Spanners and connectivity problems in temporal graphs

Arnaud Casteigts

LaBRI, Université de Bordeaux

November 10, 2022

(Liverpool CS seminar)

Based on two joint works with:

Jason Schoeters Joseph Peters Michael Raskin Malte Renken Viktor Zamaraev
(Le Havre) (Vancouver) (Munich) (Berlin) (Liverpool)



(Highly) dynamic networks?

o=\ NP a2

Example of scenario




(Highly) dynamic networks?

o =T g

Example of scenario

a e c .e
b d

Modeling

o~ =/
R

time

a\/c\'e as %e
b d be d




(Highly) dynamic networks?

o =T g

Example of scenario

¢ .e
b d

Modeling

o~ =/
R

time

a\/c\('e as €7e
b d be d




(Highly) dynamic networks? .
Modeling

Example of scenario - 7 \u’ &

—_— A
x{ w" a ‘K .e a \/C\ .e a\ v e as 97 e
a3 \ b d b d b d be d
\Ai\ time
e
. Properties:
' » Temporal connectivity? TC
> Repeatedly? TCR
- #” » Recurrent links? ER
e » In bounded time? £s
>

— Classes of temporal graphs



Some classes of temporal graphs

-

infinite lifetime

finite lifetime

~




Some classes of temporal graphs

Distributed algorithm

‘ Exploitation

-

infinite lifetime

Fastest broadcast

Population
protocols

Counting

finite lifetime
Broadcast

Broadcast +
acknowledgment

Leader
election

~

Speed up for
some prob-
lems

Bounded
broadcast

Retry  Retry
routing  broadcast

3/1



Some classes of temporal graphs

Distributed algorithm

-

lExploitation
infinite lifetime ‘ | finite lifetime
|
\

! v
7 i £1v g )
! (=) (1=)

|

|

|

|

I V1

(720) Te 7

I (7¢%) [ (el
|

|

|

|

Analysis

Centralized algorithm



Some classes of temporal graphs

Distributed algorithm

lExploitation
infinite lifetime w- finite lifetime
|
! v
7 i £1v (~l7w )
! (x—x) (1-%)
|
|
|
|
\ V1
o) TC T

: \7c-) (%) (x~1)
|
|
! +

= B £

Analysis Induce

Centralized algorithm Movement synthesis



Temporal graphs for their own sake

2 4,5
WARTAN
3,5 { 1,2,9
as—57 b

What does make them truly different?

471 4N



Basic definitions

Temporal graphs (a.k.a. time-varying, time-dependent, evolving, dynamic,...)

G = (V,E,)\), where ) : E — 2N assigns presence times to edges.

2 4,5
Example: c 14 d
3,5 1,29
a b

57



Basic definitions

Temporal graphs (a.k.a. time-varying, time-dependent, evolving, dynamic,...)

G = (V,E,)\), where ) : E — 2N assigns presence times to edges.

footprint of G
e
2 4,5
Example: c 14 d
3,5 1,29
a b

57



Basic definitions

Temporal graphs (a.k.a. time-varying, time-dependent, evolving, dynamic,...)

G = (V,E,)\), where ) : E — 2N assigns presence times to edges.

footprint of G
A Can also be viewed as a sequence of
2 4,5 snapshots {G; = {e € E :i € A(e)}}
Example: c 14 d
3,5 1,29
a b

57



Basic definitions

Temporal graphs (a.k.a. time-varying, time-dependent, evolving, dynamic,...)

G = (V,E,)\), where ) : E — 2N assigns presence times to edges.

footprint of G
A Can also be viewed as a sequence of
2 4,5 snapshots {G; = {e € E :i € A(e)}}
Example: c 1.4 d
3,5 1,29
a 57 b

Temporal paths



Basic definitions

Temporal graphs (a.k.a. time-varying, time-dependent, evolving, dynamic,...)

G = (V,E,)\), where ) : E — 2N assigns presence times to edges.

footprint of G
e
Can also be viewed as a sequence of
2 4,5 snapshots {G; = {e € E :i € A(e)}}
Example: c 14 d
3,5 1,29
a 57 b
Temporal paths
» Non-strict - ex: ((a, ¢, 3), (¢, d, 4), (d, e, 4)) (non-decreasing)

P Strict - ex: ((a, ¢, 3), (¢,d,4), (d, e, 5)) (increasing)



Basic definitions

Temporal graphs
G = (V,E,)\), where ) : E — 2N assigns presence times to edges.

(a.k.a. time-varying, time-dependent, evolving, dynamic,...)

footprint of G

e
Can also be viewed as a sequence of
2 4,5 snapshots {G; = {e € E :i € A(e)}}
Example: c 1.4 d
3,5 1,2,9
a 57 b

Temporal paths

» Non-strict - ex: ((a, ¢, 3), (¢, d, 4), (d, e, 4)) (non-decreasing)

P Strict - ex: ((a, ¢, 3), (¢,d,4), (d, e, 5)) (increasing)

Temporal connectivity: 3 temporal paths between all vertices.



Basic definitions

Temporal graphs
G = (V,E,)\), where ) : E — 2N assigns presence times to edges.

(a.k.a. time-varying, time-dependent, evolving, dynamic,...)

footprint of G

e
Can also be viewed as a sequence of
2 4,5 snapshots {G; = {e € E :i € A(e)}}
Example: c 1.4 d
3,5 1,2,9
a 57 b

Temporal paths

» Non-strict - ex: ((a, ¢, 3), (¢, d, 4), (d, e, 4)) (non-decreasing)

P Strict - ex: ((a, ¢, 3), (¢,d,4), (d, e, 5)) (increasing)

Temporal connectivity: 3 temporal paths between all vertices.



Basic definitions
Temporal graphs (a.k.a. time-varying, time-dependent, evolving, dynamic,...)

G = (V,E,)\), where ) : E — 2N assigns presence times to edges.

footprint of G
e
Can also be viewed as a sequence of
2 4,5 snapshots {G; = {e € E :i € A(e)}}
Example: c 14 d
3,5 1,2,9
a 57 b

Temporal paths
» Non-strict - ex: ((a, ¢, 3), (¢, d, 4), (d, e, 4)) (non-decreasing)
P Strict - ex: ((a, ¢, 3), (¢,d,4), (d, e, 5)) (increasing)

Temporal connectivity: 3 temporal paths between all vertices.

— Warning: Reachability is non-symmetrical...



Basic definitions
Temporal graphs (a.k.a. time-varying, time-dependent, evolving, dynamic,...)

G = (V,E,)\), where ) : E — 2N assigns presence times to edges.

footprint of G
e
Can also be viewed as a sequence of
2 4,5 snapshots {G; = {e € E :i € A(e)}}
Example: c 14 d
3,5 1,2,9
a 57 b

Temporal paths
» Non-strict - ex: ((a, ¢, 3), (¢, d, 4), (d, e, 4)) (non-decreasing)
P Strict - ex: ((a, ¢, 3), (¢,d,4), (d, e, 5)) (increasing)

Temporal connectivity: 3 temporal paths between all vertices.

— Warning: Reachability is non-symmetrical... and non-transitive!



Temporal spanners

Input: a graph G that is temporally connected (G € T'C)
Output: a graph G’ C G that preserves temporal connectivity (G’ € T'C)

Cost measure: size of the spanner (say, in number of labels)



Temporal spanners

Input: a graph G that is temporally connected (G € T'C)
Output: a graph G’ C G that preserves temporal connectivity (G’ € T'C)

Cost measure: size of the spanner (say, in number of labels)



Temporal spanners

Input: a graph G that is temporally connected (G € T'C)
Output: a graph G’ C G that preserves temporal connectivity (G’ € T'C)

Cost measure: size of the spanner (say, in number of labels)



Temporal spanners

Input: a graph G that is temporally connected (G € T'C)

Output: a graph G’ C G that preserves temporal connectivity (G’ € T'C)

Cost measure: size of the spanner (say, in number of labels)

Can we do better?
» 2n — 4 labels needed, even if you choose the values!

(Bumby’79, gossip theory)



Temporal spanners

Input: a graph G that is temporally connected (G € T'C)

Output: a graph G’ C G that preserves temporal connectivity (G’ € T'C)

Cost measure: size of the spanner (say, in number of labels)

Can we do better?
» 2n — 4 labels needed, even if you choose the values!

Do spanners of size 2n — 4 always exist?

(Bumby’79, gossip theory)



Temporal spanners

Input: a graph G that is temporally connected (G € T'C)
Output: a graph G’ C G that preserves temporal connectivity (G’ € T'C)

Cost measure: size of the spanner (say, in number of labels)

b
2 os A By
2,7 3 2 3
a< 14 >° ar” 14 o ac( e
4\J/1,6 — 4\/1
d
d size 5 size 4

Can we do better?
» 2n — 4 labels needed, even if you choose the values! (Bumby’79, gossip theory)

Do spanners of size 2n — 4 always exist?
» 3 minimally connected temp. graphs with Q(n log n) labels (Kleinberg, Kempe, Kumar, 2000)



Temporal spanners

Input: a graph G that is temporally connected (G € T'C)
Output: a graph G’ C G that preserves temporal connectivity (G’ € T'C)

Cost measure: size of the spanner (say, in number of labels)

b
2 os A By
2,7 3 2 3
a< 14 >° ar” 14 o ac( e
4\J/1,6 — 4\/1
d .
d size 5 size 4

Can we do better?
» 2n — 4 labels needed, even if you choose the values! (Bumby’79, gossip theory)

Do spanners of size 2n — 4 always exist?
» 3 minimally connected temp. graphs with Q(n log n) labels (Kleinberg, Kempe, Kumar, 2000)
» In fact, 3 some with Q(n?) labels (Axiotis, Fotakis, 2016)



Temporal spanners

Input: a graph G that is temporally connected (G € T'C)
Output: a graph G’ C G that preserves temporal connectivity (G’ € T'C)

Cost measure: size of the spanner (say, in number of labels)

b
2| o A 8
2,7 3 2 3
a< 14 >° ar” 14 o ac( e
4\J/1,6 — 4\/1
d
d size 5 size 4

Can we do better?
» 2n — 4 labels needed, even if you choose the values! (Bumby’79, gossip theory)

Do spanners of size 2n — 4 always exist?
» 3 minimally connected temp. graphs with Q(n log n) labels (Kleinberg, Kempe, Kumar, 2000)

» In fact, 3 some with Q(n?) labels (Axiotis, Fotakis, 2016)

How about complexity?
» Minimum-size spanner is APX-hard (Akrida, Gasieniec, Mertzios, Spirakis, 2017)



Bad news and good news

Recall the bad news:

> Q(nlogn) - easy

> Q(n?) - rather unexpected




Bad news and good news

Recall the bad news:

> Q(nlogn) - easy

> Q(n?) - rather unexpected

Good news 1: (C., Peters, Schoeters, ICALP 2019):

» Spanners of size O(nlogn) always exist
in complete temporal graphs




Bad news and good news

Recall the bad news:

> Q(nlogn) - easy

> Q(n?) - rather unexpected

Good news 1: (C., Peters, Schoeters, ICALP 2019): /q/u\-“ 0
» Spanners of size O(nlogn) always exist N i /
in complete temporal graphs N

Good news 2: (C., Raskin, Renken, Zamaraev, FOCS 2021):

» Nearly optimal spanners (of size 2n + o(n)) almost surely exist in random
temporal graphs, as soon as the graph is temporally connected



Before we start... an easier model

Simple Temporal Graphs (STGs):
1. A single presence time per edge (A : E — N)
2. Adjacent edges have different times () is locally injective)



Before we start... an easier model

Simple Temporal Graphs (STGs):
1. A single presence time per edge (A : E — N)
2. Adjacent edges have different times () is locally injective)

Generality for spanners:

» Most negative results still apply

» Positive results extend to general case

» No distinction between strict and non-strict temporal paths



Before we start... an easier model

Simple Temporal Graphs (STGs):
1. A single presence time per edge (A : E — N)
2. Adjacent edges have different times () is locally injective)

Generality for spanners:

» Most negative results still apply
» Positive results extend to general case
» No distinction between strict and non-strict temporal paths

Further motivations:

» Distributed models by pairwise interactions,
e.g. population protocols or gossip models (without repetition)

» Close model to edge-ordered graphs (Chvatal, Komlés, 1971)



Good news 1:

Temporal cliques admit sparse spanners




Two promising techniques...

Pivotability

Pivot node v and time ¢ such that:

» all nodes can reach v before ¢

» v can reach all nodes after ¢

Then in-tree U out-tree = spanner of size 2n — 2 (in fact 2n — 3...)



Two promising techniques...

Pivotability N _]
Pivot node v and time ¢ such that: o {;[(] li.;“‘o
» all nodes can reach v before ¢ NG / /
» v can reach all nodes after ¢ W)\ ;
Then in-tree U out-tree = spanner of size 2n — 2 (in fact 2n — 3...) o+—0j—o

Dismountability
Three nodes u, v, w such that:
» yv =min-edge (v)

» yww =max-edge (w)

Then spanner (G) = spanner (G[V\u]) + uv + uw

Recursively, 9/' ) /° )
N

o 5 o o 5 o o

spanner of size 2n — 3.



Two promising techniques...

Pivotability N _]
Pivot node v and time ¢ such that: o /o;[r] li.;“‘o
> all nodes can reach v before ¢ N T
» v can reach all nodes after ¢ ’7)\ j
Then in-tree U out-tree = spanner of size 2n — 2 (in fact 2n — 3...) o+—0j—o

Dismountability
Three nodes u, v, w such that:
» yv =min-edge (v)

» yww =max-edge (w)

Then spanner (G) = spanner (G[V\u]) + uv + uw

Recursively, 9/' ) /C )
N

o 5 o o 5 o o

spanner of size 2n — 3.

. unfortunately
Both techniques fail in some cases.



Transitive delegations (“fireworks”)



Transitive delegations (“fireworks”)

Principle:

> Transitive delegations towards emitters
» Spanner = forest of min edges + edges of emitters




Transitive delegations (“fireworks”)

Principle:

> Transitive delegations towards emitters
» Spanner = forest of min edges + edges of emitters

Wait a minute... could be lot of emitters!




Transitive delegations (“fireworks”)

Principle:

> Transitive delegations towards emitters
» Spanner = forest of min edges + edges of emitters

Wait a minute... could be lot of emitters!

— Local transformation of the forest:
» At most n/2 emitters




Transitive delegations (“fireworks”)

Principle:

> Transitive delegations towards emitters
» Spanner = forest of min edges + edges of emitters

Wait a minute... could be lot of emitters!

— Local transformation of the forest:
» At most n/2 emitters

Theorem: 3 spanners of size 3 () + O(n)




Transitive delegations (“fireworks”)

Principle:

> Transitive delegations towards emitters
» Spanner = forest of min edges + edges of emitters

Wait a minute... could be lot of emitters!

— Local transformation of the forest:
» At most n/2 emitters

Theorem: 3 spanners of size 3 () + O(n)

Backward spanner also possible

— Spanner = max edges + all edges of collectors




Combining both directions

» Each vertex can reach at least one emitter w
through u’s min edge

\Tw\
o
7
3
12
< 0
11 5
4 7\ [ ]
— Spanner = min edges + max edges 2/

+ edges between emitters and collectors o l/

» Each vertex can be reached by a collector v
through v’s max edge

» Each emitter can reach all collectors
through direct edges

Theorem:

At most n/2 emitters and n /2 collectors = | 3 Spanners of size ('2‘)/2 + O(n) ‘

= half of the edges



Recurse or sparsify?




Recurse or sparsify?

Case 1: emitters U collectors # V/

Lemma: There exists a “2-hop dismountable” vertex v
— select 4 edges, recurse on G[V — v]




Recurse or sparsify?

Case 1: emitters U collectors # V/

Lemma: There exists a “2-hop dismountable” vertex v
— select 4 edges, recurse on G[V — v]

Case 2: emitters U collectors = V/

— All vertices are either emitters or collectors (not both)!




Recurse or sparsify?

@
6/ A\ 10,
[ ] / 13 o]
AN T A7
Case 1: emitters U collectors # V/
1 S 5
Lemma: There exists a “2-hop dismountable” vertex v % m
— o \ 4 °
— select 4 edges, recurse on G[V — v] \g \ 1/
N

Case 2: emitters U collectors = V/

— All vertices are either emitters or collectors (not both)!




Recurse or sparsify?

@
6/ A\ 10,
[ ] / 13 o]
AN T A7
Case 1: emitters U collectors # V/
1 S 5
Lemma: There exists a “2-hop dismountable” vertex v % m
— o \ 4 °
— select 4 edges, recurse on G[V — v] \g \ 1/
N

Case 2: emitters U collectors = V/

— All vertices are either emitters or collectors (not both)!

A lot of structure to work with:

» Complete bipartite graph # between emitters and collectors
» Min edges and max edges form two perfect matchings

» W.l.o.g. min edges (max edges) are reciprocal in H




Recurse or sparsify?

@
6/ A\ 10,
[ ] / 13 o]
AN T A7
Case 1: emitters U collectors # V/
1 S 5
Lemma: There exists a “2-hop dismountable” vertex v % m
— o \ 4 °
— select 4 edges, recurse on G[V — v] \g \ 1/
N

Case 2: emitters U collectors = V/

— All vertices are either emitters or collectors (not both)!

A lot of structure to work with:

» Complete bipartite graph # between emitters and collectors
» Min edges and max edges form two perfect matchings

» W.l.o.g. min edges (max edges) are reciprocal in H

New objective:
— Sparsify H while preserving journeys from each emitter to all collectors



Sparsification of the bipartite graph

New objective:
— Sparsify H while preserving journeys from each emitter to all collectors

Technique: Partial delegations among emitters

> Find a 2-hop journey from one emitter to another,
arriving through a “locally small” edge

» Pay extra edges (penalty) to reach missed collectors




Sparsification of the bipartite graph

New objective:
— Sparsify H while preserving journeys from each emitter to all collectors

Technique: Partial delegations among emitters

> Find a 2-hop journey from one emitter to another,
arriving through a “locally small” edge

» Pay extra edges (penalty) to reach missed collectors

Iterative procedure:

In each step i:
» Half of the emitters partially delegate to other half

» Penalty doubles in each step, but #emitters halves
»> O(n) edges over O(logn) iterations — O(n logn) edges.



Sparsification of the bipartite graph

New objective:
— Sparsify H while preserving journeys from each emitter to all collectors

Technique: Partial delegations among emitters

> Find a 2-hop journey from one emitter to another,
arriving through a “locally small” edge

> Pay extra edges (penalty) to reach missed collectors

Iterative procedure:

In each step i:
» Half of the emitters partially delegate to other half

» Penalty doubles in each step, but #emitters halves
»> O(n) edges over O(logn) iterations — O(n logn) edges.

Conclusion:

3 spanner of size O(nlogn) O



Open questions (deterministic)

Better spanners for temporal cliques?

> Is O(nlogn) optimal for cliques? Is O(n) possible?

» Even better, does 2n — 4 < OPT < 2n — 3?
(so far, no counter-example found)



Open questions (deterministic)

Better spanners for temporal cliques?

> Is O(nlogn) optimal for cliques? Is O(n) possible?

» Even better, does 2n — 4 < OPT < 2n — 3?
(so far, no counter-example found)

Relaxing the complete graph assumption

» Can more general classes of dense graphs be sparsified?
— Recall that 3 unsparsifiable graphs of density ©(n?)
— s there a family of graphs of density < 1 which admits sparse spanners?



Open questions (deterministic)

Better spanners for temporal cliques?

> |Is O(nlogn) optimal for cliques? Is O(n) possible?
» Even better, does 2n — 4 < OPT < 2n — 3?

(so far, no counter-example found)
Relaxing the complete graph assumption

» Can more general classes of dense graphs be sparsified?
— Recall that 3 unsparsifiable graphs of density ©(n?)
— Is there a family of graphs of density < 1 which admits sparse spanners?

What about random temporal graphs?



Good news 2:
Spanners of size 2n + o(n) almost surely exist

in random temporal graphs

(with)




Sharp thresholds in random temporal graphs (c., Raskin, Renken, Zamaraev, 2021)

Random simple temporal graphs: 3 p b )
1. Pick an Erdés-Rényi G ~ G, p 4 1
2. Permute the edges randomly, B\ /7
interpret as (unique) presence time 3
Timeline for p (as n — oo):
0 loi n 1

/

Standard connectivity



Sharp thresholds in random temporal graphs (c., Raskin, Renken, Zamaraev, 2021)

) 5
Random simple temporal graphs: 3 p )
1. Pick an Erdés-Rényi G ~ G, p 4 1
2. Permute the edges randomly, B\ /7
interpret as (unique) presence time 3
Timeline for p (as n — oo):
0 loi n 1

/

Standard connectivity

Most vertex pairs
reach each other
(~3k A~ )



Sharp thresholds in random temporal graphs (c., Raskin, Renken, Zamaraev, 2021)

. 5
Random simple temporal graphs: 3 p )
1. Pick an Erdés-Rényi G ~ G, p 4 1
2. Permute the edges randomly, B\ /7
interpret as (unique) presence time 3

Timeline for p (as n — oo):

logn 2 logn
n

0 n

| /

Standard connectivity

First source
(1~ %)
Most vertex pairs
reach each other
(~3k A~ )



Sharp thresholds in random temporal graphs (c., Raskin, Renken, Zamaraev, 2021)

. 5
Random simple temporal graphs: 3 p )
1. Pick an Erdés-Rényi G ~ G, p 4 1
2. Permute the edges randomly, B\ /7
interpret as (unique) presence time 3

Timeline for p (as n — oo):

logn 2 logn
n

0 n

| /

Standard connectivity

First source

(1~ k)
Most vertex pairs Most vertices
reach each other are sources
(~k o k) (~k ~> %)



Sharp thresholds in random temporal graphs (c., Raskin, Renken, Zamaraev, 2021)

) 5
Random simple temporal graphs: 3 p )
1. Pick an Erdés-Rényi G ~ G, p 4 1
2. Permute the edges randomly, B\ /7
interpret as (unique) presence time 3
Timeline for p (as n — oo):
0 loi n 2 loi n 4 loi n 1

Standard connectivity . / Pivotal spanner
First source (size 2n — 2)
(1~ %)

Most vertex pairs Most vertices

reach each other are sources

(~k o k) (~k ~> %)



Sharp thresholds in random temporal graphs (c., Raskin, Renken, Zamaraev, 2021)

. 5
Random simple temporal graphs: 3 p )
1. Pick an Erdés-Rényi G ~ G, p 4 1
2. Permute the edges randomly, 8 -
interpret as (unique) presence time 3
Timeline for p (as n — oo):
logn 2 logn 3 logn 4 logn
O n n n n 1
Standard connectivity / / Pivotal spanner
First Temporal . -
({rsvfoi;ce connectivity (size 2n — 2)
Most vertex pairs Most vertices * ¥

reach each other are sources
(~3k ~ k) (~k ~> X)



Sharp thresholds in random temporal graphs (c., Raskin, Renken, Zamaraev, 2021)

. 5
Random simple temporal graphs: 3 p 3
1. Pick an Erdés-Rényi G ~ G, p 4 1
2. Permute the edges randomly, 8 7
interpret as (unique) presence time 3
Timeline for p (as n — oo):
logn logn logn logn
0 T 250 35 A 1
Standard connectivity / / Pivotal spanner
First Temporal f _
1|rth:?0>(l:rce connectivity (size 2n — 2)
. ( ) * ok
Most vertex pairs Most vertices Nearly optimal spanner

reach each other are sources (size 2n + o(n))
(~k o k) (~k ~> %)



Sharp thresholds in random temporal graphs (c., Raskin, Renken, Zamaraev, 2021)

. 5
Random simple temporal graphs: 3 p )
1. Pick an Erdés-Rényi G ~ G, p 4 1
2. Permute the edges randomly, 8 -
interpret as (unique) presence time 3
Timeline for p (as n — oo):
logn logn logn logn
0 T 25 3= S 1
Standard connectivity ) / / Pivotal spanner
First source Iinmnp(:?crt?\llit (size 2n — 2)
(1~ %) * Aok /
Most vertex pairs : ;
reach each other Most vertices Nearly optimal spanner Optimal spanner*

are sources (size 2n + o(n))

(~3k A k) (o ~> K) (size 2n — 4)



Sharp thresholds in random temporal graphs (c., Raskin, Renken, Zamaraev, 2021)

. 5
Random simple temporal graphs: 3 p )
1. Pick an Erdés-Rényi G ~ G, p 4 1
2. Permute the edges randomly, 8 -
interpret as (unique) presence time 3
Timeline for p (as n — oo):
logn 2 logn 3 logn 4 logn
O n n n n 1
Standard connectivity ) / / Pivotal spanner
First source Iinmnp(:?crt?\llit (size 2n — 2)
. (1~ ) * ok Y
Most vertex pairs Most vertices Nearly optimal spanner ook
reach each other are sources (size 2n + o(n)) E)z 5 P 4
(~% ~> k) (o ~ %) (size 2n — 4)

All the thresholds are sharp, except x (open problem)
(sharp: 3e(n) = o(1), nottrue at (1 — e(n))p, true at (1 + €(n))p)



Random Simple Temporal Graphs (RSTGs)

Temporal analog of Erdds-Reyni graphs, same parameters n and p



Random Simple Temporal Graphs (RSTGs)

Temporal analog of Erdds-Reyni graphs, same parameters n and p

AnRSTG G ~ G p:
1. Pick a footprint G ~ G,

2. Permute the edges randomly
(interpret ranks as times)



Random Simple Temporal Graphs (RSTGs)

Temporal analog of Erdds-Reyni graphs, same parameters n and p

AnRSTG G ~ G p:
1. Pick a footprint G ~ G,

2. Permute the edges randomly b c
(interpret ranks as times)

Ex:n=7p=04 ae o

e



Random Simple Temporal Graphs (RSTGs)
Temporal analog of Erdds-Reyni graphs, same parameters n and p
AnRSTG G ~ G p:

1. Pick a footprint G ~ G,

2. Permute the edges randomly b c
(interpret ranks as times)

Ex:n=7p=04 a d



Random Simple Temporal Graphs (RSTGs)
Temporal analog of Erdds-Reyni graphs, same parameters n and p
AnRSTG G ~ G p:

1. Pick a footprint G ~ G,

2. Permute the edges randomly
(interpret ranks as times)

Ex:n=7p=04




Random Simple Temporal Graphs (RSTGs)
Temporal analog of Erdds-Reyni graphs, same parameters n and p
AnRSTG G ~ Gn p:

1. Pick a footprint G ~ G,

2. Permute the edges randomly
(interpret ranks as times)

Ex:n=7p=04

Another point of view:

1. Take a complete graph K,
2. Assign random real times in [0, 1] to every edge
3. Restrict your attention to Gig ;|

— Better for analysis.



Timeline of temporal reachability in G, ,

For sufficiently large n, what happens when p increases?

logn

e

Footprint has
giant component

Footprint connected



Timeline of temporal reachability in G, ,

For sufficiently large n, what happens when p increases?

logn

e

Footprint has
giant component

Footprint connected

Most vertex pairs
reach each other
(~k ~> %)



Timeline of temporal reachability in G, ,

For sufficiently large n, what happens when p increases?

1 logn logn
0 w 2=
I /
Footprint has
giant component
Footprint connected First source
(L~ %)

Most vertex pairs
reach each other
(~k ~> %)



Timeline of temporal reachability in G, ,

For sufficiently large n, what happens when p increases?

1 logn logn
0 w 2=
I /
Footprint has
giant component
Footprint connected First source
(L~ %)

Most vertex pairs
reach each other

(¥~ %) Most vertices

are sources
(~k ~> k)



Timeline of temporal reachability in G, ,

For sufficiently large n, what happens when p increases?

logn 2logn 410gn
n n

e

Footprint has
giant component

Pivotal spanner
) . (size 2n — 2)
Footprint connected First source

(1~ %)

Most vertex pairs
reach each other

(¥~ %) Most vertices

are sources
(~k ~> k)



Timeline of temporal reachability in G, ,

For sufficiently large n, what happens when p increases?

1 logn logn logn logn
I /
Footprint has
giant component
Pivotal spanner
. . (size 2n — 2)
Footprint connected First source Temporal
(1~ %) connectivity
(% ~> %)

Most vertex pairs
reach each other

(¥~ %) Most vertices

are sources
(~k ~> k)



Timeline of temporal reachability in G, ,

For sufficiently large n, what happens when p increases?

logn 2logn 3 logn 410gn
n n n

e

Footprint has
giant component

Pivotal spanner
(size 2n — 2)
Footprint connected First source Temporal
(1~ %) connectivity

(% ~> %)

Most vertex pairs
reach each other

(¥~ %) Most vertices Nearly optimal spanner

are sources (size 2n + o(n))
(~% ~ k)



Timeline of temporal reachability in G, ,

For sufficiently large n, what happens when p increases?

logn 2logn 3 logn 410gn
n n n

e

Footprint has
giant component

Pivotal spanner

) . (size 2n — 2)
Footprint connected First source Temporal
(1~ %) connectivity N
) (¥~ %) Optimal spanner
Most vertex pairs (size 2n — 4)
reach each other
(¥~ %) Most vertices Nearly optimal spanner
are sources (size 2n + o(n))

(~% ~ k)



Timeline of temporal reachability in G, ,

For sufficiently large n, what happens when p increases?

logn 2logn 3 logn 410gn
n n n

e

Footprint has
giant component

Pivotal spanner

) . (size 2n — 2)
Footprint connected First source Temporal
(1~ %) connectivity N
) (¥~ %) Optimal spanner
Most vertex pairs (size 2n — 4)
reach each other
(¥~ %) Most vertices Nearly optimal spanner
are sources (size 2n + o(n))
(~% ~ k)

All the thresholds are sharp, except x (open problem)
(sharp: 3e(n) = o(1), nottrue at (1 — e(n))p, true at (1 + €(n))p)



Main technical tool: growth of a foremost tree

Foremost tree (from s)
- Foremost temporal paths from s to all

- “Prim-like” algorithm.




Main technical tool: growth of a foremost tree

Foremost tree (from s)
- Foremost temporal paths from s to all

- “Prim-like” algorithm.




Main technical tool: growth of a foremost tree

Foremost tree (from s)
- Foremost temporal paths from s to all

- “Prim-like” algorithm.




Main technical tool: growth of a foremost tree

Foremost tree (from s)
- Foremost temporal paths from s to all

- “Prim-like” algorithm.




Main technical tool: growth of a foremost tree

Foremost tree (from s)
- Foremost temporal paths from s to all

- “Prim-like” algorithm.




Main technical tool: growth of a foremost tree

Foremost tree (from s)
- Foremost temporal paths from s to all

- “Prim-like” algorithm. 3 6




Main technical tool: growth of a foremost tree

Foremost tree (from s)
- Foremost temporal paths from s to all

- “Prim-like” algorithm. 3 6




Main technical tool: growth of a foremost tree

Foremost tree (from s)
- Foremost temporal paths from s to all

- “Prim-like” algorithm.




Main technical tool: growth of a foremost tree

Foremost tree (from s)
- Foremost temporal paths from s to all

- “Prim-like” algorithm.




Main technical tool: growth of a foremost tree

Foremost tree (from s)
- Foremost temporal paths from s to all

- “Prim-like” algorithm.

Analysis



Main technical tool: growth of a foremost tree

Foremost tree (from s)
- Foremost temporal paths from s to all

- “Prim-like” algorithm.

Analysis

> Consider “growing” a foremost tree in G ~ G,, 1 from a vertex s.



Main technical tool: growth of a foremost tree

Foremost tree (from s)
- Foremost temporal paths from s to all

- “Prim-like” algorithm.

Analysis
> Consider “growing” a foremost tree in G ~ G,, 1 from a vertex s.

> Once we have reached k vertices, there are k(n — k) potential edges.



Main technical tool: growth of a foremost tree

Foremost tree (from s)
- Foremost temporal paths from s to all

- “Prim-like” algorithm.

Analysis
> Consider “growing” a foremost tree in G ~ G,, 1 from a vertex s.
> Once we have reached k vertices, there are k(n — k) potential edges.

» The waiting time for one of these to appear is ~ m



Main technical tool: growth of a foremost tree

Foremost tree (from s)
- Foremost temporal paths from s to all

- “Prim-like” algorithm.

Analysis

> Consider “growing” a foremost tree in G ~ G,, 1 from a vertex s.

> Once we have reached k vertices, there are k(n — k) potential edges.
» The waiting time for one of these to appear is ~ m

—> Expect to reach all vertices at > m ~ 21‘%".



Main technical tool: growth of a foremost tree

Foremost tree (from s)
- Foremost temporal paths from s to all

- “Prim-like” algorithm.

Analysis
> Consider “growing” a foremost tree in G ~ G,, 1 from a vertex s.
> Once we have reached k vertices, there are k(n — k) potential edges.
» The waiting time for one of these to appear is ~ m
—> Expect to reach all vertices at > m ~ 21‘%".

» Azuma’s inequality for concentration.



Derived arguments

We note foremost(u) the set of vertices reached by a foremost tree from w.

Reachability thresholds

> kx> Yu,Vv,a.a.5. v € foremost(u) (logn/n)



Derived arguments

We note foremost(u) the set of vertices reached by a foremost tree from w.

Reachability thresholds

> kx> Yu,Vv,a.a.5. v € foremost(u) (logn/n)
> 1% < a.a.s. Ju,Vv,v € foremost(u) (2logn/n)



Derived arguments

We note foremost(u) the set of vertices reached by a foremost tree from w.

Reachability thresholds

> kx> Yu,Vv,a.a.5. v € foremost(u) (logn/n)
> 1% < a.a.s. Ju,Vv,v € foremost(u) (2logn/n)
> ko ok <= Yu,a.a.s. Yu,v € foremost(u) (2logn/n)



Derived arguments

We note foremost(u) the set of vertices reached by a foremost tree from w.

Reachability thresholds

P>k ek < Yu, Vv, a.a.5. v € foremost(u) (logn/n)
> 1% < a.a.s. Ju,Vv,v € foremost(u) (2logn/n)
> ko ok <= Yu,a.a.s. Yu,v € foremost(u) (2logn/n)
> ks ox < a.a.s Yu,Vv,v € foremost(u) (3logn/n)

LB: (x ~» 1) + (log n/n), each non sink must have at least one new edge.
UB: (* ~»~=x) + (log n/n), each non sink is reached from at least one sink.



Derived arguments

We note foremost(u) the set of vertices reached by a foremost tree from w.

Reachability thresholds

P>k ek < Yu, Vv, a.a.5. v € foremost(u) (logn/n)
> 1% < a.a.s. Ju,Vv,v € foremost(u) (2logn/n)
> ko ok <= Yu,a.a.s. Yu,v € foremost(u) (2logn/n)
> ks ox < a.a.s Yu,Vv,v € foremost(u) (3logn/n)

LB: (x ~» 1) + (log n/n), each non sink must have at least one new edge.
UB: (* ~»~=x) + (log n/n), each non sink is reached from at least one sink.

Spanners



Derived arguments

We note foremost(u) the set of vertices reached by a foremost tree from w.

Reachability thresholds

P>k ek < Yu, Vv, a.a.5. v € foremost(u) (logn/n)
> 1% < a.a.s. Ju,Vv,v € foremost(u) (2logn/n)
> ko ok <= Yu,a.a.s. Yu,v € foremost(u) (2logn/n)
> ks ox < a.a.s Yu,Vv,v € foremost(u) (3logn/n)
LB: (x ~» 1) + (log n/n), each non sink must have at least one new edge.
UB: (* ~»~=x) + (log n/n), each non sink is reached from at least one sink.
Spanners

> Pivotal (s ~» 1~ %) <= (% ~> ~x) 4 (~k ~ %) (4logn/n)



Derived arguments

We note foremost(u) the set of vertices reached by a foremost tree from w.

Reachability thresholds

P>k ek < Yu, Vv, a.a.5. v € foremost(u) (logn/n)
> 1% < a.a.s. Ju,Vv,v € foremost(u) (2logn/n)
> ko ok <= Yu,a.a.s. Yu,v € foremost(u) (2logn/n)
> ks ox < a.a.s Yu,Vv,v € foremost(u) (3logn/n)

LB: (x ~» 1) + (log n/n), each non sink must have at least one new edge.
UB: (* ~»~=x) + (log n/n), each non sink is reached from at least one sink.

Spanners
> Pivotal (s ~» 1~ %) <= (% ~> ~x) 4 (~k ~ %) (4logn/n)
» Optimal spanner (size 2n — 4) (4logn/n)

Pivotal square. Sharp ?



Derived arguments

We note foremost(u) the set of vertices reached by a foremost tree from w.

Reachability thresholds

> kx> Yu,Vv,a.a.5. v € foremost(u) (logn/n)
> 1% < a.a.s. Ju,Vv,v € foremost(u) (2logn/n)
> ko k <= Yu,a.a.s. Vu,v € foremost(u) (2logn/n)
> ks ox < a.a.s Yu,Vv,v € foremost(u) (3logn/n)
LB: (x ~» 1) + (log n/n), each non sink must have at least one new edge.
UB: (* ~»~=x) + (log n/n), each non sink is reached from at least one sink.
Spanners
> Pivotal (k ~» 1~ %) <= (k ~» ~k) 4 (~k ~= %) (4logn/n)
» Optimal spanner (size 2n — 4) (4logn/n)
Pivotal square. Sharp ?
»> Nearly optimal spanner (size 2n + o(n)) (3logmn/n)
LB: Trivial (not temporally connected)
UB: Explicit construction
Three intervals of length log n/n:
~* ~ 1 (say u) By logn/n
U~ ok between 2log n/n and 3log n/n.

missing ~> u
U~ missing
missing ~» missing

vVYYVYY

between 0 and 2 log n.
between log n/n and 3log n/n
between 0 and 3 log n/n



Random Non-Simple Temporal Graphs

‘Hn,p: Each edge independently appears according to a rate 1 Poisson
process stopped at time p.

qrb‘ ’6:5
5
72
@ N Y '33
© R
Theorem
/2

All our thresholds also hold for Hr, .



Simple temporal graphs (beyond spanners)

Special properties and symmetries

231

231



Equivalence based on reachability (up to time distortion)

Different STGs are equivalent in terms of reachability

112

G1 G2



Equivalence based on reachability (up to time distortion)

Different STGs are equivalent in terms of reachability

2 17 3 11
1 2
~
4 5 8 3
6 10
G G2

How to capture this equivalence?



Equivalence based on reachability (up to time distortion)

Different STGs are equivalent in terms of reachability

2 17 3
2 3 2 3
11 1 f 2 A
3 2 ~ 3 2
4 5 8 3
1 1 1 1
2 6 2 2 10 2

G G2

How to capture this equivalence?

» Option 1: Local ordering?



Equivalence based on reachability (up to time distortion)

Different STGs are equivalent in terms of reachability

w
n
w
n

G G2
How to capture this equivalence?

» Option 1: Local ordering?



Equivalence based on reachability (up to time distortion)

Different STGs are equivalent in terms of reachability

2 17 3 11
1 2
Y
4 5 8 3
6 10
G1 G2

How to capture this equivalence?

» Option 1: Local ordering?



Equivalence based on reachability (up to time distortion)

Different STGs are equivalent in terms of reachability

2 17 3 11
1 2
~
4 5 8 3
6 10
G G2

How to capture this equivalence?
» Option 1: Local ordering?

» Option 2: STG representative



Equivalence based on reachability (up to time distortion)

Different STGs are equivalent in terms of reachability

2 17 3 11 2 3
1 2
o —
4 5 8 3 3 2
6 10 4
G1 Go Grep

How to capture this equivalence?
» Option 1: Local ordering?

» Option 2: STG representative



Equivalence based on reachability (up to time distortion)

Different STGs are equivalent in terms of reachability

2 17 3 11 2 3
1 2
o —
4 5 8 3 3
6 10 4
G1 Go Grep

How to capture this equivalence?
» Option 1: Local ordering?
» Option 2: STG representative v/

STG representatives have good properties for generation

+ canonization, isomorphism testing, and computation of generators for the
automorphism group, are all feasible in polynomial time.



STG representatives
Canonization

. Find edges that are local minima
. Assign them the smallest available time
. Increment time

AW N =

. Repeat on remaining edges




STG representatives
Canonization

. Find edges that are local minima
. Assign them the smallest available time
. Increment time

AW N =

. Repeat on remaining edges




STG representatives
Canonization

. Find edges that are local minima
. Assign them the smallest available time
. Increment time

AW N =

. Repeat on remaining edges

17



STG representatives
Canonization

. Find edges that are local minima
. Assign them the smallest available time
. Increment time

AW N =

. Repeat on remaining edges

17



STG representatives
Canonization

. Find edges that are local minima 2/ 17
. Assign them the smallest available time /
. Increment time

AW N =

. Repeat on remaining edges




STG representatives
Canonization

. Find edges that are local minima 2/ 17
. Assign them the smallest available time /
. Increment time

AW N =

. Repeat on remaining edges




STG representatives
Canonization

. Find edges that are local minima
. Assign them the smallest available time
. Increment time

AW N =

. Repeat on remaining edges



STG representatives
Canonization

. Find edges that are local minima
. Assign them the smallest available time
. Increment time

AW N =

. Repeat on remaining edges



STG representatives
Canonization

. Find edges that are local minima
. Assign them the smallest available time
. Increment time

AW N =

. Repeat on remaining edges



STG representatives
Canonization

. Find edges that are local minima
. Assign them the smallest available time
. Increment time

AW N =

. Repeat on remaining edges

Properties of the labeling

Time induces a proper coloring of the edges (by definition of STGs).



STG representatives

Canonization

1. Find edges that are /local minima 2,/ \3
2. Assign them the smallest available time / ) \
3. Increment time TL S
4. Repeat on remaining edges 3, 12
| |
[ S ——

Properties of the labeling
Time induces a proper coloring of the edges (by definition of STGs).

In addition,

Contiguity Lemma: If an edge is labeled ¢ > 1, then an adjacent edge is labeled ¢ — 1.




STG representatives

Canonization

1. Find edges that are /local minima 2,/ \3
2. Assign them the smallest available time / ) \
3. Increment time TL S
4. Repeat on remaining edges 3, 12
| |
[ S ——

Properties of the labeling
Time induces a proper coloring of the edges (by definition of STGs).

In addition,

Contiguity Lemma: If an edge is labeled ¢ > 1, then an adjacent edge is labeled ¢ — 1.

(If you know a name for this type of edge coloring, please let me know.)



How to test for equivalence?



How to test for equivalence?

Input: Two STGs G; and Go
Output: Are they equivalent?

Two steps algorithm:

1. Canonize them
2. Test for (classical) isomorphism of the canonical forms



How to test for equivalence?

Input: Two STGs G; and Go
Output: Are they equivalent?

Two steps algorithm:

1. Canonize them
2. Test for (classical) isomorphism of the canonical forms
Algorithm for the second step:

Fix an arbitrary vertex v1 of G1
Try to send it to a vertex v of Go
If OK, answer YES

@
™
LD~

If not, try the next vertex of G2
4 (or answer NO if none remain)




How to test for equivalence?

Input: Two STGs G; and Go
Output: Are they equivalent?

Two steps algorithm:

1. Canonize them
2. Test for (classical) isomorphism of the canonical forms
Algorithm for the second step:

Fix an arbitrary vertex v1 of G1
Try to send it to a vertex v of Go
If OK, answer YES

@
™
LD~

If not, try the next vertex of G2
4 (or answer NO if none remain)




How to test for equivalence?

Input: Two STGs G; and Go
Output: Are they equivalent?

Two steps algorithm:

1. Canonize them
2. Test for (classical) isomorphism of the canonical forms
Algorithm for the second step:

Fix an arbitrary vertex v1 of G1
Try to send it to a vertex v of Go
If OK, answer YES

4

1
2 3
3 2 ;
If not, try the next vertex of G2

4 (or answer NO if none remain)

LD~




How to test for equivalence?

Input: Two STGs G; and Go
Output: Are they equivalent?

Two steps algorithm:

1. Canonize them
2. Test for (classical) isomorphism of the canonical forms
Algorithm for the second step:

Fix an arbitrary vertex v1 of G1
Try to send it to a vertex v of Go
If OK, answer YES

@
™
LD~

If not, try the next vertex of G2
4 (or answer NO if none remain)




How to test for equivalence?

Input: Two STGs G; and Go
Output: Are they equivalent?

Two steps algorithm:

1. Canonize them
2. Test for (classical) isomorphism of the canonical forms
Algorithm for the second step:

Fix an arbitrary vertex v1 of G1

Try to send it to a vertex v of Go
If OK, answer YES

@
™
LD~

If not, try the next vertex of G2
4 (or answer NO if none remain)

Key observation: when trying to send v; to v2, the mapping among neighbors unfolds
recursively without choices (due to the proper coloring of the edges)

— passes or fails in polynomial time.



How to test for equivalence?

Input: Two STGs G; and Go
Output: Are they equivalent?

Two steps algorithm:

1. Canonize them
2. Test for (classical) isomorphism of the canonical forms
Algorithm for the second step:

Fix an arbitrary vertex v1 of G1

Try to send it to a vertex v of Go
If OK, answer YES

If not, try the next vertex of G2
4 (or answer NO if none remain)

@
™
LD~

Key observation: when trying to send v; to v2, the mapping among neighbors unfolds
recursively without choices (due to the proper coloring of the edges)

— passes or fails in polynomial time.

Remark: Also feasible using Babai & Luks machinery (1983)



Automorphisms of an STG

Case 1: The underlying graph is connected.

— Same strategy as for isomorphism.



Automorphisms of an STG

Case 1: The underlying graph is connected.

— Same strategy as for isomorphism.

AT,

¢ >

2 1

NN



Automorphisms of an STG

Case 1: The underlying graph is connected.

— Same strategy as for isomorphism.
QH\ 2
2 1
NS

3



Automorphisms of an STG

Case 1: The underlying graph is connected.

— Same strategy as for isomorphism.
SN
T
2

1

N



Automorphisms of an STG

Case 1: The underlying graph is connected.

— Same strategy as for isomorphism.
SN

R



Automorphisms of an STG

Case 1: The underlying graph is connected.

— Same strategy as for isomorphism.

SN

2

4 >
R\'HSH/1



Automorphisms of an STG

Case 1: The underlying graph is connected.

— Same strategy as for isomorphism.

fZ >- At most n automorphisms!



Automorphisms of an STG

Case 1: The underlying graph is connected.

— Same strategy as for isomorphism.

Case 2: The underlying graph is not connected
(the complement trick does not works for temporal graphs...)



Automorphisms of an STG

Case 1: The underlying graph is connected.

— Same strategy as for isomorphism.

Case 2: The underlying graph is not connected
(the complement trick does not works for temporal graphs...)

1/ 1/ 1. Find the underlying components

? 2. Search for isomorphisms between pairs of components
1 (remember one for each)

1 1 3. Find the automorphisms within each component type
N N (trivially extended to G)



Automorphisms of an STG

Case 1: The underlying graph is connected.

— Same strategy as for isomorphism.

Case 2: The underlying graph is not connected
(the complement trick does not works for temporal graphs...)

v
27
1 1 1. Find the underlying components
( ( ? 2. Search for isomorphisms between pairs of components
Jz\ Jz\ 1 (remember one for each)
1 1 3. Find the automorphisms within each component type

N N (trivially extended to G)



Automorphisms of an STG

Case 1: The underlying graph is connected.

— Same strategy as for isomorphism.

Case 2: The underlying graph is not connected
(the complement trick does not works for temporal graphs...)

1/ /;1/\‘ 1. Find the underlying components

? 2. Search for isomorphisms between pairs of components
1 (remember one for each)

1 1 3. Find the automorphisms within each component type
N N (trivially extended to G)



Automorphisms of an STG

Case 1: The underlying graph is connected.

— Same strategy as for isomorphism.

Case 2: The underlying graph is not connected
(the complement trick does not works for temporal graphs...)

1. Find the underlying components

2. Search for isomorphisms between pairs of components
(remember one for each)

3. Find the automorphisms within each component type
(trivially extended to G)




Automorphisms of an STG

Case 1: The underlying graph is connected.

— Same strategy as for isomorphism.

Case 2: The underlying graph is not connected
(the complement trick does not works for temporal graphs...)

1/ 1/ ’_\ 1. Find the underlying components

? 2. Search for isomorphisms between pairs of components
1 (remember one for each)

1 1 3. Find the automorphisms within each component type
N N (trivially extended to G)



Automorphisms of an STG

Case 1: The underlying graph is connected.

— Same strategy as for isomorphism.

Case 2: The underlying graph is not connected
(the complement trick does not works for temporal graphs...)

1/ 1/ 1. Find the underlying components
( ( ? 2. Search for isomorphisms between pairs of components
JZ\ JZ\ . 1 (remember one for each)

1 1 3. Find the automorphisms within each component type
N N (trivially extended to G)



Automorphisms of an STG

Case 1: The underlying graph is connected.

— Same strategy as for isomorphism.

Case 2: The underlying graph is not connected
(the complement trick does not works for temporal graphs...)

1/ 1/ 1. Find the underlying components

? 2. Search for isomorphisms between pairs of components
1 (remember one for each)

1 1 3. Find the automorphisms within each component type
N N (trivially extended to G)



Automorphisms of an STG

Case 1: The underlying graph is connected.

— Same strategy as for isomorphism.

Case 2: The underlying graph is not connected
(the complement trick does not works for temporal graphs...)

, ,
oy
K1 K1

N N

o———o

. Find the underlying components
. Search for isomorphisms between pairs of components

(remember one for each)

. Find the automorphisms within each component type

(trivially extended to G)



Automorphisms of an STG

Case 1: The underlying graph is connected.

— Same strategy as for isomorphism.

Case 2: The underlying graph is not connected
(the complement trick does not works for temporal graphs...)

A ,

AN
O
S

. Find the underlying components
. Search for isomorphisms between pairs of components

(remember one for each)

. Find the automorphisms within each component type

(trivially extended to G)



Automorphisms of an STG

Case 1: The underlying graph is connected.

— Same strategy as for isomorphism.

Case 2: The underlying graph is not connected
(the complement trick does not works for temporal graphs...)

1/ v 1/ 1. Find the underlying components
( ( ? 2. Search for isomorphisms between pairs of components
JZ\ JZ\ l (remember one for each)

1 1 3. Find the automorphisms within each component type
N N (trivially extended to G)



Automorphisms of an STG

Case 1: The underlying graph is connected.

— Same strategy as for isomorphism.

Case 2: The underlying graph is not connected
(the complement trick does not works for temporal graphs...)

1/ 1/ 1. Find the underlying components
( ( ?\ V2. Search for isomorphisms between pairs of components
JZ\ JZ\ . l (remember one for each)

1 1 3. Find the automorphisms within each component type
N N (trivially extended to G)



Automorphisms of an STG

Case 1: The underlying graph is connected.

— Same strategy as for isomorphism.

Case 2: The underlying graph is not connected
(the complement trick does not works for temporal graphs...)

1/ 1/ 1. Find the underlying components

? 2. Search for isomorphisms between pairs of components
1 (remember one for each)

1 1 3. Find the automorphisms within each component type
N N (trivially extended to G)

Claim: Aut(G) = ( isomorphisms + automorphisms )



Automorphisms of an STG

Case 1: The underlying graph is connected.

— Same strategy as for isomorphism.

Case 2: The underlying graph is not connected
(the complement trick does not works for temporal graphs...)

1/ 1/ 1. Find the underlying components
( ( ? 2. Search for isomorphisms between pairs of components
Jz\ Jz\ 1 (remember one for each)
1 1 3. Find the automorphisms within each component type
N N (trivially extended to G)

Claim: Aut(G) = ( isomorphisms + automorphisms )

— Generators for Aut(G) can be computed in polynomial time!



Enumeration up to equivalence

(motivated by conjecture refutation on spanners)

28/1 28/



Generation tree

Principle: One level = one time unit
— children of a graph = all the possible ways to add the next time

e iy
WKVNED@N%



Generation tree

Principle: One level = one time unit
— children of a graph = all the possible ways to add the next time

Key properties
1. Rigidity is inherited

J Rigid world N

_____



Generation tree

Principle: One level = one time unit
— children of a graph = all the possible ways to add the next time

Key properties

1. Rigidity is inherited
2. Dissimilarity is inherited

J Isomorphism types separated (forever)



How to generate successors at each level?

Input: An STG representative G, whose maximum time is ¢
Output: All STG representatives that extend G with time ¢ + 1.



How to generate successors at each level?

Input: An STG representative G, whose maximum time is ¢
Output: All STG representatives that extend G with time ¢ + 1.

First, how to decide if a non-edge is eligible to receive a (¢ + 1) time label? (E.g. here, time 3)

1

—




How to generate successors at each level?

Input: An STG representative G, whose maximum time is ¢
Output: All STG representatives that extend G with time ¢ + 1.

First, how to decide if a non-edge is eligible to receive a (¢ + 1) time label? (E.g. here, time 3)

1

2 3 X Coloring lemma: (t+1) must be adjacent to (t)




How to generate successors at each level?

Input: An STG representative G, whose maximum time is ¢
Output: All STG representatives that extend G with time ¢ + 1.

First, how to decide if a non-edge is eligible to receive a (¢ + 1) time label? (E.g. here, time 3)

2 M Coloring lemma: (t+1) must be adjacent to (t)




How to generate successors at each level?

Input: An STG representative G, whose maximum time is ¢
Output: All STG representatives that extend G with time ¢ + 1.

First, how to decide if a non-edge is eligible to receive a (¢ + 1) time label? (E.g. here, time 3)

2 M Coloring lemma: (t+1) must be adjacent to (t)

G has symmetries
Two cases




How to generate successors at each level?

Input: An STG representative G, whose maximum time is ¢
Output: All STG representatives that extend G with time ¢ + 1.

First, how to decide if a non-edge is eligible to receive a (¢ + 1) time label? (E.g. here, time 3)

2 M Coloring lemma: (t+1) must be adjacent to (t)

G has symmetries
Two cases

— Enumerate all matchings of eligible non-edges.
Each one defines a successor.



How to generate successors at each level?

Input: An STG representative G, whose maximum time is ¢
Output: All STG representatives that extend G with time ¢ + 1.

First, how to decide if a non-edge is eligible to receive a (¢ + 1) time label? (E.g. here, time 3)

2 M Coloring lemma: (t+1) must be adjacent to (t)

G has symmetries
Two cases

— Enumerate all matchings of eligible non-edges.
Each one defines a successor.

= Independent sets in the line graph of eligible
non-edges (standard algorithm)



How to generate successors at each level?

Input: An STG representative G, whose maximum time is ¢
Output: All STG representatives that extend G with time ¢ + 1.

First, how to decide if a non-edge is eligible to receive a (¢ + 1) time label? (E.g. here, time 3)

2 M Coloring lemma: (t+1) must be adjacent to (t)

G has symmetries
Two cases

— Enumerate matchings of eligible non-edges
whose multisets of orbits are distinct

OEZEANEN
= Independent sets in the line graph of eligible 2 CRERY, CREEY SRRV &
non-edges (standard algorithm) X k EN S Z¢7 57 .'

Done using the generators for Aut(G)

— Enumerate all matchings of eligible non-edges.
Each one defines a successor.



USing the generator https://github.com/acasteigts/STGen

Implemented in Julia

How to use . .
(other versions also in Python and Java)

include ("generation.j1")

n=>5
for g in TGraphs (n)

end


https://github.com/acasteigts/STGen

USing the generator https://github.com/acasteigts/STGen

Implemented in Julia

How to use . .
(other versions also in Python and Java)

include ("generation.j1")

n=>5
for g in TGraphs (n)

end

Pruning is possible using TGraphs (n, selection_predicate)


https://github.com/acasteigts/STGen

USing the generator https://github.com/acasteigts/STGen

Implemented in Julia
(other versions also in Python and Java)

How to use

include ("generation.j1")

n=>5
for g in TGraphs (n)

end

Pruning is possible using TGraphs (n, selection_predicate)

Back to the spanner question
Do simple temporal cliques admit spanners of size 2n — 3?


https://github.com/acasteigts/STGen

USing the generator https://github.com/acasteigts/STGen

Implemented in Julia
(other versions also in Python and Java)

How to use

include ("generation.j1")

n=>5
for g in TGraphs (n)

end

Pruning is possible using TGraphs (n, selection_predicate)

Back to the spanner question
Do simple temporal cliques admit spanners of size 2n — 3?

— True for n < 7 (and for all non-rigid graphs at n = 8). Otherwise still open! :-)


https://github.com/acasteigts/STGen

Some numbers

# Vertices

# STGs
1
2
4
62
15378
89769096

13828417028594

?

# Temporally connected STGs
1
1
1
32
10207
70557834
?

?

# Simple Temporal cliques
1
1
1
20
4524
23218501

3128434545680

?



Non dismountable clique:

Non pivotable clique (seen as a union of two graphs):

i u
PN o
2 0 ) a2
o// ot
I\« ST A
3 I
\ \ LV w
4\

o



Thanks!

next time... :-)



