Spanners and connectivity problems in temporal graphs

Arnaud Casteigts

LaBRI, Université de Bordeaux

November 10, 2022

(Liverpool CS seminar)

Based on two joint works with:

Jason Schoeters (Le Havre)

Joseph Peters (Vancouver)

Michael Raskin (Munich)

Malte Renken (Berlin)

Viktor Zamaraev (Liverpool)

Example of scenario

Example of scenario

Modeling

Example of scenario

Modeling

Example of scenario

Modeling

Properties:

Temporal connectivity?	\mathcal{TC}
Repeatedly?	$\mathcal{TC}^{\mathcal{R}}$
Recurrent links?	$\mathcal{E}^{\mathcal{R}}$
In bounded time?	$\mathcal{E}^{\mathcal{B}}$

\rightarrow Classes of temporal graphs

Distributed algorithm

Movement synthesis

Temporal graphs for their own sake

What does make them truly different?

Temporal graphs (a.k.a. time-varying, time-dependent, evolving, dynamic,...) $\mathcal{G} = (V, E, \lambda)$, where $\lambda : E \to 2^{\mathbb{N}}$ assigns *presence times* to edges.

Temporal graphs (a.k.a. time-varying, time-dependent, evolving, dynamic,...) $\mathcal{G} = (\underbrace{V, E, \lambda}_{|}, \text{ where } \lambda : E \to 2^{\mathbb{N}} \text{ assigns } presence \ times \ to \ edges.}$ footprint of \mathcal{G}

Temporal graphs (a.k.a. time-varying, time-dependent, evolving, dynamic,...) $\mathcal{G} = (\underbrace{V, E}_{l}, \lambda)$, where $\lambda : E \to 2^{\mathbb{N}}$ assigns *presence times* to edges. footprint of \mathcal{G}

Can also be viewed as a sequence of snapshots $\{G_i = \{e \in E : i \in \lambda(e)\}\}$

Temporal graphs (a.k.a. time-varying, time-dependent, evolving, dynamic,...) $\mathcal{G} = (\underbrace{V, E, \lambda}_{i})$, where $\lambda : E \to 2^{\mathbb{N}}$ assigns *presence times* to edges. footprint of \mathcal{G}

Can also be viewed as a sequence of snapshots $\{G_i = \{e \in E : i \in \lambda(e)\}\}$

Temporal paths

Temporal graphs (a.k.a. time-varying, time-dependent, evolving, dynamic,...) $\mathcal{G} = (V, E, \lambda)$, where $\lambda : E \to 2^{\mathbb{N}}$ assigns *presence times* to edges. footprint of \mathcal{G}

Can also be viewed as a sequence of snapshots $\{G_i = \{e \in E : i \in \lambda(e)\}\}$

Temporal paths

- Non-strict ex: ((a, c, 3), (c, d, 4), (d, e, 4))
- Strict ex: $\langle (a, c, 3), (c, d, 4), (d, e, 5) \rangle$

(non-decreasing)

(increasing)

Temporal graphs (a.k.a. time-varying, time-dependent, evolving, dynamic,...) $\mathcal{G} = (\underbrace{V, E}_{\downarrow}, \lambda)$, where $\lambda : E \to 2^{\mathbb{N}}$ assigns *presence times* to edges. footprint of \mathcal{G}

Can also be viewed as a sequence of snapshots $\{G_i = \{e \in E : i \in \lambda(e)\}\}$

Temporal paths

Non-strict - ex: ((a, c, 3), (c, d, 4), (d, e, 4))

(non-decreasing)

Strict - ex: ⟨(a, c, 3), (c, d, 4), (d, e, 5)⟩

(increasing)

Temporal connectivity: \exists temporal paths between all vertices.

Temporal graphs (a.k.a. time-varying, time-dependent, evolving, dynamic,...) $\mathcal{G} = (\underbrace{V, E}_{i}, \lambda)$, where $\lambda : E \to 2^{\mathbb{N}}$ assigns *presence times* to edges. *footprint* of \mathcal{G} Example: c 1,4 d Can also be viewed as a sequence of snapshots $\{G_i = \{e \in E : i \in \lambda(e)\}\}$

Connect

Temporal paths

Non-strict - ex: ((a, c, 3), (c, d, 4), (d, e, 4))

5.7

(non-decreasing)

Strict - ex: ⟨(a, c, 3), (c, d, 4), (d, e, 5)⟩

3,5

а

(increasing)

Temporal connectivity: \exists temporal paths between all vertices.

1,2,9

b

Temporal graphs (a.k.a. time-varying, time-dependent, evolving, dynamic,...) $\mathcal{G} = (\underbrace{V, E}_{i}, \lambda)$, where $\lambda : E \to 2^{\mathbb{N}}$ assigns *presence times* to edges. *footprint* of \mathcal{G} Example: c 1,4 d Can also be viewed as a sequence of snapshots $\{G_i = \{e \in E : i \in \lambda(e)\}\}$

Temporal paths

Non-strict - ex: ((a, c, 3), (c, d, 4), (d, e, 4))

5.7

(non-decreasing)

Strict - ex: $\langle (a, c, 3), (c, d, 4), (d, e, 5) \rangle$

3,5

а

(increasing)

Temporal connectivity: \exists temporal paths between all vertices.

1,2,9

b

 \rightarrow Warning: Reachability is non-symmetrical...

Temporal graphs (a.k.a. time-varying, time-dependent, evolving, dynamic,...) $\mathcal{G} = (V, E, \lambda)$, where $\lambda : E \to 2^{\mathbb{N}}$ assigns *presence times* to edges. footprint of \mathcal{G} Can also be viewed as a sequence of 2 4.5 snapshots $\{G_i = \{e \in E : i \in \lambda(e)\}\}$ 1,4 Example:

Temporal paths

Non-strict - ex: ((a, c, 3), (c, d, 4), (d, e, 4))

5.7

(non-decreasing)

• Strict - ex: $\langle (a, c, 3), (c, d, 4), (d, e, 5) \rangle$

3,5

а

(increasing)

Temporal connectivity: \exists temporal paths between all vertices.

d

b

1,2,9

→ Warning: Reachability is non-symmetrical... and non-transitive!

Input: a graph \mathcal{G} that is temporally connected ($\mathcal{G} \in TC$)

Output: a graph $\mathcal{G}' \subseteq \mathcal{G}$ that preserves temporal connectivity ($\mathcal{G}' \in TC$)

Cost measure: size of the spanner (say, in number of labels)

Input: a graph \mathcal{G} that is temporally connected ($\mathcal{G} \in TC$) Output: a graph $\mathcal{G}' \subseteq \mathcal{G}$ that preserves temporal connectivity ($\mathcal{G}' \in TC$) Cost measure: size of the spanner (say, in number of labels)

Input: a graph \mathcal{G} that is temporally connected ($\mathcal{G} \in TC$) Output: a graph $\mathcal{G}' \subseteq \mathcal{G}$ that preserves temporal connectivity ($\mathcal{G}' \in TC$) Cost measure: size of the spanner (say, in number of labels)

Input: a graph \mathcal{G} that is temporally connected ($\mathcal{G} \in TC$) Output: a graph $\mathcal{G}' \subseteq \mathcal{G}$ that preserves temporal connectivity ($\mathcal{G}' \in TC$) Cost measure: size of the spanner (say, in number of labels)

Can we do better?

> 2n - 4 labels needed, even if you choose the values! (Bumby'79, gossip theory)

Input: a graph \mathcal{G} that is temporally connected ($\mathcal{G} \in TC$) Output: a graph $\mathcal{G}' \subseteq \mathcal{G}$ that preserves temporal connectivity ($\mathcal{G}' \in TC$) Cost measure: size of the spanner (say, in number of labels)

Can we do better?

> 2n - 4 labels needed, even if you choose the values! (Bumby'79, gossip theory)

Do spanners of size 2n - 4 always exist?

Input: a graph \mathcal{G} that is temporally connected ($\mathcal{G} \in TC$) Output: a graph $\mathcal{G}' \subseteq \mathcal{G}$ that preserves temporal connectivity ($\mathcal{G}' \in TC$) Cost measure: size of the spanner (say, in number of labels)

Can we do better?

> 2n-4 labels needed, even if you choose the values!

(Bumby'79, gossip theory)

Do spanners of size 2n - 4 always exist?

▶ ∃ minimally connected temp. graphs with $Ω(n \log n)$ labels

(Kleinberg, Kempe, Kumar, 2000)

Input: a graph \mathcal{G} that is temporally connected ($\mathcal{G} \in TC$) Output: a graph $\mathcal{G}' \subseteq \mathcal{G}$ that preserves temporal connectivity ($\mathcal{G}' \in TC$) Cost measure: size of the spanner (say, in number of labels)

Can we do better?

▶ 2n-4 labels needed, even if you choose the values!

(Bumby'79, gossip theory)

Do spanners of size 2n - 4 always exist?

- ▶ ∃ minimally connected temp. graphs with $Ω(n \log n)$ labels
- ▶ In fact, \exists some with $\Omega(n^2)$ labels

(Kleinberg, Kempe, Kumar, 2000)

(Axiotis, Fotakis, 2016)

Input: a graph \mathcal{G} that is temporally connected ($\mathcal{G} \in TC$) Output: a graph $\mathcal{G}' \subseteq \mathcal{G}$ that preserves temporal connectivity ($\mathcal{G}' \in TC$) Cost measure: size of the spanner (say, in number of labels)

Can we do better?

 \triangleright 2n - 4 labels needed, even if you choose the values! (Bumby'79, gossip theory)

Do spanners of size 2n - 4 always exist?

- \blacktriangleright \exists minimally connected temp. graphs with $\Omega(n \log n)$ labels
- In fact, \exists some with $\Omega(n^2)$ labels

How about complexity?

Minimum-size spanner is APX-hard

(Kleinberg, Kempe, Kumar, 2000)

(Axiotis, Fotakis, 2016)

(Akrida, Gasieniec, Mertzios, Spirakis, 2017)

Bad news and good news

Recall the bad news:

- ► $\Omega(n \log n)$ easy
- ▶ $\Omega(n^2)$ rather unexpected

Bad news and good news

Recall the bad news:

- ► $\Omega(n \log n)$ easy
- $\Omega(n^2)$ rather unexpected

Good news 1: (C., Peters, Schoeters, ICALP 2019):

Spanners of size O(n log n) always exist in complete temporal graphs

Bad news and good news

Recall the bad news:

- $\blacktriangleright \ \Omega(n\log n) \text{ easy}$
- $\Omega(n^2)$ rather unexpected

Good news 1: (C., Peters, Schoeters, ICALP 2019):

Spanners of size O(n log n) always exist in complete temporal graphs

Good news 2: (C., Raskin, Renken, Zamaraev, FOCS 2021):

Nearly optimal spanners (of size 2n + o(n)) almost surely exist in random temporal graphs, as soon as the graph is temporally connected

Before we start... an easier model

Simple Temporal Graphs (STGs):

- 1. A single presence time per edge $(\lambda : E \to \mathbb{N})$
- 2. Adjacent edges have different times (λ is locally injective)

Before we start... an easier model

Simple Temporal Graphs (STGs):

- 1. A single presence time per edge $(\lambda : E \to \mathbb{N})$
- 2. Adjacent edges have different times (λ is locally injective)

Generality for spanners:

- Most negative results still apply
- Positive results extend to general case
- No distinction between strict and non-strict temporal paths

Before we start... an easier model

Simple Temporal Graphs (STGs):

- 1. A single presence time per edge $(\lambda : E \to \mathbb{N})$
- 2. Adjacent edges have different times (λ is locally injective)

Generality for spanners:

- Most negative results still apply
- Positive results extend to general case
- No distinction between strict and non-strict temporal paths

Further motivations:

- Distributed models by pairwise interactions, e.g. population protocols or gossip models (without repetition)
- Close model to edge-ordered graphs (Chvátal, Komlós, 1971)

Good news 1:

Temporal cliques admit sparse spanners

(with)

Two promising techniques...

Pivotability

Pivot node v and time t such that:

- \blacktriangleright all nodes can reach v before t
- \blacktriangleright v can reach all nodes after t

Then in-tree \cup out-tree = spanner of size 2n - 2 (in fact 2n - 3...)

Two promising techniques...

Pivotability

Pivot node v and time t such that:

- all nodes can reach v before t
- \triangleright v can reach all nodes after t

Then in-tree \cup out-tree = spanner of size 2n - 2 (in fact 2n - 3...)

Dismountability Three nodes u, v, w such that: $uv = \min - edge(v)$ $uw = \max - edge(w)$ Then spanner (\mathcal{G}) := spanner ($\mathcal{G}[V \setminus u]$) + uv + uwRecursively, $v = \frac{1}{2}$ v

spanner of size 2n - 3.
Two promising techniques...

Pivotability

Pivot node v and time t such that:

- all nodes can reach v before t
- v can reach all nodes after t

Then in-tree \cup out-tree = spanner of size 2n - 2 (in fact 2n - 3...)

Dismountability Three nodes u, v, w such that: • $uv = \min - edge(v)$ • $uw = \max - edge(w)$ Then spanner (\mathcal{G}) := spanner ($\mathcal{G}[V \setminus u]$) + uv + uwRecursively, • $\frac{9}{2} + \frac{1}{3} + \frac$

... unfortunately

Both techniques fail in some cases.

Principle:

- Transitive delegations towards emitters
- Spanner = forest of min edges + edges of emitters

Principle:

- Transitive delegations towards emitters
- Spanner = forest of min edges + edges of emitters

Wait a minute... could be lot of emitters!

Principle:

- Transitive delegations towards emitters
- Spanner = forest of min edges + edges of emitters

Wait a minute... could be lot of emitters!

- \rightarrow Local transformation of the forest:
- At most n/2 emitters

Principle:

- Transitive delegations towards emitters
- Spanner = forest of min edges + edges of emitters

Wait a minute... could be lot of emitters!

- \rightarrow Local transformation of the forest:
- At most n/2 emitters

Theorem: \exists spanners of size $\frac{3}{4} \binom{n}{2} + O(n)$

Principle:

- Transitive delegations towards emitters
- Spanner = forest of min edges + edges of emitters

Wait a minute... could be lot of emitters!

- \rightarrow Local transformation of the forest:
- At most n/2 emitters

Theorem: \exists spanners of size $\frac{3}{4} \binom{n}{2} + O(n)$

Backward spanner also possible

 \rightarrow Spanner = max edges + all edges of collectors

Combining both directions

- Each vertex can reach at least one emitter u through u's min edge
- Each vertex can be reached by a collector v through v's max edge
- Each emitter can reach all collectors through direct edges

+ edges between emitters and collectors

Theorem:

At most n/2 emitters and n/2 collectors $\Rightarrow \exists$ Spanners of size $\binom{n}{2}/2 + O(n)$

pprox half of the edges

Case 1: emitters \cup collectors $\neq V$

Lemma: There exists a "2-hop dismountable" vertex v \rightarrow select 4 edges, recurse on $\mathcal{G}[V - v]$

Case 1: emitters \cup collectors $\neq V$

Lemma: There exists a "2-hop dismountable" vertex $v \rightarrow$ select 4 edges, recurse on $\mathcal{G}[V-v]$

Case 2: emitters \cup collectors = V

 \rightarrow All vertices are <u>either</u> emitters or collectors (not both)!

Case 1: emitters \cup collectors $\neq V$

Lemma: There exists a "2-hop dismountable" vertex $v \rightarrow$ select 4 edges, recurse on $\mathcal{G}[V-v]$

Case 2: emitters \cup collectors = V

 \rightarrow All vertices are <u>either</u> emitters or collectors (not both)!

Case 1: emitters \cup collectors $\neq V$

Lemma: There exists a "2-hop dismountable" vertex $v \rightarrow$ select 4 edges, recurse on $\mathcal{G}[V-v]$

Case 2: emitters \cup collectors = V

 \rightarrow All vertices are <u>either</u> emitters or collectors (not both)!

A lot of structure to work with:

- ► Complete bipartite graph *H* between emitters and collectors
- Min edges and max edges form two perfect matchings
- ▶ W.I.o.g. min edges (max edges) are reciprocal in *H*

Case 1: emitters \cup collectors $\neq V$

Lemma: There exists a "2-hop dismountable" vertex $v \rightarrow$ select 4 edges, recurse on $\mathcal{G}[V-v]$

Case 2: emitters \cup collectors = V

 \rightarrow All vertices are <u>either</u> emitters or collectors (not both)!

A lot of structure to work with:

- ► Complete bipartite graph *H* between emitters and collectors
- Min edges and max edges form two perfect matchings
- ▶ W.I.o.g. min edges (max edges) are reciprocal in *H*

New objective:

 \rightarrow Sparsify ${\cal H}$ while preserving journeys from each emitter to all collectors

Sparsification of the bipartite graph

New objective:

 \rightarrow Sparsify ${\cal H}$ while preserving journeys from each emitter to all collectors

Technique: Partial delegations among emitters

- Find a 2-hop journey from one emitter to another, arriving through a "locally small" edge
- Pay extra edges (penalty) to reach missed collectors

Sparsification of the bipartite graph

New objective:

 \rightarrow Sparsify ${\cal H}$ while preserving journeys from each emitter to all collectors

Technique: Partial delegations among emitters

- Find a 2-hop journey from one emitter to another, arriving through a "locally small" edge
- Pay extra edges (penalty) to reach missed collectors

Iterative procedure:

In each step *i*:

- Half of the emitters partially delegate to other half
- Penalty doubles in each step, but #emitters halves
- O(n) edges over $O(\log n)$ iterations $\rightarrow O(n \log n)$ edges.

Sparsification of the bipartite graph

New objective:

 \rightarrow Sparsify ${\cal H}$ while preserving journeys from each emitter to all collectors

Technique: Partial delegations among emitters

- Find a 2-hop journey from one emitter to another, arriving through a "locally small" edge
- Pay extra edges (penalty) to reach missed collectors

Iterative procedure:

In each step *i*:

- Half of the emitters partially delegate to other half
- Penalty doubles in each step, but #emitters halves
- O(n) edges over $O(\log n)$ iterations $\rightarrow O(n \log n)$ edges.

Conclusion:

 \exists spanner of size $O(n \log n)$ \Box

Open questions (deterministic)

Better spanners for temporal cliques?

- ▶ Is $O(n \log n)$ optimal for cliques? Is O(n) possible?
- Even better, does $2n 4 \le OPT \le 2n 3$? (so far, no counter-example found)

Open questions (deterministic)

Better spanners for temporal cliques?

- ▶ Is $O(n \log n)$ optimal for cliques? Is O(n) possible?
- Even better, does $2n 4 \le OPT \le 2n 3$? (so far, no counter-example found)

Relaxing the complete graph assumption

- Can more general classes of dense graphs be sparsified?
 - \rightarrow Recall that \exists unsparsifiable graphs of density $\Theta(n^2)$
 - \rightarrow Is there a family of graphs of density < 1 which admits sparse spanners?

Open questions (deterministic)

Better spanners for temporal cliques?

- ► Is O(n log n) optimal for cliques? Is O(n) possible?
- Even better, does $2n 4 \le OPT \le 2n 3$? (so far, no counter-example found)

Relaxing the complete graph assumption

- Can more general classes of dense graphs be sparsified?
 - \rightarrow Recall that \exists unsparsifiable graphs of density $\Theta(n^2)$
 - \rightarrow Is there a family of graphs of density < 1 which admits sparse spanners?

What about random temporal graphs?

Good news 2:

Spanners of size 2n + o(n) almost surely exist

in random temporal graphs

(with)

Random simple temporal graphs:

- 1. Pick an Erdös-Rényi $G \sim G_{n,p}$
- 2. Permute the edges randomly, interpret as (unique) presence time

Random simple temporal graphs:

- 1. Pick an Erdös-Rényi $G \sim G_{n,p}$
- 2. Permute the edges randomly, interpret as (unique) presence time

Random simple temporal graphs:

- 1. Pick an Erdös-Rényi $G \sim G_{n,p}$
- 2. Permute the edges randomly, interpret as (unique) presence time

 $\log n$ $2 \frac{\log n}{2}$ nStandard connectivity First source $(1 \leftrightarrow *)$ Most vertex pairs reach each other $(\sim * \rightsquigarrow \sim *)$

Random simple temporal graphs:

- 1. Pick an Erdös-Rényi $G \sim G_{n,p}$
- 2. Permute the edges randomly, interpret as (unique) presence time

Random simple temporal graphs:

- 1. Pick an Erdös-Rényi $G \sim G_{n,p}$
- 2. Permute the edges randomly, interpret as (unique) presence time

Random simple temporal graphs:

- 1. Pick an Erdös-Rényi $G \sim G_{n,p}$
- 2. Permute the edges randomly, interpret as (unique) presence time

Random simple temporal graphs:

- 1. Pick an Erdös-Rényi $G \sim G_{n,p}$
- 2. Permute the edges randomly, interpret as (unique) presence time

Random simple temporal graphs:

- 1. Pick an Erdös-Rényi $G \sim G_{n,p}$
- 2. Permute the edges randomly, interpret as (unique) presence time

Random simple temporal graphs:

- 1. Pick an Erdös-Rényi $G \sim G_{n,p}$
- 2. Permute the edges randomly, interpret as (unique) presence time

Timeline for p (as $n \to \infty$):

All the thresholds are sharp, except \star (open problem)

(sharp: $\exists \epsilon(n) = o(1)$, not true at $(1 - \epsilon(n))p$, true at $(1 + \epsilon(n))p$)

Temporal analog of Erdös-Reyni graphs, same parameters n and p

Temporal analog of Erdös-Reyni graphs, same parameters n and p

An RSTG $\mathcal{G} \sim \mathcal{G}_{n,p}$:

- 1. Pick a footprint $G \sim G_{n,p}$
- 2. Permute the edges randomly (interpret ranks as times)

Temporal analog of Erdös-Reyni graphs, same parameters n and p

b

 t^{\bullet}

c

•

 $\bullet d$

An RSTG $\mathcal{G} \sim \mathcal{G}_{n,p}$:

- 1. Pick a footprint $G \sim G_{n,p}$
- 2. Permute the edges randomly (interpret ranks as times)

Ex:
$$n = 7, p = 0.4$$
 $a \bullet$

Temporal analog of Erdös-Reyni graphs, same parameters n and p

An RSTG $\mathcal{G} \sim \mathcal{G}_{n,p}$:

- 1. Pick a footprint $G \sim G_{n,p}$
- 2. Permute the edges randomly (interpret ranks as times)

Ex: n = 7, p = 0.4

Temporal analog of Erdös-Reyni graphs, same parameters n and p

An RSTG $\mathcal{G} \sim \mathcal{G}_{n,p}$:

- 1. Pick a footprint $G \sim G_{n,p}$
- 2. Permute the edges randomly (interpret ranks as times)

Ex: n = 7, p = 0.4

Temporal analog of Erdös-Reyni graphs, same parameters n and p

An RSTG $\mathcal{G} \sim \mathcal{G}_{n,p}$:

- 1. Pick a footprint $G \sim G_{n,p}$
- 2. Permute the edges randomly (interpret ranks as times)

Ex: n = 7, p = 0.4

Another point of view:

- 1. Take a complete graph K_n
- 2. Assign random real times in [0, 1] to every edge
- 3. Restrict your attention to $\mathcal{G}_{[0,p]}$
- \rightarrow Better for analysis.

For sufficiently large n, what happens when p increases?

All the thresholds are sharp, except \star (open problem) (sharp: $\exists \epsilon(n) = o(1)$, not true at $(1 - \epsilon(n))p$, true at $(1 + \epsilon(n))p$)

- Foremost temporal paths from \boldsymbol{s} to all
- "Prim-like" algorithm.

- Foremost temporal paths from \boldsymbol{s} to all
- "Prim-like" algorithm.

- Foremost temporal paths from \boldsymbol{s} to all
- "Prim-like" algorithm.

- Foremost temporal paths from \boldsymbol{s} to all
- "Prim-like" algorithm.

- Foremost temporal paths from \boldsymbol{s} to all
- "Prim-like" algorithm.

- Foremost temporal paths from \boldsymbol{s} to all
- "Prim-like" algorithm.

- Foremost temporal paths from \boldsymbol{s} to all
- "Prim-like" algorithm.

- Foremost temporal paths from \boldsymbol{s} to all
- "Prim-like" algorithm.

- Foremost temporal paths from \boldsymbol{s} to all
- "Prim-like" algorithm.

Foremost tree (from s)

- Foremost temporal paths from \boldsymbol{s} to all
- "Prim-like" algorithm.

Foremost tree (from s)

- Foremost temporal paths from s to all
- "Prim-like" algorithm.

Analysis

• Consider "growing" a foremost tree in $\mathcal{G} \sim \mathcal{G}_{n,1}$ from a vertex s.

Foremost tree (from s)

- Foremost temporal paths from \boldsymbol{s} to all
- "Prim-like" algorithm.

- Consider "growing" a foremost tree in $\mathcal{G} \sim \mathcal{G}_{n,1}$ from a vertex s.
- Once we have reached k vertices, there are k(n-k) potential edges.

Foremost tree (from s)

- Foremost temporal paths from \boldsymbol{s} to all
- "Prim-like" algorithm.

- Consider "growing" a foremost tree in $\mathcal{G} \sim \mathcal{G}_{n,1}$ from a vertex s.
- Once we have reached k vertices, there are k(n-k) potential edges.
- The waiting time for one of these to appear is $\approx \frac{1}{k(n-k)}$

Foremost tree (from s)

- Foremost temporal paths from s to all
- "Prim-like" algorithm.

- ▶ Consider "growing" a foremost tree in *G* ~ *G*_{*n*,1} from a vertex *s*.
- Once we have reached k vertices, there are k(n-k) potential edges.
- The waiting time for one of these to appear is $\approx \frac{1}{k(n-k)}$
- \Rightarrow Expect to reach all vertices at $\sum_{k=1}^{n} \frac{1}{k(n-k)} \approx 2 \frac{\log n}{n}$.

Foremost tree (from s)

- Foremost temporal paths from \boldsymbol{s} to all
- "Prim-like" algorithm.

- ▶ Consider "growing" a foremost tree in *G* ~ *G*_{*n*,1} from a vertex *s*.
- Once we have reached k vertices, there are k(n-k) potential edges.
- The waiting time for one of these to appear is $\approx \frac{1}{k(n-k)}$
- ⇒ Expect to reach all vertices at $\sum_{k=1}^{n} \frac{1}{k(n-k)} \approx 2 \frac{\log n}{n}$.
- Azuma's inequality for concentration.

We note foremost(u) the set of vertices reached by a foremost tree from u.

Reachability thresholds

 $\blacktriangleright \sim * \rightsquigarrow \sim * \iff \forall u, \forall v, a.a.s. \ v \in foremost(u)$

 $(\log n/n)$

We note foremost(u) the set of vertices reached by a foremost tree from u.

Reachability thresholds

We note foremost(u) the set of vertices reached by a foremost tree from u.

Reachability thresholds

- $\blacktriangleright \quad \sim \ast \rightsquigarrow \sim \ast \iff \forall u, \forall v, a.a.s. \ v \in foremost(u)$
- $\blacktriangleright 1 \rightsquigarrow * \iff a.a.s. \exists u, \forall v, v \in foremost(u)$

 $\blacktriangleright \sim * \rightsquigarrow * \iff \forall u, a.a.s. \ \forall v, v \in foremost(u)$

 $(\log n/n)$ $(2\log n/n)$ $(2\log n/n)$

We note foremost(u) the set of vertices reached by a foremost tree from u.

Reachability thresholds

We note foremost(u) the set of vertices reached by a foremost tree from u.

Reachability thresholds

Spanners

We note foremost(u) the set of vertices reached by a foremost tree from u.

Reachability thresholds

Spanners

 $\blacktriangleright \text{ Pivotal } (* \rightsquigarrow 1 \rightsquigarrow *) \iff (* \rightsquigarrow \sim *) + (\sim * \rightsquigarrow *)$ $(4 \log n/n)$

We note foremost(u) the set of vertices reached by a foremost tree from u.

Reachability thresholds

 $\triangleright \sim * \rightarrow \sim * \iff \forall u, \forall v, a.a.s. v \in foremost(u)$ $(\log n/n)$ ▶ $1 \rightsquigarrow * \iff a.a.s. \exists u, \forall v, v \in foremost(u)$ $(2\log n/n)$ $\blacktriangleright \sim * \rightsquigarrow * \iff \forall u, a.a.s. \ \forall v, v \in foremost(u)$ $(2\log n/n)$ $\blacktriangleright * \rightsquigarrow * \iff a.a.s \ \forall u, \forall v, v \in foremost(u)$ $(3\log n/n)$ LB: $(* \rightsquigarrow 1) + (\log n/n)$, each non sink must have at least one new edge. UB: $(* \rightarrow \sim *) + (\log n/n)$, each non sink is reached from at least one sink.

Spanners

- $\mathsf{Pivotal} \ (* \rightsquigarrow 1 \rightsquigarrow *) \Longleftrightarrow (* \rightsquigarrow \sim *) + (\sim * \rightsquigarrow *)$ $(4\log n/n)$
- Optimal spanner (size 2n 4) Pivotal square. Sharp ?

 $(4\log n/n)$

We note foremost(u) the set of vertices reached by a foremost tree from u.

Reachability thresholds

$\sim * \rightarrow \sim * \iff \forall u, \forall v, a.a.s. \ v \in foremost(u)$	$(\log n/n)$
$1 \rightsquigarrow \ast \iff a.a.s. \; \exists u, \forall v, v \in foremost(u)$	$(2\log n/n)$
$\sim \ast \rightsquigarrow \ast \iff \forall u, a.a.s. \ \forall v, v \in foremost(u)$	$(2\log n/n)$
$* \rightsquigarrow * \iff a.a.s \ \forall u, \forall v, v \in foremost(u)$	$(3\log n/n)$
LB: $(* \rightsquigarrow 1) + (\log n/n)$, each non sink must have at least one new edge.	
UB: $(* \rightsquigarrow \sim *) + (\log n/n)$, each non sink is reached from at least one sink.	

Spanners

$Pivotal\;(\ast \rightsquigarrow 1 \rightsquigarrow \ast) \Longleftarrow (\ast \rightsquigarrow \sim \ast) + (\sim \ast \rightsquigarrow \ast)$	$(4\log n/n)$
Optimal spanner (size $2n - 4$) Pivotal square. Sharp ?	$(4\log n/n)$
Nearly optimal spanner (size $2n + o(n)$) LB: Trivial (not temporally connected) UB: Explicit construction Three intervals of length $\log n/n$:	$(3\log n/n)$
$\sim * \rightsquigarrow 1$ (say u) $u \rightsquigarrow \sim *$	By $\log n/n$ between $2 \log n/n$ and $3 \log n/n$.

▶ u ~→ missing

▶ missing ~→ missing

 $\begin{array}{c} \text{By } \log n/n \\ \text{between } 2 \log n/n \text{ and } 3 \log n/n. \\ \text{between } 0 \text{ and } 2 \log n \\ \text{between } \log n/n \text{ and } 3 \log n/n \\ \text{between } 0 \text{ and } 3 \log n/n \end{array}$

Random Non-Simple Temporal Graphs

 $\mathcal{H}_{n,p}$: Each edge independently appears according to a rate 1 Poisson process stopped at time p.

Theorem

All our thresholds also hold for $\mathcal{H}_{n,p}$.

Simple temporal graphs (beyond spanners)

Special properties and symmetries

Equivalence based on reachability (up to time distortion)

Different STGs are equivalent in terms of reachability

Equivalence based on reachability (up to time distortion)

Different STGs are equivalent in terms of reachability

How to capture this equivalence?
Different STGs are equivalent in terms of *reachability*

How to capture this equivalence?

Option 1: Local ordering?

Different STGs are equivalent in terms of *reachability*

How to capture this equivalence?

Option 1: Local ordering?

Different STGs are equivalent in terms of *reachability*

How to capture this equivalence?

Option 1: Local ordering?

Different STGs are equivalent in terms of *reachability*

How to capture this equivalence?

- Option 1: Local ordering?
- Option 2: STG representative

Different STGs are equivalent in terms of *reachability*

How to capture this equivalence?

- Option 1: Local ordering?
- Option 2: STG representative

Different STGs are equivalent in terms of *reachability*

How to capture this equivalence?

- Option 1: Local ordering?
- Option 2: STG representative \checkmark

STG representatives have good properties for generation

+ canonization, isomorphism testing, and computation of generators for the automorphism group, are all feasible in *polynomial time*.

- 1. Find edges that are local minima
- 2. Assign them the smallest available time
- 3. Increment time
- 4. Repeat on remaining edges

- 1. Find edges that are local minima
- 2. Assign them the smallest available time
- 3. Increment time
- 4. Repeat on remaining edges

- 1. Find edges that are local minima
- 2. Assign them the smallest available time
- 3. Increment time
- 4. Repeat on remaining edges

- 1. Find edges that are local minima
- 2. Assign them the smallest available time
- 3. Increment time
- 4. Repeat on remaining edges

- 1. Find edges that are local minima
- 2. Assign them the smallest available time
- 3. Increment time
- 4. Repeat on remaining edges

- 1. Find edges that are local minima
- 2. Assign them the smallest available time
- 3. Increment time
- 4. Repeat on remaining edges

- 1. Find edges that are local minima
- 2. Assign them the smallest available time
- 3. Increment time
- 4. Repeat on remaining edges

- 1. Find edges that are local minima
- 2. Assign them the smallest available time
- 3. Increment time
- 4. Repeat on remaining edges

- 1. Find edges that are local minima
- 2. Assign them the smallest available time
- 3. Increment time
- 4. Repeat on remaining edges

Canonization

- 1. Find edges that are local minima
- 2. Assign them the smallest available time
- 3. Increment time
- 4. Repeat on remaining edges

Properties of the labeling

Time induces a *proper* coloring of the edges (by definition of STGs).

Canonization

- 1. Find edges that are local minima
- 2. Assign them the smallest available time
- 3. Increment time
- 4. Repeat on remaining edges

Properties of the labeling

Time induces a *proper* coloring of the edges (by definition of STGs).

In addition,

Contiguity Lemma: If an edge is labeled t > 1, then an adjacent edge is labeled t - 1.

Canonization

- 1. Find edges that are local minima
- 2. Assign them the smallest available time
- 3. Increment time
- 4. Repeat on remaining edges

Properties of the labeling

Time induces a *proper* coloring of the edges (by definition of STGs).

In addition,

Contiguity Lemma: If an edge is labeled t > 1, then an adjacent edge is labeled t - 1.

(If you know a name for this type of edge coloring, please let me know.)

Input: Two STGs G_1 and G_2 Output: Are they equivalent?

Two steps algorithm:

- 1. Canonize them
- 2. Test for (classical) isomorphism of the canonical forms

Input: Two STGs G_1 and G_2 Output: Are they equivalent?

Two steps algorithm:

- 1. Canonize them
- 2. Test for (classical) isomorphism of the canonical forms

- 1. Fix an arbitrary vertex v_1 of G_1
- 2. Try to send it to a vertex v_2 of G_2
- 3. If OK, answer YES
- 4. If not, try the next vertex of G_2 (or answer NO if none remain)

Input: Two STGs G_1 and G_2 Output: Are they equivalent?

Two steps algorithm:

- 1. Canonize them
- 2. Test for (classical) isomorphism of the canonical forms

- 1. Fix an arbitrary vertex v_1 of G_1
- 2. Try to send it to a vertex v_2 of G_2
- 3. If OK, answer YES
- 4. If not, try the next vertex of G_2 (or answer NO if none remain)

Input: Two STGs G_1 and G_2 Output: Are they equivalent?

Two steps algorithm:

- 1. Canonize them
- 2. Test for (classical) isomorphism of the canonical forms

- 1. Fix an arbitrary vertex v_1 of G_1
- 2. Try to send it to a vertex v_2 of G_2
- 3. If OK, answer YES
- 4. If not, try the next vertex of G_2 (or answer NO if none remain)

Input: Two STGs G_1 and G_2 Output: Are they equivalent?

Two steps algorithm:

- 1. Canonize them
- 2. Test for (classical) isomorphism of the canonical forms

- 1. Fix an arbitrary vertex v_1 of G_1
- 2. Try to send it to a vertex v_2 of G_2
- 3. If OK, answer YES
- 4. If not, try the next vertex of G_2 (or answer NO if none remain)

Input: Two STGs G_1 and G_2 Output: Are they equivalent?

Two steps algorithm:

- 1. Canonize them
- 2. Test for (classical) isomorphism of the canonical forms

Algorithm for the second step:

- 1. Fix an arbitrary vertex v_1 of G_1
- 2. Try to send it to a vertex v_2 of G_2
- 3. If OK, answer YES
- If not, try the next vertex of G₂ (or answer NO if none remain)

Key observation: when trying to send v_1 to v_2 , the mapping among neighbors unfolds recursively without choices (due to the *proper coloring* of the edges)

 \rightarrow passes or fails in polynomial time.

Input: Two STGs G_1 and G_2 Output: Are they equivalent?

Two steps algorithm:

- 1. Canonize them
- 2. Test for (classical) isomorphism of the canonical forms

Algorithm for the second step:

- 1. Fix an arbitrary vertex v_1 of G_1
- 2. Try to send it to a vertex v_2 of G_2
- 3. If OK, answer YES
- If not, try the next vertex of G₂ (or answer NO if none remain)

Key observation: when trying to send v_1 to v_2 , the mapping among neighbors unfolds recursively without choices (due to the *proper coloring* of the edges)

 \rightarrow passes or fails in polynomial time.

Remark: Also feasible using Babai & Luks machinery (1983)

Case 1: The underlying graph is connected.

Case 1: The underlying graph is connected.

 \rightarrow Same strategy as for isomorphism.

At most *n* automorphisms!

Case 1: The underlying graph is connected.

 \rightarrow Same strategy as for isomorphism.

Case 2: The underlying graph is not connected (the complement trick does not works for temporal graphs...)

Case 1: The underlying graph is connected.

 \rightarrow Same strategy as for isomorphism.

Case 2: The underlying graph is not connected (the complement trick does not works for temporal graphs...)

- 1. Find the underlying components
- 2. Search for isomorphisms between pairs of components (remember *one* for each)
- 3. Find the automorphisms within each component type (trivially extended to \mathcal{G})

Case 1: The underlying graph is connected.

 \rightarrow Same strategy as for isomorphism.

Case 2: The underlying graph is not connected (the complement trick does not works for temporal graphs...)

- 1. Find the underlying components
- 2. Search for isomorphisms between pairs of components (remember *one* for each)
- 3. Find the automorphisms within each component type (trivially extended to \mathcal{G})
Case 1: The underlying graph is connected.

 \rightarrow Same strategy as for isomorphism.

- 1. Find the underlying components
- 2. Search for isomorphisms between pairs of components (remember *one* for each)
- 3. Find the automorphisms within each component type (trivially extended to \mathcal{G})

Case 1: The underlying graph is connected.

 \rightarrow Same strategy as for isomorphism.

- 1. Find the underlying components
- 2. Search for isomorphisms between pairs of components (remember *one* for each)
- 3. Find the automorphisms within each component type (trivially extended to \mathcal{G})

Case 1: The underlying graph is connected.

 \rightarrow Same strategy as for isomorphism.

- 1. Find the underlying components
- 2. Search for isomorphisms between pairs of components (remember *one* for each)
- 3. Find the automorphisms within each component type (trivially extended to \mathcal{G})

Case 1: The underlying graph is connected.

 \rightarrow Same strategy as for isomorphism.

- 1. Find the underlying components
- 2. Search for isomorphisms between pairs of components (remember *one* for each)
- 3. Find the automorphisms within each component type (trivially extended to \mathcal{G})

Case 1: The underlying graph is connected.

 \rightarrow Same strategy as for isomorphism.

- 1. Find the underlying components
- 2. Search for isomorphisms between pairs of components (remember *one* for each)
- 3. Find the automorphisms within each component type (trivially extended to $\mathcal{G})$

Case 1: The underlying graph is connected.

 \rightarrow Same strategy as for isomorphism.

- 1. Find the underlying components
- 2. Search for isomorphisms between pairs of components (remember *one* for each)
- 3. Find the automorphisms within each component type (trivially extended to $\mathcal{G})$

Case 1: The underlying graph is connected.

 \rightarrow Same strategy as for isomorphism.

- 1. Find the underlying components
- 2. Search for isomorphisms between pairs of components (remember *one* for each)
- 3. Find the automorphisms within each component type (trivially extended to \mathcal{G})

Case 1: The underlying graph is connected.

 \rightarrow Same strategy as for isomorphism.

- 1. Find the underlying components
- 2. Search for isomorphisms between pairs of components (remember *one* for each)
- 3. Find the automorphisms within each component type (trivially extended to \mathcal{G})

Case 1: The underlying graph is connected.

 \rightarrow Same strategy as for isomorphism.

- 1. Find the underlying components
- 2. Search for isomorphisms between pairs of components (remember *one* for each)
- 3. Find the automorphisms within each component type (trivially extended to $\mathcal{G})$

Case 1: The underlying graph is connected.

 \rightarrow Same strategy as for isomorphism.

Case 2: The underlying graph is not connected (the complement trick does not works for temporal graphs...)

- 1. Find the underlying components
- 2. Search for isomorphisms between pairs of components (remember *one* for each)
- 3. Find the automorphisms within each component type (trivially extended to $\mathcal{G})$

Claim: $Aut(\mathcal{G}) = \langle \text{ isomorphisms } + \text{ automorphisms } \rangle$

Case 1: The underlying graph is connected.

 \rightarrow Same strategy as for isomorphism.

Case 2: The underlying graph is not connected (the complement trick does not works for temporal graphs...)

- 1. Find the underlying components
- 2. Search for isomorphisms between pairs of components (remember *one* for each)
- 3. Find the automorphisms within each component type (trivially extended to $\mathcal{G})$

Claim: $Aut(\mathcal{G}) = \langle \text{ isomorphisms } + \text{ automorphisms } \rangle$

 \rightarrow Generators for $Aut(\mathcal{G})$ can be computed in polynomial time!

Enumeration up to equivalence

(motivated by conjecture refutation on spanners)

Generation tree

Principle: One level = one time unit

 \rightarrow children of a graph = all the possible ways to add the *next time*

Generation tree

Principle: One level = one time unit

 \rightarrow children of a graph = all the possible ways to add the *next time*

Generation tree

Principle: One level = one time unit

 \rightarrow children of a graph = all the possible ways to add the *next time*

 \downarrow Isomorphism types separated (forever)

Input: An STG representative G, whose maximum time is tOutput: All STG representatives that extend G with time t + 1.

Input: An STG representative G, whose maximum time is tOutput: All STG representatives that extend G with time t + 1.

First, how to decide if a *non-edge* is eligible to receive a (t + 1) time label? (E.g. here, time 3)

Input: An STG representative G, whose maximum time is tOutput: All STG representatives that extend G with time t + 1.

First, how to decide if a *non-edge* is eligible to receive a (t + 1) time label? (E.g. here, time 3)

Input: An STG representative G, whose maximum time is tOutput: All STG representatives that extend G with time t + 1.

First, how to decide if a *non-edge* is eligible to receive a (t + 1) time label? (E.g. here, time 3)

Coloring lemma: (t+1) must be adjacent to (t)

Input: An STG representative G, whose maximum time is tOutput: All STG representatives that extend G with time t + 1.

First, how to decide if a *non-edge* is eligible to receive a (t + 1) time label? (E.g. here, time 3)

G has symmetries

Input: An STG representative G, whose maximum time is tOutput: All STG representatives that extend G with time t + 1.

First, how to decide if a *non-edge* is eligible to receive a (t + 1) time label? (E.g. here, time 3)

 $\rightarrow\,$ Enumerate all matchings of eligible *non-edges*. Each one defines a successor.

Input: An STG representative G, whose maximum time is tOutput: All STG representatives that extend G with time t + 1.

First, how to decide if a *non-edge* is eligible to receive a (t + 1) time label? (E.g. here, time 3)

 $\rightarrow\,$ Enumerate all matchings of eligible *non-edges*. Each one defines a successor.

 \equiv Independent sets in the *line graph* of eligible *non-edges* (standard algorithm)

Input: An STG representative G, whose maximum time is tOutput: All STG representatives that extend G with time t + 1.

First, how to decide if a *non-edge* is eligible to receive a (t + 1) time label? (E.g. here, time 3)

Two cases

G has symmetries

 $\rightarrow\,$ Enumerate all matchings of eligible *non-edges*. Each one defines a successor.

 \equiv Independent sets in the *line graph* of eligible *non-edges* (standard algorithm)

 \rightarrow Enumerate matchings of eligible *non-edges* whose *multisets of orbits* are distinct

Done using the generators for $Aut(\mathcal{G})$

https://github.com/acasteigts/STGen

How to use

```
include("generation.jl")
n = 5
```

for g in TGraphs(n)
 ...
end

Implemented in Julia (other versions also in Python and Java)

https://github.com/acasteigts/STGen

How to use

```
include("generation.jl")
```

```
n = 5
for g in TGraphs(n)
    ...
end
```

Implemented in Julia (other versions also in Python and Java)

Pruning is possible using TGraphs(n, selection_predicate)

https://github.com/acasteigts/STGen

How to use

```
include("generation.jl")
n = 5
for g in TGraphs(n)
```

end

Implemented in Julia (other versions also in Python and Java)

Pruning is possible using TGraphs(n, selection_predicate)

Back to the spanner question

Do simple temporal cliques admit spanners of size 2n - 3?

https://github.com/acasteigts/STGen

How to use

```
include("generation.jl")
```

```
n = 5
for g in TGraphs(n)
    ...
end
```

Implemented in Julia (other versions also in Python and Java)

Pruning is possible using TGraphs(n, selection_predicate)

Back to the spanner question

Do simple temporal cliques admit spanners of size 2n - 3?

 \rightarrow True for $n \leq 7$ (and for all non-rigid graphs at n = 8). Otherwise still open! :-)

Some numbers

# Vertices	# STGs	# Temporally connected STGs	# Simple Temporal cliques
1	1	1	1
2	2	1	1
3	4	1	1
4	62	32	20
5	15378	10207	4524
6	89769096	70557834	23218501
7	13828417028594	?	3129434545680
8	?	?	?

Non dismountable clique:

Non pivotable clique (seen as a union of two graphs):

Thanks!

next time... :-)