks and non-restless107

temporal paths, we show that this problem is NP-hard and W[1]-hard when parameterized108

by the (vertex deletion) distance to disjoint paths of the underlying graph4 (Section 3). This109

is tight in the sense that the problem can be solved in polynomial time when the underlying110

graph is a forest. On the positive side, we explore parameters of three different natures. First,111

we show that the problem is fixed-parameter tractable (FPT) for the number of hops of the112

temporal path (Section 4). We further show that the problem is FPT when parameterized by113

the feedback edge number of the underlying graph (Section 5). Additionally, we show that the114

previously mentioned parameterizations that allow for FPT results, the problem presumably115

does not admit a polynomial kernel. Our results provide a fine-grained characterization of116

the tractability boundary of the computation of restless temporal paths for parameters of the117

underlying graph, as illustrated by the vicinity of the corresponding parameters in Figure 2.118

Then, going beyond parameters related to the output and to the underlying graph, we define119

a novel temporal version of the classic feedback vertex number called timed feedback vertex120

number. Intuitively, it counts the number of vertex appearances that have to be removed from121

4 The underlying graph of a temporal graph is a static graph that contains every edge that appears at
least once in the temporal graph. A formal definition is given in Section 2.

ISAAC 2020

30:4 Finding Temporal Paths under Waiting Time Constraints

para-NP-hard: W[1]-hard: FPT:

Max.
Degree

Distance to
Clique

Distance to
Disjoint Paths

Feedback Vertex No. Pathwidth

Vertex Cover No.

Treedepth

Feedback Edge No.

...
...

...
...

...

...

...

Figure 2 Relevant part of the hierarchy among classic parameters of the underlying graph
(cf. Sorge et al. [44]) for our results for Restless Temporal Path.

the temporal graph such that its underlying graph becomes cycle-free. We show that finding122

restless temporal paths is FPT when parameterized by this parameter (Section 6). We believe123

that the latter is an interesting turn on events compared to our hardness results. Due to space124

constraints, most proofs (marked with F) are deferred to the related full version on arXiv.5125

2 Preliminaries126

Here, we formally introduce the most important concepts related to temporal graphs and127

paths, and give the formal problem definition of (Short) Restless Temporal (s, z)-Path.128

An interval is an ordered set [a, b] := {n | n ∈ N ∧ a ≤ n ≤ b}, where a, b ∈ N. Further,129

let [a] := [1, a]. We use standard notation and terminology from (static) graph theory [16]130

and parameterized complexity theory [15, 17].131

Temporal graphs. An (undirected, simple) temporal graph is a tuple G = (V, E1, . . . , E`)132

(or G = (V, (Ei)i∈[`]) for short), with Ei ⊆
(

V
2
)
for all i ∈ [`]. We call `(G) := ` the lifetime of133

G. As with static graphs, we assume all temporal graphs in this paper to be undirected and134

simple. We call the graph Gi(G) = (V, Ei(G)) the layer i of G where Ei(G) := Ei. If Ei = ∅,135

then Gi is a trivial layer. We call layers Gi and Gi+1 consecutive. We call i a time step. If136

an edge e is present at time i, that is, e ∈ Ei, we say that e has time stamp i. We further137

denote V (G) := V . The underlying graph G↓(G) of G is defined as G↓(G) := (V,
⋃`(G)

i=1 Ei(G)).138

To improve readability, we remove (G) from the introduced notations whenever it is clear139

from the context. For every v ∈ V and every time step t ∈ [`], we denote the appearance of140

vertex v at time t by the pair (v, t). For every t ∈ [`] and every e ∈ Et we call the pair (e, t)141

a time edge. For a time edge ({v, w}, t) we call the vertex appearances (v, t) and (w, t) its142

endpoints. We assume that the size (for example when referring to input sizes in running143

time analyzes) of G is |G| := |V |+
∑`

i=1 |Ei|, that is, we do not assume that we have compact144

representations of temporal graphs. Finally, we write n for |V |.145

A temporal (s, z)-walk (or temporal walk) of length k from vertex s = v0 to vertex z = vk146

in a temporal graph G = (V, (Ei)i∈[`]) is a sequence P = ((vi−1, vi, ti))k
i=1 of triples that we147

call transitions such that for all i ∈ [k] we have that {vi−1, vi} ∈ Eti and for all i ∈ [k− 1] we148

have that ti ≤ ti+1. Moreover, we call P a temporal (s, z)-path (or temporal path) of length149

k if vi 6= vj for all i, j ∈ {0, . . . , k} with i 6= j. Given a temporal path P = ((vi−1, vi, ti))k
i=1,150

we denote the set of vertices visited by P by V (P) = {v0, v1, . . . , vk}. A restless temporal151

path is not allowed to wait an arbitrary amount of time in a vertex, but has to leave any152

5 https://arxiv.org/abs/1909.06437

https://arxiv.org/abs/1909.06437

A. Casteigts, A.-S. Himmel, H. Molter, P. Zschoche 30:5

vertex it visits within the next ∆ time steps, for some given value of ∆. Analogously to the153

non-restless case, a restless temporal walk may visit a vertex multiple times.154

I Definition 1. A temporal path (walk) P = ((vi−1, vi, ti))k
i=1 is ∆-restless if ti ≤ ti+1 ≤155

ti + ∆, for all i ∈ [k − 1]. We say that P respects the waiting time ∆.156

Having this definition at hand, we are ready to define the main decision problem of this work.157

Restless Temporal Path
Input: A temporal graph G = (V, (Ei)i∈[`]), two distinct vertices s, z ∈ V , and an

integer ∆ ≤ `.
Question: Is there a ∆-restless temporal (s, z)-path in G?

158

Note the waiting time at the source vertex s is ignored. This is without loss of generality,159

since one can add an auxiliary degree one source vertex which is only in the first layer160

adjacent to s. We also consider a variant, where we want to find ∆-restless paths of a certain161

maximum length. In the Short Restless Temporal Path problem, we are additionally162

given a integer k ∈ N and the question is whether there is a ∆-restless temporal path of163

length at most k from s to z in G? Note that Restless Temporal Path is the special case164

of Short Restless Temporal Path for k = |V | − 1 and that both problems are in NP.165

Parameterized complexity. We use standard notation and terminology from parameter-166

ized complexity theory [15] and give here a brief overview of the most important concepts167

that are used in this paper. A parameterized problem is a language L ⊆ Σ∗ × N, where168

Σ is a finite alphabet. We call the second component the parameter of the problem. A169

parameterized problem is fixed-parameter tractable (in the complexity class FPT) if there170

is an algorithm that solves each instance (I, r) in f(r) · |I|O(1) time, for some computable171

function f . A decidable parameterized problem L admits a polynomial kernel if there is a172

polynomial-time algorithm that transforms each instance (I, r) into an instance (I ′, r′) such173

that (I, r) ∈ L if and only if (I ′, r′) ∈ L and |(I ′, r′)| ∈ rO(1). If a parameterized problem174

is hard for the parameterized complexity class W[1], then it is (presumably) not in FPT.175

The complexity classes W[1] is closed under parameterized reductions, which may run in176

FPT-time and additionally set the new parameter to a value that exclusively depends on the177

old parameter.178

Basic observations. If there exists a ∆-restless temporal (s, z)-path P = ((vi−1, vi, ti))k
i=1179

in a temporal graph G, then P ′ =
(
{v0, v1}, . . . , {vk−1, vk}

)
is an (s, z)-path in the underlying180

graph G↓. The other direction does not necessarily hold, but for any (s, z)-path in G↓ we181

can decide in linear time whether this path forms a ∆-restless temporal (s, z)-path in G. As182

a consequence, we can decide Restless Temporal Path in linear time for any temporal183

graph where there exists a unique (s, z)-path in the underlying graph, in particular, if the184

underlying graph is a forest. Some further basic observations are deferred to the full version185

of this paper.186

I Lemma 2. Let G = (V, (Ei)i∈[`]) be a temporal graph where the underlying graph G↓ is187

an (s, z)-path with s, z ∈ V . Then there is an algorithm which computes in O(|G|) time the188

set A = {t | there is a ∆-restless temporal (s, z)-path with arrival time t}.189

Proof. Let V (G↓) = {s = v0, . . . , vn = z} be the vertices and E(G↓) = {e1 = {v0, v1}, . . . , en =190

{vn−1, vn}} be the edges of the underlying path. We further define Li as the set of layers of191

G in which the edge ei ∈ E(G↓) exists, that is, Li := {t | ei ∈ Et}.192

In the following, we construct a dynamic program on the path. We compute for every
vertex vi the table entry T [vi] which is defined as the set of all layers t such that there exists

ISAAC 2020

30:6 Finding Temporal Paths under Waiting Time Constraints

a ∆-restless temporal (s, vi)-path with arrival time t. It holds that T [v1] = L1. Now we can
compute the table entries successively:

T [vi] = {t ∈ Li | there is a t′ ∈ T [vi−1] with 0 ≤ t− t′ ≤ ∆}.

For a table entry T [vi], we check for each layer t ∈ Li whether there exists an ∆-restless193

temporal (s, vi−1)-path that arrives in a layer t′ ∈ T [vi−1] such that we can extend the194

path to the vertex vi in layer t without exceeding the maximum waiting time ∆, that is,195

0 ≤ t − t′ ≤ ∆. It is easy to see that T [vi] contains all layers t such that there exists a196

∆-restless temporal (s, vi)-path with arrival time t. After computing the last entry T [vn], this197

entry contains the set A of all layers t such that there exists a ∆-restless temporal (s, z)-path198

with arrival time t.199

In order to compute a table entries T [vi] in linear time, we will need sorted lists of layers200

for Li and T [vi−1] in ascending order. The sorted lists Li of layers can be computed in O(|G|):201

For every t ∈ [`], we iterate over each ei ∈ Et and add t to Li. Now assume that Li and202

T [vi−1] are lists of layers both in ascending order, then we can compute the table entry T [vi]203

in O(|T [vi−1]|+ |Li|) time.204

Let T [vi] be initially empty. Let t be the first element in Li and let t′ be the first element205

in T [vi−1]:206

1. If t′ > t, then replace t with the next layer in Li and repeat.207

2. If t− t′ ≤, then add t to T [vi], replace t with the next layer in Li and repeat.208

3. Else, replace t′ with the next layer in T [vi−1] and repeat.209

This is done until all elements in one of the lists are processed.210

The resulting list T [vi] is again sorted. Due to this and T [v1](= L1) being sorted, we211

can assume that T [vi−1] is given as a sorted list of layers when computing T [vi]. Hence, we212

can compute each table entry T [vi] efficiently in O(|T [vi−1]|+ |Li|) time. It further holds213

that |T [vi]| ≤ |Li| and
∑n

i=1 |Li| =
∑`

i=1 |Ei|. Hence, the dynamic program runs in O(|G|)214

time. J215

2.1 Further Basic Observations216

Furthermore, it is easy to observe that computational hardness of Restless Temporal217

Path for some fixed value of ∆ implies hardness for all larger finite values of ∆. This218

allows us to construct hardness reductions for small fixed values of ∆ and still obtain general219

hardness results.220

B Observation 3. Given an instance I = (G, s, z, k, ∆) of Short Restless Temporal221

Path, we can construct in linear time an instance I ′ = (G′, s, z, k, ∆+1) of Short Restless222

Temporal Path such that I is a yes-instance if and only if I ′ is a yes-instance.223

Proof. The result immediately follows from the observation that a temporal graph G contains224

a ∆-restless temporal (s, z)-path if and only if the temporal graph G′ contains a (∆ + 1)-225

restless temporal (s, z)-path, where G′ is obtained from G by inserting one trivial (edgeless)226

layer after every ∆ consecutive layers. J227

However, for some special values of ∆ we can solve Restless Temporal Path in polynomial228

time.229

B Observation 4. Restless Temporal Path on instances (G, s, z, ∆) can be solved in230

polynomial time, if ∆ = 0 or ∆ ≥ `.231

A. Casteigts, A.-S. Himmel, H. Molter, P. Zschoche 30:7

Proof. Considering ∆ = 0 implies that the entirety of a path between s and z must be232

realized in a single layer. Thus, the problem is equivalent to testing if at least one of the233

layers Gi contains a (static) path between s and z.234

If ∆ ≥ `, the computation of temporal paths without waiting time constraints was235

solved for three possible metrics by Bui-Xuan, Ferreira, and Jarry [11]. Any of the three236

corresponding algorithms apply in this case. J237

3 Hardness results for restless temporal paths238

In this section we present a thorough analysis of the computational hardness of Restless239

Temporal Path which also transfers to Short Restless Temporal Path.240

NP-hardness for few layers. We start by showing that Restless Temporal Path is241

NP-complete even if the lifetime of the input temporal graph is constant. The reduction242

is similar in spirit to the classic NP-hardness reduction for 2-Disjoint Paths in directed243

graphs by Fortune et al. [24].244

I Theorem 5 (F). Restless Temporal Path is NP-complete for all finite ∆ ≥ 1 and245

` ≥ ∆ + 2 even if every edge has only one time stamp.246

The reduction used in the proof of Theorem 5 also yields a running time lower bound247

assuming the Exponential Time Hypothesis (ETH) [30, 31].248

I Corollary 6. Restless Temporal Path does not admit a f(`)o(|G|)-time algorithm for249

any computable function f unless the ETH fails.250

Proof. First, note that any 3-SAT formula with m clauses can be transformed into an251

equisatisfiable Exact (3, 4)-SAT formula with O(m) clauses [45]. The reduction presented252

in the proof of Theorem 5 produces an instance of Restless Temporal Path with a253

temporal graph of size |G| = O(m) and ` = 3. Hence an algorithm for Restless Temporal254

Path with running time f(`)o(|G|) for some computable function f would imply the existence255

of an 2o(m)-time algorithm for 3-SAT. This is a contradiction to the ETH [30, 31]. J256

Furthermore, the reduction behind Theorem 5 can be modified such that it also yields257

that Restless Temporal Path is NP-hard, even if the underlying graph has constant258

maximum degree or the underlying graph is a clique where one edge ({s, z}) is missing.259

I Corollary 7. Restless Temporal Path is NP-hard, even if the underlying graph has260

all but one edge or maximum degree six.261

Proof. That Restless Temporal Path is NP-hard, even if the underlying graph has262

maximum degree six follows directly from the construction used in the proof of Theorem 5.263

To show that that Restless Temporal Path is NP-hard, even if the underlying graph264

has all edges except {s, z}, we reduce from Restless Temporal Path. Let I = (G =265

(V, (Ei)i∈[`]), s, z, ∆) be an instance of Restless Temporal Path with ` = 3. We construct266

an instance I ′ := (G′ = (V, E′1, E′2, E′3, E′4, E′5), s, z, ∆) of Restless Temporal Path, where267

E′1 =
(

V \{s}
2
)
, E′2 := E1, E′3 := E2, E′4 := E3, and E′5 =

(
V \{z}

2
)
. Observe that none of the268

edges in E1 ∪E5 can be used in ∆-restless temporal (s, z)-path. Hence, I is a yes-instance269

if and only if I ′ is a yes-instance. Furthermore, E1 ∪ E5 contain all possible edges except270

{s, z}. J271

W[1]-hardness for distance to disjoint paths. In the following, we show that parame-272

terizing Restless Temporal Path with structural graph parameters of the underlying273

ISAAC 2020

30:8 Finding Temporal Paths under Waiting Time Constraints

graph of the input temporal graph presumably does not yield fixed-parameter tractability for274

a large number of popular parameters. In particular, we show that Restless Temporal275

Path parameterized by the distance to disjoint paths of the underlying graph is W[1]-hard.276

The distance to disjoint paths of a graph G is the minimum number of vertices we have to277

remove from G such that the reminder of G is a set of disjoint paths. Many well-known278

graph parameters can be upper-bounded in the distance to disjoint paths, e.g., pathwidth,279

treewidth, and feedback vertex number [44]. Hence, the following theorem also implies that280

Restless Temporal Path is W[1]-hard when parameterized by the pathwidth or the281

feedback vertex number of the underlying graph.282

I Theorem 8 (F). Restless Temporal Path parameterized by the distance to disjoint283

path of the underlying graph is W[1]-hard for all ∆ ≥ 1 even if every edge has only one time284

stamp.285

4 An FPT-algorithm for short restless temporal path286

In this section, we discuss how to find short restless temporal paths. Recall that in Short287

Restless Temporal Path, we are given an additional integer k as input and are asked288

whether there exists a ∆-restless temporal (s, z)-path that uses at most k time edges. By289

Theorem 5 this problem is NP-hard. Note that in the contact tracing scenario from the290

beginning, we can expect to have a small k and a large temporal graph.291

I Theorem 9. Short Restless Temporal Path is292

(i) solvable in 2k · |G|O(1) time with a constant one-side error,293

(ii) deterministically solvable in 2O(k) · |G|∆ time,294

Note that we can solve Short Restless Temporal Path such that the running time is295

independent from the lifetime ` of the temporal graph. To show Theorem 9, we first reduce296

the problem to a specific path problem in directed graphs. Then, we apply known algebraic297

tools for multilinear monomials detection. Here, Theorem 9 (i) is based on Williams [46]. To298

get a deterministic algorithm with a running time almost linear in |G|, we show a different299

approach based on representative sets [22] which results in Theorem 9 (ii).300

Reduction to directed graphs. We introduce a so-called ∆-(s, z)-expansion for two301

vertices s and z of a temporal graph with waiting times. That is, a time-expanded version of302

the temporal graph which reduces reachability questions to directed graphs. While similar303

approaches have been applied several times [2, 8, 38, 47, 48], to the best of our knowledge,304

this is the first time that waiting-times are considered. In a nutshell, the ∆-(s, z)-expansion305

has for each vertex v at most ` many copies v1, . . . , v` and if an (s, z)-dipath visits vi, it306

means that the corresponding ∆-restless temporal (s, z)-walk visits v at time i.307

I Definition 10 (∆-(s, z)-Expansion). Let G = (V, (Ei)i∈[`]) be a temporal graph with two308

distinct vertices s, z ∈ V such that {s, z} 6∈ Et, for all t ∈ [`]. Let ∆ ≤ `. The ∆-(s, z)-309

expansion of G is the directed graph D = (V ′, E′) with310

(i) V ′ := {s, z} ∪ {vt | v ∈ e, e ∈ Et, v 6∈ {s, z}},311

(ii) Es := {(s, vt) | {s, v} ∈ Et},312

(iii) Ez :=
{

(vi, z)
∣∣ vi ∈ V ′, {v, z} ∈ Et, 0 ≤ t− i ≤ ∆

}
, and313

(iv) E′ := Es ∪ Ez ∪
{

(vi, wt)
∣∣ vi ∈ V ′ \ {s, z}, {v, w} ∈ Et, 0 ≤ t− i ≤ ∆

}
.314

Furthermore, we define V ′(s) := {s}, V ′(z) := {z}, and V ′(v) := {vt ∈ V ′ | t ∈ [`]}, for315

all v ∈ V \ {s, z}.316

Next, we show that a ∆-(s, z)-expansion of a temporal graph can be computed efficiently.317

A. Casteigts, A.-S. Himmel, H. Molter, P. Zschoche 30:9

I Lemma 11. Given a temporal graph G = (V, (Ei)i∈[`]), two distinct vertices s, z ∈ V , and318

∆ ≤ `, we can compute its ∆-(s, z)-expansion D with |V (D)| ∈ O(|G|) in O(|G| ·∆) time.319

Proof. Let V ′ := {s, z} and E′ be empty in the beginning. We will fill up V ′ and E′320

simultaneously. In order to that efficiently, we will maintain for each vertex v ∈ V a ordered321

list Lv such that t ∈ Lv if and only if vt ∈ V ′. We assume that |V | ≤
∑`

i=1 |Ei|, because322

vertices which are isolated in every layer are irrelevant for the ∆-(s, z)-expansion and can be323

erased in linear time.324

We proceed as follows. For each t ∈ {1, . . . , `} (in ascending order), we iterate over Et.325

For each {v, w} ∈ Et, we distinguish three cases.326

(w = s): We add vt to V ′, (s, vt) to E′, and add t to Lv. This can be done in constant327

time.328

(w = z): We add vt to V ′, and add t to Lv. Now we iterate over all i ∈ Lv (in descending329

order) and add (vi, z) to E′ until t− i > ∆. This can be done in O(∆) time.330

({s, z} ∩ {v, w} = ∅): We add vt, wt to V ′, and add t to Lv and Lw. Now we iterate331

over i ∈ Lv (in descending order) and add (vi, wt) to E′ until t− i > ∆. Afterwards, we332

iterate over i ∈ Lw (in descending order) and add (wi, vt) to E′ until t− i > ∆. This can333

be done in O(∆) time.334

Observe that after this procedure the digraph D = (V ′, E′) is the ∆-(s, z)-expansion of G335

and that we added at most 2 vertices for each time-edge in G. Hence, V ′ ≤ |G|. This gives a336

overall running time of O(|G| ·∆). J337

It is easy to see that there is a ∆-restless temporal (s, z)-walk in the temporal graph if and338

only if there is an (s, z)-dipath in the ∆-(s, z)-expansion. Next, we identify the necessary339

side constraint to identify ∆-restless temporal (s, z)-paths in the ∆-(s, z)-expansion.340

I Lemma 12. Let G = (V, (Ei)i∈[`]) be a temporal graph, s, z ∈ V two distinct vertices,341

∆ ≤ `, and D = (V ′, E′) the ∆-(s, z)-expansion of G. There is a ∆-restless temporal (s, z)-342

path in G of length k if and only if there is an (s, z)-dipath P ′ in D of length k such that for343

all v ∈ V it holds that |V ′(v) ∩ V (P ′)| ≤ 1.344

Proof. (⇒): Let P =
(
((s, v1, t1), (v1, v2, t2), . . . , (vk′−1, z, tk′)

)
be a ∆-restless temporal345

(s, z)-path in G of length k. We can inductively construct an (s, z)-dipath P ′ in D. Observe346

that P ′1 := ((s, vt1
1)) is an (s, vt1

1)-dipath of length 1 in D, because the arc (s, vt1
1) is in Es of347

D. Now let i ∈ [k′ − 2] and P ′i be an (s, vti
i)-dipath of length i such that348

(i) for all j ∈ [i], we have that |V ′(vj) ∩ V (P ′i)| = 1, and349

(ii) for all v ∈ V \ {s, v1, . . . , vi}, we have that |V ′(v) ∩ V (P ′i)| = 0.350

In order to get an (s, v
ti+1
i+1)-dipath P ′i+1 of length i + 1, we extend P ′i by the arc (vti

i , v
ti+1
i+1).351

Observe, that v
ti+1
i+1 ∈ V ′ because of the time-edge ({vi, vi+1}, ti+1) in G and that the arc352

(vti
i , v

ti+1
i+1) ∈ E′, because we have 0 ≤ ti+1 − ti ≤ ∆. Observe that353

(i) for all j ∈ [i + 1], we have that |V ′(vj) ∩ V (P ′i+1)| = 1, and354

(ii) for all v ∈ V \ {s, v1, . . . , vi+1}, we have that |V ′(v) ∩ V (P ′i+1)| = 0.355

Hence, we have an (s, v
tk′−1
k′−1)-dipath P ′k−1 of length k− 1 satisfying (i) and (ii) which can356

be extended (in a similar way) to an (s, z)-dipath of length k such that for all v ∈ V it holds357

that |V ′(v) ∩ V (P ′)| ≤ 1.358

(⇐): Let P ′ be a (s, z)-dipath in D of length k such that for all v ∈ V it holds that359

|V ′(v) ∩ V (P ′)| ≤ 1. Let V (P ′) = {s, vt1
1 , . . . , v

tk−1
k−1 , z}. Observe that an arc from s to vt1

1 in360

D implies that there is a time-edge ({s, v1}, t1) in G. Similarly, an arc from vti
i to v

ti+1
i+1 implies361

that there is a time-edge ({vi, vi+1}, ti+1) in G and that 0 ≤ ti+1 − ti ≤ ∆, for all i ∈ [k − 2].362

ISAAC 2020

30:10 Finding Temporal Paths under Waiting Time Constraints

Moreover, an arc from v
tk−1
k−1 to z implies that there is some tk such that there is a time-edge363

({vk, z}, tk) in G with 0 ≤ tk−tk−1 ≤ ∆. Hence, P =
(
(s, v1, t1), (v1, v2, t2), . . . , (vk′−1, z, tk′)

)
364

is a ∆-restless temporal (s, z)-walk of length k in G. Finally, |V ′(v) ∩ V (P ′)| ≤ 1, for all365

v ∈ V , implies that vi 6= vj for all i, j ∈ {0, . . . , k} with i 6= j. Thus, P is a ∆-restless366

temporal (s, z)-path of length k. J367

Obtaining Theorem 9 (i). We now adapt the algorithm of Williams [46] to our specific368

needs. To this end, we introduce some standard notation from algebraic theory.369

An arithmetic circuit C over a commutative ring R is a simple labelled directed acyclic370

graph with its internal nodes labeled by + (sum gates) or × (product gates) and its nodes of371

in-degree zero (input gates) labeled with elements from R ∪X, where X is a set of variables.372

There is one node of out-degree zero, called the output gate. The size of C is the number of373

vertices in the graph. An arithmetic circuit C over R computes a polynomial P (X) over R374

in the natural way: an input gate represents the polynomial it is labeled by. A sum (product)375

gate represents the sum (product) of the polynomials represented by its in-degree neighbors.376

We say C represents P (X) if the polynomial of the output gate of C is equivalent to P (X).377

I Lemma 13 (F). Let k ∈ N and D = (V, A) be a directed graph with partition V =
⊎n

i=0 Vi,378

where V0 = {s} and Vn = {z}. Then, there is an arithmetic circuit C representing a379

polynomial Q(X) of degree at most k + 1 such that Q(X) has a multilinear6 monomial of380

degree at most k + 1 if and only if there is an (s, z)-path P of length at most k in D where381

|V (P) ∩ Vi| ≤ 1 for all i ∈ [n]. Moreover, |X| = n + 1, C is of size O(k(n + |A|)), has no382

scalar multiplication, and all product gates in have in-degree two.383

The polynomial in Lemma 13 is recursively defined as Q(X) = x⊥Qk
z over variables X =384

{x⊥, x0} ∪ {xi | i ∈ [n]}, where Q0
s := x0, Q0

v := x⊥ for all for all v ∈ V \ {s}, and for385

all v ∈ V and j ∈ [k] we define Qj
v =

∑
(u,v)∈A Qj−1

u xi, where v ∈ Vi. The idea of the386

polynomial is similar to the one of Williams [46], but here instead of having one variable for387

each vertex we just have one variable for all vertices in one part of the partition of V . Now388

we can apply the following result of Williams [46].389

I Theorem 14 ([46]). Let Q(X) be a polynomial of degree at most k, represented by an390

arithmetic circuit of size n with no scalar multiplications and where all product gates have391

in-degree two. There is a randomized algorithm that runs in 2knO(1) time, outputs yes with392

high probability (≥ 1/5) if there is a multilinear term in the sum-product expansion of Q, and393

always outputs no if there is no multilinear term.394

Theorem 9 (i) follows from Lemmata 11 to 13 and Theorem 14. This can be derandomized395

by Theorem 5.2 of Fomin et al. [23] resulting in O(3.841k · (|G|∆)2|V | log |V |) time algorithm.396

We now show how to improve the polynomial part of a deterministic algorithm.397

Obtaining Theorem 9 (ii). To show Theorem 9 (ii), we first note that in the (s, z)-398

expansion of an (s, z)-path P in the directed graph describes a ∆-restless temporal (s, z)-path399

exactly when V (P) is an independent set of some specific matroid. We then show an algorithm400

to find such a path P (if there is one). To this end, we introduce a problem, Independent401

Path, and some standard terminology from matroid theory [42]. A pair (U, I), where U is402

the ground set and I ⊆ 2U is a family of independent sets, is a matroid if the following holds:403

∅ ∈ I; if A′ ⊆ A and A ∈ I, then A′ ∈ I; and if A, B ∈ I and |A| < |B|, then there is an404

6 No variable occurs to a power of two or higher.

A. Casteigts, A.-S. Himmel, H. Molter, P. Zschoche 30:11

x ∈ B \ A such that A ∪ {x} ∈ I. An inclusion-wise maximal independent set A ∈ I of a405

matroid M = (U, I) is a basis. The cardinality of the bases of M is called the rank of M .406

The uniform matroid of rank r on U is the matroid (U, I) with I = {S ⊆ U | |S| ≤ r}. A407

matroid (U, I) is linear or representable over a field F if there is a matrix A with entries in F408

and the columns labeled by the elements of U such that S ∈ I if and only if the columns of A409

with labels in S are linearly independent over F. Such a matrix A is called a representation410

of (U, I). Now we are ready to state the Independent Path problem. Given a digraph411

D = (V, E), two distinct vertices s, z ∈ V , and a representation AM of a matroid M = (V, I)412

of rank r over a finite field F, we are asked whether there is an (s, z)-dipath P of length at413

most k in D such that V (P) ∈ I.414

For the remainder of this section, whenever we speak about independent sets, these are415

independent sets of a matroid and not a set of vertices which induce an edgeless graph.416

Agrawal et al. [1] studied, independently from us, a similar problem where the edges417

of the path shall be an independent set of a matroid. To show Theorem 9, we need a418

single-exponential algorithm which has only a linear dependency on the input size. To this419

end, we based on representative families [22] show the following.420

I Theorem 15 (F). An instance (D, s, z, AM) of Independent Path can be solved in421

time of O(2ωrm) operations over the field F, where F is the field of AM , r is rank of M , m422

is the number of edges in D, and ω < 2.373 is the matrix multiplication exponent.423

Observe that by Lemma 12, there is a ∆-restless temporal (s, z)-path in the temporal424

graph G if and only if there is an (s, z)-path P in the ∆-(s, z)-expansion D = (V ′, E′) of G425

such that V (P) is an independent set in the partition matroid7 M = (V ′, {X ⊆ V ′ | ∀v ∈426

V : |X ∩ V ′(v)| ≤ 1}). Note that M is of rank |V | and hence too large to show Theorem 9427

with Theorem 15.428

A k-truncation of a matroid (U, I) is a matroid (U, {X ∈ I | |X| ≤ k}) such that all429

independent sets are of size at most k. The k-truncation of a linear matroid is also a linear430

matroid [37]. In our reduction from Short Restless Temporal Path to Independent431

Path we use a (k + 1)-truncation of matroid M . Two general approaches are known to432

compute a representation for a k-truncation of a linear matroid—one is randomized [37] and433

one is deterministic [36].8 Both approaches require a large field implying that one operation434

over that field is rather slow. However, for our specific matroid we employ the Vandermonde435

matrix to compute a representation over a small finite field. Note that we would not get a436

running time linear in the input size by applying the algorithm of Lokshtanov et al. [36] or437

Marx [37] on M .438

I Lemma 16 (F). Given a universe U of size n, a partition P1] · · ·] Pq = U , and439

an integer k ∈ N, we can compute in O(kn) time a representation AM for the matroid440

M =
(

U,
{

X ⊆ U
∣∣∣ |X| ≤ k and ∀i ∈ [q] : |X ∩Pi| ≤ 1

})
, where AM is defined over a finite441

field F and one operation over F takes constant time.442

Now Theorem 9 (ii) follows from Lemmata 11, 12 and 16 and Theorem 15. We refer to the443

full version for more details.444

7 Partition matroids are linear [37].
8 For both algorithms, a representation of the original matroid must be given.

ISAAC 2020

30:12 Finding Temporal Paths under Waiting Time Constraints

5 Computational complexity landscape for the underlying graph445

In this section we investigate the parameterized computational complexity of Restless446

Temporal Path when parameterized by structural parameters of the underlying graph. We447

start by showing fixed-parameter tractability results for parameterizations that are directly448

implied by Theorem 15. We can observe that any path of a graph can contain at most449

twice as many vertices as the vertex cover number of the graph (plus one), since we cannot450

visit two vertices outside of the vertex cover directly after another. Essentially the same451

observation can be made in the temporal setting. If we consider the vertex cover number452

vc↓ of the underlying graph, we can deduce that any restless temporal path can have length453

at most 2vc↓ + 1. From a classification standpoint, we can improve this a little further by454

observing that the length of any restless temporal path is bounded by the length of any455

path of the underlying graph. The length of a path in the underlying graph can be bounded456

by 2O(td↓) [40], where td↓ is the treedepth of the underlying graph.457

B Observation 17. Restless Temporal Path parameterized by the treedepth td↓ of the458

underlying graph is fixed-parameter tractable.459

One of the few dark spots of the landscape is the feedback edge number9 of the underlying460

graph which is resolved in the following way.461

I Theorem 18 (F). Restless Temporal Path can be solved in 2O(
ffl

) · |G| time, where
ffl

462

is the feedback edge number of the underlying graph.463

We note that, by Corollary 6, Theorem 18 is asymptotically optimal, unless ETH fails. In a464

nutshell, our algorithm to prove Theorem 18 has the following five steps:465

1. Exhaustively remove all degree-1 vertices from G↓ (except for s and z).466

2. Compute a minimum-cardinality feedback edge set F of the graph G↓.467

3. Compute a set P of maximal paths in G↓ − F and note that |P| = O(
ffl

).468

4. “Guess” the feedback edges in F and paths in P of an (s, z)-path in G↓.469

5. Verify whether the “guessed” (s, z)-path is a ∆-restless temporal (s, z)-path in G.470

The results from Sections 3 to 5 provide a good picture of the parameterized complexity471

landscape for Restless Temporal Path, meaning that for most of the widely known (static)472

graph parameters we know whether the problem is in FPT or W[1]-hard or para-NP-hard,473

see Figure 2.474

Our understanding of the class of temporal graphs where we can solve Restless Tempo-475

ral Path efficiently narrows down to the following points. We can check efficiently whether476

there is a ∆-restless temporal (s, z)-path P in temporal graph G if477

1. there is a bounded number of (s, z)-path in G↓, or (see Theorem 18 and Lemma 2)478

2. there is a bound on the length of P . (see Theorem 9 and Observation 17)479

Apart from that we established with Theorems 5 and 8 and Corollary 7 hardness results for480

temporal graphs having restricted underlying graphs, see Figure 2.481

Finally, we show that we presumably cannot expect to obtain polynomial kernels for all482

parameters considered so far and most structural parameters of the underlying graph.483

I Proposition 19 (F). Restless Temporal Path parameterized by the number n of484

vertices does not admit a polynomial kernel for all ∆ ≥ 1 unless NP ⊆ coNP/poly.485

9 For a given graph G = (V, E) a set F ⊆ E is a feedback edge set if G− F does not contain a cycle. The
feedback edge number of a graph G is the size of a minimum feedback edge set for G.

A. Casteigts, A.-S. Himmel, H. Molter, P. Zschoche 30:13

6 Timed feedback vertex number486

In this section we introduce a new temporal version of the well-studied “feedback vertex487

number”-parameter. Recall that by Theorem 8 we know that Restless Temporal Path488

is W[1]-hard when parameterized by the feedback vertex number of the underlying graph.489

This motivates studying larger parameters with the goal to obtain tractability results. We490

propose a new parameter called timed feedback vertex number which, intuitively, quantifies491

the number of vertex appearances that need to be removed from a temporal graph such492

that its underlying graph becomes cycle-free. Note that having vertex appearances in the493

deletion set allows us to “guess” when we want to enter and leave the deletion set with a494

∆-restless temporal (s, z)-path in addition to guessing in which order the vertex appearances495

are visited.496

Before defining timed feedback vertex number formally, we introduce notation for removing497

vertex appearances from a temporal graph. Intuitively, when we remove a vertex appearance498

from a temporal graph, we do not change its vertex set, but remove all time edges that have499

the removed vertex appearance as an endpoint. Let G = (V, (Ei)i∈[`]) be a temporal graph500

and X ⊆ V × [`] a set of vertex appearances. Then we write G −X := (V, (E′i)i∈[`]), where501

E′i = Ei \ {e ∈ Ei | ∃(v, i) ∈ X with v ∈ e}. Formally, the timed feedback vertex number is502

defined as follows.503

I Definition 20 (Timed Feedback Vertex Number). Let G = (V, (Ei)i∈[`]) be a temporal graph.504

A timed feedback vertex set of G is a set X ⊆ V × [`] of vertex appearances such that505

G↓(G −X) is cycle-free. The timed feedback vertex number of a temporal graph G is the506

minimum cardinality of a timed feedback vertex set of G.507

We can observe that for any temporal graph the timed feedback vertex number is as least508

as large as the feedback vertex number of the underlying graph and upper-bounded by the509

product of the feedback vertex number of the underlying graph and the lifetime. We further510

remark that the timed feedback vertex number is invariant under reordering the layers. At511

the end of this section we show how a timed feedback vertex set can be computed efficiently.512

The main result of this section is that Restless Temporal Path is fixed-parameter513

tractable when parameterized by the timed feedback vertex number of the input temporal514

graph. To this end, we show the following.515

I Theorem 21 (F). Given a timed feedback vertex set X of size x for a temporal graph G =516

(V, (Ei)i∈[`]), we can decide in O(6xx! ·max{|G|3, |V |4x2}) time, whether there is a ∆-restless517

temporal (s, z)-path in G, where s, z ∈ V , ∆ ∈ N.518

The algorithm we present to show Theorem 21 solves Chordal Multicolored Inde-519

pendent Set, where given a chordal graph10 G = (V, E) and a vertex coloring c : V → [k],520

we are asked to decide whether G contains an independent set of size k that contains exactly521

one vertex of each color. This problem is known to be NP-complete [9, Lemma 2] and522

solvable in O(3k · |V |2) time [7, Proposition 5.6]. Our algorithm for Restless Temporal523

Path roughly follows these computation steps:524

1. “Guess” which of and in which order the vertex appearances from the timed feedback525

vertex set appear in the ∆-restless temporal (s, z)-path.526

2. Compute the path segments between two timed feedback vertex set vertices by solving a527

Chordal Multicolored Independent Set instance.528

10A graph is chordal if it does not contain induced cycles of length four or larger.

ISAAC 2020

30:14 Finding Temporal Paths under Waiting Time Constraints

Algorithm 6.1: FPT algorithm for Restless Temporal Path parameterized by
timed feedback vertex set.

Input: Temporal graph G = (V, (Ei)i∈[`]) with s, z ∈ V , timed feedback vertex set X

with s, z 6∈ {v | (v, t) ∈ X}, and ∆ ∈ N.
Output: yes, if there is a ∆-restless temporal (s, z)-path, otherwise no.

1 for each valid partition O] I] U = X do
2 G′ ← G − U and x← |I ∪O|.
3 T ← G′ − ({v ∈ V | (v, t) ∈ O ∪ I} ∪ {s, z}).
4 for each ∆-ordering (v0, t0) ≤ · · · ≤ (vx+1, tx+1) of I ∪O ∪ ({s, z} × {⊥}) do
5 Pi ← ∅, for all i ∈ [x + 1].
6 for i← 1 to x + 1 do
7 if vi−1 = vi then Pi = {∅}.
8 for each e1 = ({vi−1, w}, t), e2 = ({u, vi}, t′) of G′ where vi−1 6= vi do
9 T ′ ← T + {e1, e2}.

10 if ∃ (ti−1, ti)-valid ∆-restless temporal (vi−1, vi)-path P in T ′ then
11 Pi ← Pi ∪ {V (P) \ {vi−1, vi}}.

12 G← intersection graph of the multiset {P (i) ∈ Pi | i ∈ [x + 1]} .
13 Define c : V (G)→ [x + 1], P (i) 7→ i.
14 if (G, c) has a multicolored independent set of size x + 1 then return yes.

15 return no.

We give a precise description of our algorithm in Algorithm 6.1. Here, a partition O]I]U529

of a set of vertex appearances X is valid if we have v 6= v′, for all distinct (v, t), (v′, t′) ∈ I530

and for all distinct (v, t), (v′, t′) ∈ O. A vertex appearance (v, t) ∈ I signals that a ∆-restless531

temporal (s, z)-path arrives in v at time t and (v, t) ∈ O signals that it departs from v at time t.532

Let M := O ∪ I ∪ ({s, z} × {⊥}). We call a linear ordering (v0, t0) ≤M · · · ≤M (vx+1, tx+1)533

of M a ∆-ordering if (v0, t0) = (s,⊥), (vx+1, tx+1) = (t,⊥), ti ≤ tj if and only if i < j ∈ [x],534

and for all v ∈ V with (v, ti) ∈ I and (v, tj) ∈ O it holds that i + 1 = j and ti ≤ tj ≤ ti + ∆.535

Moreover, observe that for a vertex appearance (v, t) ∈ I, the ∆-restless temporal (s, z)-path536

has to depart from t not later than t + ∆ and for vertex appearance (v, t) ∈ O, it has to537

arrive in v not earlier than t−∆. To this end, we define the notion of a valid path between538

two consecutive vertex appearances:539

I Definition 22. Let O] I] U be a valid partition of X, and let (vi, ti), (vi+1, ti+1) ∈540

I ∪O ∪ ({s, z} × {⊥}) with vi 6= vi+1 and ti ≤ ti+1, and Pi a ∆-restless temporal (vi, vi+1)-541

path with departure time td and arrival time ta. Then Pi is (ti−1, ti, I, O)-valid if the following542

holds true543

(i) (vi−1, ti−1) ∈ I =⇒ ti−1 ≤ td ≤ ti−1 + ∆,544

(ii) (vi−1, ti−1) ∈ O =⇒ td = ti−1,545

(iii) (vi, ti) ∈ I =⇒ ta = ti, and546

(iv) (vi, ti) ∈ O =⇒ ta ≤ ti ≤ ta + ∆.547

If it is clear from context, then we write (ti−1, ti)-valid.548

Note that if there exists a (ti, ti+1)-valid ∆-restless temporal (vi, vi+1)-path Pi+1 and549

(ti+1, ti+2)-valid ∆-restless temporal (vi+1, vi+2)-path Pi+2, then we can “glue” them together550

and get a (ti, ti+2)-valid ∆-restless (vi, vi+2)-walk (not necessarily a path). Thus if there551

exist a valid ∆-restless temporal path between all consecutive pairs in a ∆-ordering which552

A. Casteigts, A.-S. Himmel, H. Molter, P. Zschoche 30:15

(s,⊥) (v1, t1), (v1, t2) (v2, t2) (v3, t3)
. . .

(z,⊥)
(a)

(b)

Figure 3 Illustration of Algorithm 6.1, where (a) depicts the set ({s, z} × {⊥}) ∪ I ∪ O and
(b) sketches the underlying graph of the temporal graph T which is a forest. The back solid dots
correspond to one or two vertex appearances. The ∆-restless temporal (s, z)-path is the red thick
path which uses valid (Definition 22) ∆-restless temporal (s, v1)- and (v1, v2)-paths over T .

are pairwise vertex disjoint (except for the endpoints), then there exist a∆-restless temporal553

(s, z)-path.554

The idea of Algorithm 6.1 is that a ∆-restless temporal (s, z)-path P induces a valid555

partition of the timed feedback vertex set X such that (v, t) ∈ I if P arrives v at time556

t, (v, t) ∈ O if P leaves v at time t, or otherwise (v, t) ∈ U . Furthermore, if we order557

M := I ∪ O ∪ ({s, z} × {⊥}) according to the traversal of P (from s to z), then this is a558

∆-ordering such that a subpath P ′ of P corresponding to consecutive (v, t), (v′, t′) ∈M with559

v 6= v′ is (t, t′, I, O)-valid in some temporal graph T ′ of Line (9), see Figure 3.560

The algorithm, tries all possible partitions of X and all corresponding ∆-orderings. For561

each of these, we store for all valid ∆-restless temporal (u, w)-path P ′ of two consecutive562

(u, t), (w, t′) the vertices V (P) ∩ V (T) in the family Pi. Here, we assume without loss of563

generality that no vertex appearance of s, z is in X. Note that, if we have |Pi| ≥ 0 for564

all i ∈ {1, . . . , x + 1}, then there is ∆-restless (s, z)-walk in G. Hence, to find a ∆-restless565

temporal (s, z)-path, we have to find x + 1 pair-wise disjoint sets P
(1)
1 , . . . , P

(x+1)
x+1 such that566

Pi ∈ Pi. Here, we observe that the intersection graph of in Line (12) is chordal [25] and use567

an algorithm of Bentert et al. [7] for Chordal Multicolored Independent Set as a568

subroutine to find such pairwise-disjoint P
(1)
1 , . . . , P

(x+1)
x+1 .569

To conclude from Theorem 21 the fixed-parameter tractability of Restless Temporal570

Path parameterized the timed feedback vertex number, we need to compute a timed feedback571

vertex set efficiently. This is clearly NP-hard, since it generalizes the NP-complete Feedback572

Vertex Set problem [32]. However, we establish the following possibilities to compute a573

Feedback Vertex Set.574

I Theorem 23 (F). A minimum timed feedback vertex set of temporal G can be computed575

in 4x · |G|O(1) time, where x is the timed feedback vertex number of G. Furthermore, there is576

a polynomial-time 8-approximation for timed feedback vertex set.577

7 Conclusion578

We have analyzed the (parameterized) computational complexity of Restless Temporal579

Path, a canonical variant of the problem of finding temporal paths, where the waiting time580

at every vertex is restricted. Unlike its non-restless counterpart or the “walk-version”, this581

problem turns out to be computationally hard, even in quite restricted cases. On the positive582

side, we give an efficient algorithm to find short restless temporal paths and we could identify583

structural parameters of the underlying graph and of the temporal graph itself that allow for584

fixed-parameter algorithms.585

ISAAC 2020

30:16 Finding Temporal Paths under Waiting Time Constraints

References586

1 Akanksha Agrawal, Pallavi Jain, Lawqueen Kanesh, and Saket Saurabh. Parameterized587

complexity of conflict-free matchings and paths. Algorithmica, pages 1–27, 2020. 11588

2 Eleni C. Akrida, Jurek Czyzowicz, Leszek Gąsieniec, Łukasz Kuszner, and Paul G. Spirakis.589

Temporal flows in temporal networks. Journal of Computer and System Sciences, 103:46–60,590

2019. 2, 8591

3 Eleni C Akrida, Leszek Gąsieniec, George B Mertzios, and Paul G Spirakis. The complexity of592

optimal design of temporally connected graphs. Theory of Computing Systems, 61(3):907–944,593

2017. 3594

4 Eleni C. Akrida, George B. Mertzios, Sotiris Nikoletseas, Christoforos Raptopoulos, Paul G.595

Spirakis, and Viktor Zamaraev. How fast can we reach a target vertex in stochastic temporal596

graphs? Journal of Computer and System Sciences, 114:65 – 83, 2020. 2597

5 Kyriakos Axiotis and Dimitris Fotakis. On the size and the approximability of minimum598

temporally connected subgraphs. In Proceedings of the 43rd International Colloquium on599

Automata, Languages, and Programming (ICALP ’16), pages 149:1–149:14, 2016. 2, 3600

6 Albert-László Barabási. Network Science. Cambridge University Press, 2016. 2601

7 Matthias Bentert, René van Bevern, and Rolf Niedermeier. Inductive k-independent graphs602

and c-colorable subgraphs in scheduling: a review. Journal of Scheduling, 22(1):3–20, 2019.603

13, 15604

8 Kenneth A Berman. Vulnerability of scheduled networks and a generalization of Menger’s605

theorem. Networks: An International Journal, 28(3):125–134, 1996. 8606

9 René van Bevern, Matthias Mnich, Rolf Niedermeier, and Mathias Weller. Interval scheduling607

and colorful independent sets. Journal of Scheduling, 18(5):449–469, 2015. 13608

10 Sandeep Bhadra and Afonso Ferreira. Complexity of connected components in evolving graphs609

and the computation of multicast trees in dynamic networks. In International Conference on610

Ad-Hoc Networks and Wireless, pages 259–270. Springer, 2003. 2, 3611

11 B.-M. Bui-Xuan, Afonso Ferreira, and Aubin Jarry. Computing shortest, fastest, and foremost612

journeys in dynamic networks. International Journal of Foundations of Computer Science,613

14(02):267–285, 2003. 2, 7614

12 Arnaud Casteigts, Paola Flocchini, Emmanuel Godard, Nicola Santoro, and Masafumi Ya-615

mashita. On the expressivity of time-varying graphs. Theoretical Computer Science, 590:27–37,616

2015. 2617

13 Arnaud Casteigts, Paola Flocchini, Walter Quattrociocchi, and Nicola Santoro. Time-varying618

graphs and dynamic networks. International Journal of Parallel, Emergent and Distributed619

Systems, 27(5):387–408, 2012. 2620

14 Arnaud Casteigts, Joseph Peters, and Jason Schoeters. Temporal cliques admit sparse spanners.621

In Proceedings of the 46th International Colloquium on Automata, Languages, and Programming622

(ICALP ’19), volume 132 of LIPIcs, pages 134:1–134:14. Schloss Dagstuhl–Leibniz-Zentrum623

für Informatik, 2019. 3624

15 Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin625

Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015. 4,626

5627

16 Reinhard Diestel. Graph Theory, 5th Edition, volume 173 of Graduate Texts in Mathematics.628

Springer, 2016. 4629

17 Rodney G Downey and Michael R Fellows. Fundamentals of Parameterized Complexity.630

Springer, 2013. 4631

18 Ken TD Eames and Matt J Keeling. Contact tracing and disease control. Proceedings of the632

Royal Society of London. Series B: Biological Sciences, 270(1533):2565–2571, 2003. 2633

19 Jessica Enright, Kitty Meeks, George Mertzios, and Viktor Zamaraev. Deleting edges to634

restrict the size of an epidemic in temporal networks. In Proceedings of the 44th International635

Symposium on Mathematical Foundations of Computer Science (MFCS ’19), volume 138 of636

LIPIcs, pages 57:1–57:15. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2019. 3637

A. Casteigts, A.-S. Himmel, H. Molter, P. Zschoche 30:17

20 Luca Ferretti, Chris Wymant, Michelle Kendall, Lele Zhao, Anel Nurtay, Lucie Abeler-Dörner,638

Michael Parker, David Bonsall, and Christophe Fraser. Quantifying SARS-CoV-2 transmission639

suggests epidemic control with digital contact tracing. Science, 2020. 2640

21 Till Fluschnik, Hendrik Molter, Rolf Niedermeier, Malte Renken, and Philipp Zschoche.641

Temporal graph classes: A view through temporal separators. Theoretical Computer Science,642

806:197–218, 2020. 3643

22 Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, and Saket Saurabh. Efficient computation644

of representative families with applications in parameterized and exact algorithms. Journal of645

the ACM, 63(4):29:1–29:60, 2016. 8, 11646

23 Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, and Saket Saurabh. Representative647

families of product families. ACM Transactions on Algorithms, 13(3):36:1–36:29, 2017. 10648

24 Steven Fortune, John E. Hopcroft, and James Wyllie. The directed subgraph homeomorphism649

problem. Theor. Comput. Sci., 10:111–121, 1980. 7650

25 Fǎnicǎ Gavril. The intersection graphs of subtrees in trees are exactly the chordal graphs.651

Journal of Combinatorial Theory, Series B, 16(1):47–56, 1974. 15652

26 Anne-Sophie Himmel, Matthias Bentert, André Nichterlein, and Rolf Niedermeier. Efficient653

computation of optimal temporal walks under waiting-time constraints. In Proceedings of the654

8th International Conference on Complex Networks and their Applications, volume 882 of SCI,655

pages 494–506. Springer, 2019. 2, 3656

27 Petter Holme. Modern temporal network theory: a colloquium. The European Physical Journal657

B, 88(9):234, 2015. 2658

28 Petter Holme. Temporal network structures controlling disease spreading. Physical Review E,659

94.2:022305, 2016. 2660

29 Petter Holme and Jari Saramäki (eds.). Temporal Network Theory. Springer, 2019. 2661

30 Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. Journal of662

Computer and System Sciences, 62(2):367–375, 2001. 7663

31 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly664

exponential complexity? Journal of Computer and System Sciences, 63(4):512–530, 2001. 7665

32 Richard M Karp. Reducibility among combinatorial problems. In Complexity of Computer666

Computations, pages 85–103. Springer, 1972. 15667

33 David Kempe, Jon Kleinberg, and Amit Kumar. Connectivity and inference problems for668

temporal networks. Journal of Computer and System Sciences, 64(4):820–842, 2002. 2, 3669

34 William Ogilvy Kermack and Anderson G McKendrick. A contribution to the mathematical670

theory of epidemics. Proceedings of the Royal Society of London, Series A., 115(772):700–721,671

1927. 2672

35 Matthieu Latapy, Tiphaine Viard, and Clémence Magnien. Stream graphs and link streams for673

the modeling of interactions over time. Social Network Analysis and Mining, 8(1):61, 2018. 2674

36 Daniel Lokshtanov, Pranabendu Misra, Fahad Panolan, and Saket Saurabh. Deterministic675

truncation of linear matroids. ACM Trans. Algorithms, 14(2):14:1–14:20, 2018. 11676

37 Dániel Marx. A parameterized view on matroid optimization problems. Theoretical Computer677

Science, 410(44):4471–4479, 2009. 11678

38 George B Mertzios, Othon Michail, and Paul G Spirakis. Temporal network optimization679

subject to connectivity constraints. Algorithmica, 81(4):1416–1449, 2019. 2, 3, 8680

39 Othon Michail. An introduction to temporal graphs: An algorithmic perspective. Internet681

Mathematics, 12(4):239–280, 2016. 2682

40 Jaroslav Nešetřil and Patrice Ossona De Mendez. Sparsity: Graphs, Structures, and Algorithms.683

Springer, 2012. 12684

41 Mark E J Newman. Networks. Oxford University Press, 2018. 2685

42 James G. Oxley. Matroid Theory. Oxford University Press, 1992. 10686

43 Raj Kumar Pan and Jari Saramäki. Path lengths, correlations, and centrality in temporal687

networks. Physical Review E, 84(1):016105, 2011. 2688

ISAAC 2020

30:18 Finding Temporal Paths under Waiting Time Constraints

44 Manuel Sorge and Mathias Weller et al. The graph parameter hierarchy, 2018. 2020. URL:689

https://manyu.pro/assets/parameter-hierarchy.pdf. 4, 8690

45 Craig A. Tovey. A simplified NP-complete satisfiability problem. Discrete Applied Mathematics,691

8(1):85 – 89, 1984. 7692

46 Ryan Williams. Finding paths of length k in O∗(2k) time. Inf. Process. Lett., 109(6):315–318,693

2009. 8, 10694

47 H. Wu, J. Cheng, Y. Ke, S. Huang, Y. Huang, and H. Wu. Efficient algorithms for temporal695

path computation. IEEE Transactions on Knowledge and Data Engineering, 28(11):2927–2942,696

2016. 2, 8697

48 Philipp Zschoche, Till Fluschnik, Hendrik Molter, and Rolf Niedermeier. The complexity of698

finding separators in temporal graphs. Journal of Computer and System Sciences, 107:72–92,699

2020. 3, 8700

https://manyu.pro/assets/parameter-hierarchy.pdf

	Introduction
	Preliminaries
	Further Basic Observations

	Hardness results for restless temporal paths
	An FPT-algorithm for short restless temporal path
	Computational complexity landscape for the underlying graph
	Timed feedback vertex number
	Conclusion

