
1/1 1/1

Spanners and connectivity problems in temporal graphs

Arnaud Casteigts

LaBRI, Université de Bordeaux

November 10, 2022

(Liverpool CS seminar)

Based on two joint works with:

|

Jason Schoeters Joseph Peters Michael Raskin Malte Renken Viktor Zamaraev
(Le Havre) (Vancouver) (Munich) (Berlin) (Liverpool)

2/1 2/1

(Highly) dynamic networks?

Example of scenario

Modeling

Properties:

▶ Temporal connectivity?

T C

▶ Repeatedly?

T CR

▶ Recurrent links?

ER

▶ In bounded time?

EB

▶ ...

→ Classes of temporal graphs

2/1 2/1

(Highly) dynamic networks?

Example of scenario

Modeling

Properties:

▶ Temporal connectivity?

T C

▶ Repeatedly?

T CR

▶ Recurrent links?

ER

▶ In bounded time?

EB

▶ ...

→ Classes of temporal graphs

2/1 2/1

(Highly) dynamic networks?

Example of scenario

Modeling

Properties:

▶ Temporal connectivity?

T C

▶ Repeatedly?

T CR

▶ Recurrent links?

ER

▶ In bounded time?

EB

▶ ...

→ Classes of temporal graphs

2/1 2/1

(Highly) dynamic networks?

Example of scenario

Modeling

Properties:

▶ Temporal connectivity? T C
▶ Repeatedly? T CR

▶ Recurrent links? ER

▶ In bounded time? EB

▶ ...

→ Classes of temporal graphs

3/1 3/1

Some classes of temporal graphs

T C⟲
T C

(∗⇝∗)
J∀1

(∗⇝1)

J1∀
(1⇝∗)

T CR

ER

KR

EBEP

T CBα-T CB

PRCRC∗C∩

K
(∗–∗)

E1∀
(1–∗)

infinite lifetime finite lifetime

? ?

Foremost broadcast

Shortest broadcast

Fastest broadcast

Population
protocols

Retry
routing

Retry
broadcast

Bounded
broadcast

Speed up for
some prob-
lems

Ring exploration

BroadcastCounting

Leader
election

Broadcast +
acknowledgment

Distributed algorithm

Centralized algorithm Movement synthesis

Exploitation

Analysis Induce

3/1 3/1

Some classes of temporal graphs

T C⟲
T C

(∗⇝∗)
J∀1

(∗⇝1)

J1∀
(1⇝∗)

T CR

ER

KR

EBEP

T CBα-T CB

PRCRC∗C∩

K
(∗–∗)

E1∀
(1–∗)

infinite lifetime finite lifetime

? ?

Foremost broadcast

Shortest broadcast

Fastest broadcast

Population
protocols

Retry
routing

Retry
broadcast

Bounded
broadcast

Speed up for
some prob-
lems

Ring exploration

BroadcastCounting

Leader
election

Broadcast +
acknowledgment

Distributed algorithm

Centralized algorithm Movement synthesis

Exploitation

Analysis Induce

3/1 3/1

Some classes of temporal graphs

T C⟲
T C

(∗⇝∗)
J∀1

(∗⇝1)

J1∀
(1⇝∗)

T CR

ER

KR

EBEP

T CBα-T CB

PRCRC∗C∩

K
(∗–∗)

E1∀
(1–∗)

infinite lifetime finite lifetime

? ?

Foremost broadcast

Shortest broadcast

Fastest broadcast

Population
protocols

Retry
routing

Retry
broadcast

Bounded
broadcast

Speed up for
some prob-
lems

Ring exploration

BroadcastCounting

Leader
election

Broadcast +
acknowledgment

Distributed algorithm

Centralized algorithm

Movement synthesis

Exploitation

Analysis

Induce

3/1 3/1

Some classes of temporal graphs

T C⟲
T C

(∗⇝∗)
J∀1

(∗⇝1)

J1∀
(1⇝∗)

T CR

ER

KR

EBEP

T CBα-T CB

PRCRC∗C∩

K
(∗–∗)

E1∀
(1–∗)

infinite lifetime finite lifetime

? ?

Foremost broadcast

Shortest broadcast

Fastest broadcast

Population
protocols

Retry
routing

Retry
broadcast

Bounded
broadcast

Speed up for
some prob-
lems

Ring exploration

BroadcastCounting

Leader
election

Broadcast +
acknowledgment

Distributed algorithm

Centralized algorithm Movement synthesis

Exploitation

Analysis Induce

4/1 4/1

Temporal graphs for their own sake

a b

c d

e

5,7

3,5 1,2,9

1,4

2 4,5

What does make them truly different?

5/1 5/1

Basic definitions

Temporal graphs (a.k.a. time-varying, time-dependent, evolving, dynamic,...)

G = (V,E, λ), where λ : E → 2N assigns presence times to edges.

|
footprint of G

a b

c d

e

Example:

Can also be viewed as a sequence of

snapshots {Gi = {e ∈ E : i ∈ λ(e)}}

5,7

3,5 1,2,9

1,4

2 4,5

Temporally
connected

Temporal paths

▶ Non-strict - ex: ⟨(a, c, 3), (c, d, 4), (d, e, 4)⟩ (non-decreasing)

▶ Strict - ex: ⟨(a, c, 3), (c, d, 4), (d, e, 5)⟩ (increasing)

Temporal connectivity: ∃ temporal paths between all vertices.

→ Warning: Reachability is non-symmetrical... and non-transitive!

5/1 5/1

Basic definitions

Temporal graphs (a.k.a. time-varying, time-dependent, evolving, dynamic,...)

G = (V,E, λ), where λ : E → 2N assigns presence times to edges.
|

footprint of G

a b

c d

e

Example:

Can also be viewed as a sequence of

snapshots {Gi = {e ∈ E : i ∈ λ(e)}}

5,7

3,5 1,2,9

1,4

2 4,5

Temporally
connected

Temporal paths

▶ Non-strict - ex: ⟨(a, c, 3), (c, d, 4), (d, e, 4)⟩ (non-decreasing)

▶ Strict - ex: ⟨(a, c, 3), (c, d, 4), (d, e, 5)⟩ (increasing)

Temporal connectivity: ∃ temporal paths between all vertices.

→ Warning: Reachability is non-symmetrical... and non-transitive!

5/1 5/1

Basic definitions

Temporal graphs (a.k.a. time-varying, time-dependent, evolving, dynamic,...)

G = (V,E, λ), where λ : E → 2N assigns presence times to edges.
|

footprint of G

a b

c d

e

Example:

Can also be viewed as a sequence of

snapshots {Gi = {e ∈ E : i ∈ λ(e)}}

5,7

3,5 1,2,9

1,4

2 4,5

Temporally
connected

Temporal paths

▶ Non-strict - ex: ⟨(a, c, 3), (c, d, 4), (d, e, 4)⟩ (non-decreasing)

▶ Strict - ex: ⟨(a, c, 3), (c, d, 4), (d, e, 5)⟩ (increasing)

Temporal connectivity: ∃ temporal paths between all vertices.

→ Warning: Reachability is non-symmetrical... and non-transitive!

5/1 5/1

Basic definitions

Temporal graphs (a.k.a. time-varying, time-dependent, evolving, dynamic,...)

G = (V,E, λ), where λ : E → 2N assigns presence times to edges.
|

footprint of G

a b

c d

e

Example:

Can also be viewed as a sequence of

snapshots {Gi = {e ∈ E : i ∈ λ(e)}}

5,7

3,5 1,2,9

1,4

2 4,5

Temporally
connected

Temporal paths

▶ Non-strict - ex: ⟨(a, c, 3), (c, d, 4), (d, e, 4)⟩ (non-decreasing)

▶ Strict - ex: ⟨(a, c, 3), (c, d, 4), (d, e, 5)⟩ (increasing)

Temporal connectivity: ∃ temporal paths between all vertices.

→ Warning: Reachability is non-symmetrical... and non-transitive!

5/1 5/1

Basic definitions

Temporal graphs (a.k.a. time-varying, time-dependent, evolving, dynamic,...)

G = (V,E, λ), where λ : E → 2N assigns presence times to edges.
|

footprint of G

a b

c d

e

Example:

Can also be viewed as a sequence of

snapshots {Gi = {e ∈ E : i ∈ λ(e)}}

5,7

3,5 1,2,9

1,4

2 4,5

Temporally
connected

Temporal paths

▶ Non-strict - ex: ⟨(a, c, 3), (c, d, 4), (d, e, 4)⟩ (non-decreasing)

▶ Strict - ex: ⟨(a, c, 3), (c, d, 4), (d, e, 5)⟩ (increasing)

Temporal connectivity: ∃ temporal paths between all vertices.

→ Warning: Reachability is non-symmetrical... and non-transitive!

5/1 5/1

Basic definitions

Temporal graphs (a.k.a. time-varying, time-dependent, evolving, dynamic,...)

G = (V,E, λ), where λ : E → 2N assigns presence times to edges.
|

footprint of G

a b

c d

e

Example:

Can also be viewed as a sequence of

snapshots {Gi = {e ∈ E : i ∈ λ(e)}}

5,7

3,5 1,2,9

1,4

2 4,5

Temporally
connected

Temporal paths

▶ Non-strict - ex: ⟨(a, c, 3), (c, d, 4), (d, e, 4)⟩ (non-decreasing)

▶ Strict - ex: ⟨(a, c, 3), (c, d, 4), (d, e, 5)⟩ (increasing)

Temporal connectivity: ∃ temporal paths between all vertices.

→ Warning: Reachability is non-symmetrical... and non-transitive!

5/1 5/1

Basic definitions

Temporal graphs (a.k.a. time-varying, time-dependent, evolving, dynamic,...)

G = (V,E, λ), where λ : E → 2N assigns presence times to edges.
|

footprint of G

a b

c d

e

Example:

Can also be viewed as a sequence of

snapshots {Gi = {e ∈ E : i ∈ λ(e)}}

5,7

3,5 1,2,9

1,4

2 4,5

Temporally
connected

Temporal paths

▶ Non-strict - ex: ⟨(a, c, 3), (c, d, 4), (d, e, 4)⟩ (non-decreasing)

▶ Strict - ex: ⟨(a, c, 3), (c, d, 4), (d, e, 5)⟩ (increasing)

Temporal connectivity: ∃ temporal paths between all vertices.

→ Warning: Reachability is non-symmetrical... and non-transitive!

5/1 5/1

Basic definitions

Temporal graphs (a.k.a. time-varying, time-dependent, evolving, dynamic,...)

G = (V,E, λ), where λ : E → 2N assigns presence times to edges.
|

footprint of G

a b

c d

e

Example:

Can also be viewed as a sequence of

snapshots {Gi = {e ∈ E : i ∈ λ(e)}}

5,7

3,5 1,2,9

1,4

2 4,5

Temporally
connected

Temporal paths

▶ Non-strict - ex: ⟨(a, c, 3), (c, d, 4), (d, e, 4)⟩ (non-decreasing)

▶ Strict - ex: ⟨(a, c, 3), (c, d, 4), (d, e, 5)⟩ (increasing)

Temporal connectivity: ∃ temporal paths between all vertices.

→ Warning: Reachability is non-symmetrical...

and non-transitive!

5/1 5/1

Basic definitions

Temporal graphs (a.k.a. time-varying, time-dependent, evolving, dynamic,...)

G = (V,E, λ), where λ : E → 2N assigns presence times to edges.
|

footprint of G

a b

c d

e

Example:

Can also be viewed as a sequence of

snapshots {Gi = {e ∈ E : i ∈ λ(e)}}

5,7

3,5 1,2,9

1,4

2 4,5

Temporally
connected

Temporal paths

▶ Non-strict - ex: ⟨(a, c, 3), (c, d, 4), (d, e, 4)⟩ (non-decreasing)

▶ Strict - ex: ⟨(a, c, 3), (c, d, 4), (d, e, 5)⟩ (increasing)

Temporal connectivity: ∃ temporal paths between all vertices.

→ Warning: Reachability is non-symmetrical... and non-transitive!

6/1 6/1

Temporal spanners

Input: a graph G that is temporally connected (G ∈ TC)

Output: a graph G′ ⊆ G that preserves temporal connectivity (G′ ∈ TC)

Cost measure: size of the spanner (say, in number of labels)

a

b

c

d

2,7 3,5

1,4

1,64

→
a

b

c

d

2,7 3
1,4

size 5

a

b

c

d

2 3

14

size 4

Can we do better?
▶ 2n− 4 labels needed, even if you choose the values! (Bumby’79, gossip theory)

Do spanners of size 2n− 4 always exist?
▶ ∃ minimally connected temp. graphs with Ω(n logn) labels (Kleinberg, Kempe, Kumar, 2000)

▶ In fact, ∃ some with Ω(n2) labels (Axiotis, Fotakis, 2016)

How about complexity?
▶ Minimum-size spanner is APX-hard (Akrida, Gasieniec, Mertzios, Spirakis, 2017)

6/1 6/1

Temporal spanners

Input: a graph G that is temporally connected (G ∈ TC)

Output: a graph G′ ⊆ G that preserves temporal connectivity (G′ ∈ TC)

Cost measure: size of the spanner (say, in number of labels)

a

b

c

d

2,7 3,5

1,4

1,64 →
a

b

c

d

2,7 3
1,4

size 5

a

b

c

d

2 3

14

size 4

Can we do better?
▶ 2n− 4 labels needed, even if you choose the values! (Bumby’79, gossip theory)

Do spanners of size 2n− 4 always exist?
▶ ∃ minimally connected temp. graphs with Ω(n logn) labels (Kleinberg, Kempe, Kumar, 2000)

▶ In fact, ∃ some with Ω(n2) labels (Axiotis, Fotakis, 2016)

How about complexity?
▶ Minimum-size spanner is APX-hard (Akrida, Gasieniec, Mertzios, Spirakis, 2017)

6/1 6/1

Temporal spanners

Input: a graph G that is temporally connected (G ∈ TC)

Output: a graph G′ ⊆ G that preserves temporal connectivity (G′ ∈ TC)

Cost measure: size of the spanner (say, in number of labels)

a

b

c

d

2,7 3,5

1,4

1,64 →
a

b

c

d

2,7 3
1,4

size 5

a

b

c

d

2 3

14

size 4

Can we do better?
▶ 2n− 4 labels needed, even if you choose the values! (Bumby’79, gossip theory)

Do spanners of size 2n− 4 always exist?
▶ ∃ minimally connected temp. graphs with Ω(n logn) labels (Kleinberg, Kempe, Kumar, 2000)

▶ In fact, ∃ some with Ω(n2) labels (Axiotis, Fotakis, 2016)

How about complexity?
▶ Minimum-size spanner is APX-hard (Akrida, Gasieniec, Mertzios, Spirakis, 2017)

6/1 6/1

Temporal spanners

Input: a graph G that is temporally connected (G ∈ TC)

Output: a graph G′ ⊆ G that preserves temporal connectivity (G′ ∈ TC)

Cost measure: size of the spanner (say, in number of labels)

a

b

c

d

2,7 3,5

1,4

1,64 →
a

b

c

d

2,7 3
1,4

size 5

a

b

c

d

2 3

14

size 4

Can we do better?
▶ 2n− 4 labels needed, even if you choose the values! (Bumby’79, gossip theory)

Do spanners of size 2n− 4 always exist?
▶ ∃ minimally connected temp. graphs with Ω(n logn) labels (Kleinberg, Kempe, Kumar, 2000)

▶ In fact, ∃ some with Ω(n2) labels (Axiotis, Fotakis, 2016)

How about complexity?
▶ Minimum-size spanner is APX-hard (Akrida, Gasieniec, Mertzios, Spirakis, 2017)

6/1 6/1

Temporal spanners

Input: a graph G that is temporally connected (G ∈ TC)

Output: a graph G′ ⊆ G that preserves temporal connectivity (G′ ∈ TC)

Cost measure: size of the spanner (say, in number of labels)

a

b

c

d

2,7 3,5

1,4

1,64 →
a

b

c

d

2,7 3
1,4

size 5

a

b

c

d

2 3

14

size 4

Can we do better?
▶ 2n− 4 labels needed, even if you choose the values! (Bumby’79, gossip theory)

Do spanners of size 2n− 4 always exist?

▶ ∃ minimally connected temp. graphs with Ω(n logn) labels (Kleinberg, Kempe, Kumar, 2000)

▶ In fact, ∃ some with Ω(n2) labels (Axiotis, Fotakis, 2016)

How about complexity?
▶ Minimum-size spanner is APX-hard (Akrida, Gasieniec, Mertzios, Spirakis, 2017)

6/1 6/1

Temporal spanners

Input: a graph G that is temporally connected (G ∈ TC)

Output: a graph G′ ⊆ G that preserves temporal connectivity (G′ ∈ TC)

Cost measure: size of the spanner (say, in number of labels)

a

b

c

d

2,7 3,5

1,4

1,64 →
a

b

c

d

2,7 3
1,4

size 5

a

b

c

d

2 3

14

size 4

Can we do better?
▶ 2n− 4 labels needed, even if you choose the values! (Bumby’79, gossip theory)

Do spanners of size 2n− 4 always exist?
▶ ∃ minimally connected temp. graphs with Ω(n logn) labels (Kleinberg, Kempe, Kumar, 2000)

▶ In fact, ∃ some with Ω(n2) labels (Axiotis, Fotakis, 2016)

How about complexity?
▶ Minimum-size spanner is APX-hard (Akrida, Gasieniec, Mertzios, Spirakis, 2017)

6/1 6/1

Temporal spanners

Input: a graph G that is temporally connected (G ∈ TC)

Output: a graph G′ ⊆ G that preserves temporal connectivity (G′ ∈ TC)

Cost measure: size of the spanner (say, in number of labels)

a

b

c

d

2,7 3,5

1,4

1,64 →
a

b

c

d

2,7 3
1,4

size 5

a

b

c

d

2 3

14

size 4

Can we do better?
▶ 2n− 4 labels needed, even if you choose the values! (Bumby’79, gossip theory)

Do spanners of size 2n− 4 always exist?
▶ ∃ minimally connected temp. graphs with Ω(n logn) labels (Kleinberg, Kempe, Kumar, 2000)

▶ In fact, ∃ some with Ω(n2) labels (Axiotis, Fotakis, 2016)

How about complexity?
▶ Minimum-size spanner is APX-hard (Akrida, Gasieniec, Mertzios, Spirakis, 2017)

6/1 6/1

Temporal spanners

Input: a graph G that is temporally connected (G ∈ TC)

Output: a graph G′ ⊆ G that preserves temporal connectivity (G′ ∈ TC)

Cost measure: size of the spanner (say, in number of labels)

a

b

c

d

2,7 3,5

1,4

1,64 →
a

b

c

d

2,7 3
1,4

size 5

a

b

c

d

2 3

14

size 4

Can we do better?
▶ 2n− 4 labels needed, even if you choose the values! (Bumby’79, gossip theory)

Do spanners of size 2n− 4 always exist?
▶ ∃ minimally connected temp. graphs with Ω(n logn) labels (Kleinberg, Kempe, Kumar, 2000)

▶ In fact, ∃ some with Ω(n2) labels (Axiotis, Fotakis, 2016)

How about complexity?
▶ Minimum-size spanner is APX-hard (Akrida, Gasieniec, Mertzios, Spirakis, 2017)

7/1 7/1

Bad news and good news

Recall the bad news:

▶ Ω(n logn) - easy

▶ Ω(n2) - rather unexpected

Good news 1: (C., Peters, Schoeters, ICALP 2019):
▶ Spanners of size O(n logn) always exist

in complete temporal graphs

Good news 2: (C., Raskin, Renken, Zamaraev, FOCS 2021):
▶ Nearly optimal spanners (of size 2n+ o(n)) almost surely exist in random

temporal graphs, as soon as the graph is temporally connected

7/1 7/1

Bad news and good news

Recall the bad news:

▶ Ω(n logn) - easy

▶ Ω(n2) - rather unexpected

Good news 1: (C., Peters, Schoeters, ICALP 2019):
▶ Spanners of size O(n logn) always exist

in complete temporal graphs

Good news 2: (C., Raskin, Renken, Zamaraev, FOCS 2021):
▶ Nearly optimal spanners (of size 2n+ o(n)) almost surely exist in random

temporal graphs, as soon as the graph is temporally connected

7/1 7/1

Bad news and good news

Recall the bad news:

▶ Ω(n logn) - easy

▶ Ω(n2) - rather unexpected

Good news 1: (C., Peters, Schoeters, ICALP 2019):
▶ Spanners of size O(n logn) always exist

in complete temporal graphs

Good news 2: (C., Raskin, Renken, Zamaraev, FOCS 2021):
▶ Nearly optimal spanners (of size 2n+ o(n)) almost surely exist in random

temporal graphs, as soon as the graph is temporally connected

8/1 8/1

Before we start... an easier model

Simple Temporal Graphs (STGs):
1. A single presence time per edge (λ : E → N)

2. Adjacent edges have different times (λ is locally injective)

5

3 9

1

2 5

Generality for spanners:
▶ Most negative results still apply
▶ Positive results extend to general case
▶ No distinction between strict and non-strict temporal paths

Further motivations:
▶ Distributed models by pairwise interactions,

e.g. population protocols or gossip models (without repetition)

▶ Close model to edge-ordered graphs (Chvátal, Komlós, 1971)

8/1 8/1

Before we start... an easier model

Simple Temporal Graphs (STGs):
1. A single presence time per edge (λ : E → N)

2. Adjacent edges have different times (λ is locally injective)

5

3 9

1

2 5

Generality for spanners:
▶ Most negative results still apply
▶ Positive results extend to general case
▶ No distinction between strict and non-strict temporal paths

Further motivations:
▶ Distributed models by pairwise interactions,

e.g. population protocols or gossip models (without repetition)

▶ Close model to edge-ordered graphs (Chvátal, Komlós, 1971)

8/1 8/1

Before we start... an easier model

Simple Temporal Graphs (STGs):
1. A single presence time per edge (λ : E → N)

2. Adjacent edges have different times (λ is locally injective)

5

3 9

1

2 5

Generality for spanners:
▶ Most negative results still apply
▶ Positive results extend to general case
▶ No distinction between strict and non-strict temporal paths

Further motivations:
▶ Distributed models by pairwise interactions,

e.g. population protocols or gossip models (without repetition)

▶ Close model to edge-ordered graphs (Chvátal, Komlós, 1971)

9/1 9/1

Good news 1:

Temporal cliques admit sparse spanners

(with)

10/1 10/1

Two promising techniques...

Pivotability

Pivot node v and time t such that:
▶ all nodes can reach v before t

▶ v can reach all nodes after t

Then in-tree ∪ out-tree = spanner of size 2n − 2 (in fact 2n − 3...)

Dismountability
Three nodes u, v, w such that:
▶ uv =min-edge(v)

▶ uw =max-edge(w)

Then spanner(G) := spanner(G[V \u]) + uv + uw

Recursively,

→

spanner of size 2n − 3.

... unfortunately

Both techniques fail in some cases.

10/1 10/1

Two promising techniques...

Pivotability

Pivot node v and time t such that:
▶ all nodes can reach v before t

▶ v can reach all nodes after t

Then in-tree ∪ out-tree = spanner of size 2n − 2 (in fact 2n − 3...)

Dismountability
Three nodes u, v, w such that:
▶ uv =min-edge(v)

▶ uw =max-edge(w)

Then spanner(G) := spanner(G[V \u]) + uv + uw

Recursively,

→

spanner of size 2n − 3.

... unfortunately

Both techniques fail in some cases.

10/1 10/1

Two promising techniques...

Pivotability

Pivot node v and time t such that:
▶ all nodes can reach v before t

▶ v can reach all nodes after t

Then in-tree ∪ out-tree = spanner of size 2n − 2 (in fact 2n − 3...)

Dismountability
Three nodes u, v, w such that:
▶ uv =min-edge(v)

▶ uw =max-edge(w)

Then spanner(G) := spanner(G[V \u]) + uv + uw

Recursively,

→

spanner of size 2n − 3.

... unfortunately

Both techniques fail in some cases.

11/1 11/1

Transitive delegations (“fireworks”)

Principle:

▶ Transitive delegations towards emitters
▶ Spanner = forest of min edges + edges of emitters

Wait a minute... could be lot of emitters!

→→ Local transformation of the forest:
▶ At most n/2 emitters

Theorem: ∃ spanners of size 3
4

(n
2

)
+ O(n)

Backward spanner also possible

→ Spanner = max edges + all edges of collectors

11/1 11/1

Transitive delegations (“fireworks”)

Principle:

▶ Transitive delegations towards emitters
▶ Spanner = forest of min edges + edges of emitters

Wait a minute... could be lot of emitters!

→→ Local transformation of the forest:
▶ At most n/2 emitters

Theorem: ∃ spanners of size 3
4

(n
2

)
+ O(n)

Backward spanner also possible

→ Spanner = max edges + all edges of collectors

11/1 11/1

Transitive delegations (“fireworks”)

Principle:

▶ Transitive delegations towards emitters
▶ Spanner = forest of min edges + edges of emitters

Wait a minute... could be lot of emitters!

→→ Local transformation of the forest:
▶ At most n/2 emitters

Theorem: ∃ spanners of size 3
4

(n
2

)
+ O(n)

Backward spanner also possible

→ Spanner = max edges + all edges of collectors

11/1 11/1

Transitive delegations (“fireworks”)

Principle:

▶ Transitive delegations towards emitters
▶ Spanner = forest of min edges + edges of emitters

Wait a minute... could be lot of emitters!

→→ Local transformation of the forest:
▶ At most n/2 emitters

Theorem: ∃ spanners of size 3
4

(n
2

)
+ O(n)

Backward spanner also possible

→ Spanner = max edges + all edges of collectors

11/1 11/1

Transitive delegations (“fireworks”)

Principle:

▶ Transitive delegations towards emitters
▶ Spanner = forest of min edges + edges of emitters

Wait a minute... could be lot of emitters!

→→ Local transformation of the forest:
▶ At most n/2 emitters

Theorem: ∃ spanners of size 3
4

(n
2

)
+ O(n)

Backward spanner also possible

→ Spanner = max edges + all edges of collectors

11/1 11/1

Transitive delegations (“fireworks”)

Principle:

▶ Transitive delegations towards emitters
▶ Spanner = forest of min edges + edges of emitters

Wait a minute... could be lot of emitters!

→→ Local transformation of the forest:
▶ At most n/2 emitters

Theorem: ∃ spanners of size 3
4

(n
2

)
+ O(n)

Backward spanner also possible

→ Spanner = max edges + all edges of collectors

12/1 12/1

Combining both directions

▶ Each vertex can reach at least one emitter u
through u’s min edge

▶ Each vertex can be reached by a collector v
through v’s max edge

▶ Each emitter can reach all collectors
through direct edges

→ Spanner = min edges + max edges

+ edges between emitters and collectors

Theorem:

At most n/2 emitters and n/2 collectors ⇒ ∃ Spanners of size
(n
2

)
/2 +O(n)

≈ half of the edges

13/1 13/1

Recurse or sparsify?

Case 1: emitters ∪ collectors ̸= V

Lemma: There exists a “2-hop dismountable” vertex v

→ select 4 edges, recurse on G[V − v]

Case 2: emitters ∪ collectors = V

→ All vertices are either emitters or collectors (not both)!

A lot of structure to work with:
▶ Complete bipartite graph H between emitters and collectors
▶ Min edges and max edges form two perfect matchings
▶ W.l.o.g. min edges (max edges) are reciprocal in H

New objective:
→ Sparsify H while preserving journeys from each emitter to all collectors

13/1 13/1

Recurse or sparsify?

Case 1: emitters ∪ collectors ̸= V

Lemma: There exists a “2-hop dismountable” vertex v

→ select 4 edges, recurse on G[V − v]

Case 2: emitters ∪ collectors = V

→ All vertices are either emitters or collectors (not both)!

A lot of structure to work with:
▶ Complete bipartite graph H between emitters and collectors
▶ Min edges and max edges form two perfect matchings
▶ W.l.o.g. min edges (max edges) are reciprocal in H

New objective:
→ Sparsify H while preserving journeys from each emitter to all collectors

13/1 13/1

Recurse or sparsify?

Case 1: emitters ∪ collectors ̸= V

Lemma: There exists a “2-hop dismountable” vertex v

→ select 4 edges, recurse on G[V − v]

Case 2: emitters ∪ collectors = V

→ All vertices are either emitters or collectors (not both)!

A lot of structure to work with:
▶ Complete bipartite graph H between emitters and collectors
▶ Min edges and max edges form two perfect matchings
▶ W.l.o.g. min edges (max edges) are reciprocal in H

New objective:
→ Sparsify H while preserving journeys from each emitter to all collectors

13/1 13/1

Recurse or sparsify?

Case 1: emitters ∪ collectors ̸= V

Lemma: There exists a “2-hop dismountable” vertex v

→ select 4 edges, recurse on G[V − v]

Case 2: emitters ∪ collectors = V

→ All vertices are either emitters or collectors (not both)!

A lot of structure to work with:
▶ Complete bipartite graph H between emitters and collectors
▶ Min edges and max edges form two perfect matchings
▶ W.l.o.g. min edges (max edges) are reciprocal in H

New objective:
→ Sparsify H while preserving journeys from each emitter to all collectors

13/1 13/1

Recurse or sparsify?

Case 1: emitters ∪ collectors ̸= V

Lemma: There exists a “2-hop dismountable” vertex v

→ select 4 edges, recurse on G[V − v]

Case 2: emitters ∪ collectors = V

→ All vertices are either emitters or collectors (not both)!

A lot of structure to work with:
▶ Complete bipartite graph H between emitters and collectors
▶ Min edges and max edges form two perfect matchings
▶ W.l.o.g. min edges (max edges) are reciprocal in H

New objective:
→ Sparsify H while preserving journeys from each emitter to all collectors

13/1 13/1

Recurse or sparsify?

Case 1: emitters ∪ collectors ̸= V

Lemma: There exists a “2-hop dismountable” vertex v

→ select 4 edges, recurse on G[V − v]

Case 2: emitters ∪ collectors = V

→ All vertices are either emitters or collectors (not both)!

A lot of structure to work with:
▶ Complete bipartite graph H between emitters and collectors
▶ Min edges and max edges form two perfect matchings
▶ W.l.o.g. min edges (max edges) are reciprocal in H

New objective:
→ Sparsify H while preserving journeys from each emitter to all collectors

14/1 14/1

Sparsification of the bipartite graph

New objective:

→ Sparsify H while preserving journeys from each emitter to all collectors

Technique: Partial delegations among emitters

▶ Find a 2-hop journey from one emitter to another,
arriving through a “locally small” edge

▶ Pay extra edges (penalty) to reach missed collectors

Iterative procedure:

In each step i:
▶ Half of the emitters partially delegate to other half

▶ Penalty doubles in each step, but #emitters halves
▶ O(n) edges over O(logn) iterations → O(n logn) edges.

Conclusion:

∃ spanner of size O(n logn)

14/1 14/1

Sparsification of the bipartite graph

New objective:

→ Sparsify H while preserving journeys from each emitter to all collectors

Technique: Partial delegations among emitters

▶ Find a 2-hop journey from one emitter to another,
arriving through a “locally small” edge

▶ Pay extra edges (penalty) to reach missed collectors

Iterative procedure:

In each step i:
▶ Half of the emitters partially delegate to other half

▶ Penalty doubles in each step, but #emitters halves
▶ O(n) edges over O(logn) iterations → O(n logn) edges.

Conclusion:

∃ spanner of size O(n logn)

14/1 14/1

Sparsification of the bipartite graph

New objective:

→ Sparsify H while preserving journeys from each emitter to all collectors

Technique: Partial delegations among emitters

▶ Find a 2-hop journey from one emitter to another,
arriving through a “locally small” edge

▶ Pay extra edges (penalty) to reach missed collectors

Iterative procedure:

In each step i:
▶ Half of the emitters partially delegate to other half

▶ Penalty doubles in each step, but #emitters halves
▶ O(n) edges over O(logn) iterations → O(n logn) edges.

Conclusion:

∃ spanner of size O(n logn)

15/1 15/1

Open questions (deterministic)

Better spanners for temporal cliques?

▶ Is O(n logn) optimal for cliques? Is O(n) possible?
▶ Even better, does 2n− 4 ≤ OPT ≤ 2n− 3?

(so far, no counter-example found)

Relaxing the complete graph assumption

▶ Can more general classes of dense graphs be sparsified?

→ Recall that ∃ unsparsifiable graphs of density Θ(n2)

→ Is there a family of graphs of density < 1 which admits sparse spanners?

What about random temporal graphs?

15/1 15/1

Open questions (deterministic)

Better spanners for temporal cliques?

▶ Is O(n logn) optimal for cliques? Is O(n) possible?
▶ Even better, does 2n− 4 ≤ OPT ≤ 2n− 3?

(so far, no counter-example found)

Relaxing the complete graph assumption

▶ Can more general classes of dense graphs be sparsified?

→ Recall that ∃ unsparsifiable graphs of density Θ(n2)

→ Is there a family of graphs of density < 1 which admits sparse spanners?

What about random temporal graphs?

15/1 15/1

Open questions (deterministic)

Better spanners for temporal cliques?

▶ Is O(n logn) optimal for cliques? Is O(n) possible?
▶ Even better, does 2n− 4 ≤ OPT ≤ 2n− 3?

(so far, no counter-example found)

Relaxing the complete graph assumption

▶ Can more general classes of dense graphs be sparsified?

→ Recall that ∃ unsparsifiable graphs of density Θ(n2)

→ Is there a family of graphs of density < 1 which admits sparse spanners?

What about random temporal graphs?

16/1 16/1

Good news 2:

Spanners of size 2n+ o(n) almost surely exist

in random temporal graphs

(with)

17/1 17/1

Sharp thresholds in random temporal graphs (C., Raskin, Renken, Zamaraev, 2021)

Random simple temporal graphs:

1. Pick an Erdös-Rényi G ∼ Gn,p

2. Permute the edges randomly,
interpret as (unique) presence time

Timeline for p (as n → ∞):

0 1
logn
n

Standard connectivity

Most vertex pairs
reach each other
(∼∗⇝ ∼∗)

2 logn
n

First source
(1⇝ ∗)

Most vertices
are sources
(∼∗⇝ ∗)

4 logn
n

Pivotal spanner
(size 2n − 2)

3 logn
n

Temporal
connectivity
(∗⇝ ∗)

Nearly optimal spanner
(size 2n + o(n)) Optimal spanner

⋆

(size 2n − 4)

All the thresholds are sharp, except ⋆ (open problem)
(sharp: ∃ϵ(n) = o(1), not true at (1 − ϵ(n))p, true at (1 + ϵ(n))p)

17/1 17/1

Sharp thresholds in random temporal graphs (C., Raskin, Renken, Zamaraev, 2021)

Random simple temporal graphs:

1. Pick an Erdös-Rényi G ∼ Gn,p

2. Permute the edges randomly,
interpret as (unique) presence time

Timeline for p (as n → ∞):

0 1
logn
n

Standard connectivity

Most vertex pairs
reach each other
(∼∗⇝ ∼∗)

2 logn
n

First source
(1⇝ ∗)

Most vertices
are sources
(∼∗⇝ ∗)

4 logn
n

Pivotal spanner
(size 2n − 2)

3 logn
n

Temporal
connectivity
(∗⇝ ∗)

Nearly optimal spanner
(size 2n + o(n)) Optimal spanner

⋆

(size 2n − 4)

All the thresholds are sharp, except ⋆ (open problem)
(sharp: ∃ϵ(n) = o(1), not true at (1 − ϵ(n))p, true at (1 + ϵ(n))p)

17/1 17/1

Sharp thresholds in random temporal graphs (C., Raskin, Renken, Zamaraev, 2021)

Random simple temporal graphs:

1. Pick an Erdös-Rényi G ∼ Gn,p

2. Permute the edges randomly,
interpret as (unique) presence time

Timeline for p (as n → ∞):

0 1
logn
n

Standard connectivity

Most vertex pairs
reach each other
(∼∗⇝ ∼∗)

2 logn
n

First source
(1⇝ ∗)

Most vertices
are sources
(∼∗⇝ ∗)

4 logn
n

Pivotal spanner
(size 2n − 2)

3 logn
n

Temporal
connectivity
(∗⇝ ∗)

Nearly optimal spanner
(size 2n + o(n)) Optimal spanner

⋆

(size 2n − 4)

All the thresholds are sharp, except ⋆ (open problem)
(sharp: ∃ϵ(n) = o(1), not true at (1 − ϵ(n))p, true at (1 + ϵ(n))p)

17/1 17/1

Sharp thresholds in random temporal graphs (C., Raskin, Renken, Zamaraev, 2021)

Random simple temporal graphs:

1. Pick an Erdös-Rényi G ∼ Gn,p

2. Permute the edges randomly,
interpret as (unique) presence time

Timeline for p (as n → ∞):

0 1
logn
n

Standard connectivity

Most vertex pairs
reach each other
(∼∗⇝ ∼∗)

2 logn
n

First source
(1⇝ ∗)

Most vertices
are sources
(∼∗⇝ ∗)

4 logn
n

Pivotal spanner
(size 2n − 2)

3 logn
n

Temporal
connectivity
(∗⇝ ∗)

Nearly optimal spanner
(size 2n + o(n)) Optimal spanner

⋆

(size 2n − 4)

All the thresholds are sharp, except ⋆ (open problem)
(sharp: ∃ϵ(n) = o(1), not true at (1 − ϵ(n))p, true at (1 + ϵ(n))p)

17/1 17/1

Sharp thresholds in random temporal graphs (C., Raskin, Renken, Zamaraev, 2021)

Random simple temporal graphs:

1. Pick an Erdös-Rényi G ∼ Gn,p

2. Permute the edges randomly,
interpret as (unique) presence time

Timeline for p (as n → ∞):

0 1
logn
n

Standard connectivity

Most vertex pairs
reach each other
(∼∗⇝ ∼∗)

2 logn
n

First source
(1⇝ ∗)

Most vertices
are sources
(∼∗⇝ ∗)

4 logn
n

Pivotal spanner
(size 2n − 2)

3 logn
n

Temporal
connectivity
(∗⇝ ∗)

Nearly optimal spanner
(size 2n + o(n)) Optimal spanner

⋆

(size 2n − 4)

All the thresholds are sharp, except ⋆ (open problem)
(sharp: ∃ϵ(n) = o(1), not true at (1 − ϵ(n))p, true at (1 + ϵ(n))p)

17/1 17/1

Sharp thresholds in random temporal graphs (C., Raskin, Renken, Zamaraev, 2021)

Random simple temporal graphs:

1. Pick an Erdös-Rényi G ∼ Gn,p

2. Permute the edges randomly,
interpret as (unique) presence time

Timeline for p (as n → ∞):

0 1
logn
n

Standard connectivity

Most vertex pairs
reach each other
(∼∗⇝ ∼∗)

2 logn
n

First source
(1⇝ ∗)

Most vertices
are sources
(∼∗⇝ ∗)

4 logn
n

Pivotal spanner
(size 2n − 2)

3 logn
n

Temporal
connectivity
(∗⇝ ∗)

Nearly optimal spanner
(size 2n + o(n)) Optimal spanner

⋆

(size 2n − 4)

All the thresholds are sharp, except ⋆ (open problem)
(sharp: ∃ϵ(n) = o(1), not true at (1 − ϵ(n))p, true at (1 + ϵ(n))p)

17/1 17/1

Sharp thresholds in random temporal graphs (C., Raskin, Renken, Zamaraev, 2021)

Random simple temporal graphs:

1. Pick an Erdös-Rényi G ∼ Gn,p

2. Permute the edges randomly,
interpret as (unique) presence time

Timeline for p (as n → ∞):

0 1
logn
n

Standard connectivity

Most vertex pairs
reach each other
(∼∗⇝ ∼∗)

2 logn
n

First source
(1⇝ ∗)

Most vertices
are sources
(∼∗⇝ ∗)

4 logn
n

Pivotal spanner
(size 2n − 2)

3 logn
n

Temporal
connectivity
(∗⇝ ∗)

Nearly optimal spanner
(size 2n + o(n))

Optimal spanner
⋆

(size 2n − 4)

All the thresholds are sharp, except ⋆ (open problem)
(sharp: ∃ϵ(n) = o(1), not true at (1 − ϵ(n))p, true at (1 + ϵ(n))p)

17/1 17/1

Sharp thresholds in random temporal graphs (C., Raskin, Renken, Zamaraev, 2021)

Random simple temporal graphs:

1. Pick an Erdös-Rényi G ∼ Gn,p

2. Permute the edges randomly,
interpret as (unique) presence time

Timeline for p (as n → ∞):

0 1
logn
n

Standard connectivity

Most vertex pairs
reach each other
(∼∗⇝ ∼∗)

2 logn
n

First source
(1⇝ ∗)

Most vertices
are sources
(∼∗⇝ ∗)

4 logn
n

Pivotal spanner
(size 2n − 2)

3 logn
n

Temporal
connectivity
(∗⇝ ∗)

Nearly optimal spanner
(size 2n + o(n)) Optimal spanner

⋆

(size 2n − 4)

All the thresholds are sharp, except ⋆ (open problem)
(sharp: ∃ϵ(n) = o(1), not true at (1 − ϵ(n))p, true at (1 + ϵ(n))p)

17/1 17/1

Sharp thresholds in random temporal graphs (C., Raskin, Renken, Zamaraev, 2021)

Random simple temporal graphs:

1. Pick an Erdös-Rényi G ∼ Gn,p

2. Permute the edges randomly,
interpret as (unique) presence time

Timeline for p (as n → ∞):

0 1
logn
n

Standard connectivity

Most vertex pairs
reach each other
(∼∗⇝ ∼∗)

2 logn
n

First source
(1⇝ ∗)

Most vertices
are sources
(∼∗⇝ ∗)

4 logn
n

Pivotal spanner
(size 2n − 2)

3 logn
n

Temporal
connectivity
(∗⇝ ∗)

Nearly optimal spanner
(size 2n + o(n)) Optimal spanner

⋆

(size 2n − 4)

All the thresholds are sharp, except ⋆ (open problem)
(sharp: ∃ϵ(n) = o(1), not true at (1 − ϵ(n))p, true at (1 + ϵ(n))p)

18/1 18/1

Random Simple Temporal Graphs (RSTGs)

Temporal analog of Erdös-Reyni graphs, same parameters n and p

An RSTG G ∼ Gn,p:
1. Pick a footprint G ∼ Gn,p

2. Permute the edges randomly
(interpret ranks as times)

Ex: n = 7, p = 0.4 a

b c

d

et

g

1

2

5

3

4

6

8

9

7

Another point of view:

1. Take a complete graph Kn

2. Assign random real times in [0, 1] to every edge

3. Restrict your attention to G[0,p]

→ Better for analysis.

18/1 18/1

Random Simple Temporal Graphs (RSTGs)

Temporal analog of Erdös-Reyni graphs, same parameters n and p

An RSTG G ∼ Gn,p:
1. Pick a footprint G ∼ Gn,p

2. Permute the edges randomly
(interpret ranks as times)

Ex: n = 7, p = 0.4 a

b c

d

et

g

1

2

5

3

4

6

8

9

7

Another point of view:

1. Take a complete graph Kn

2. Assign random real times in [0, 1] to every edge

3. Restrict your attention to G[0,p]

→ Better for analysis.

18/1 18/1

Random Simple Temporal Graphs (RSTGs)

Temporal analog of Erdös-Reyni graphs, same parameters n and p

An RSTG G ∼ Gn,p:
1. Pick a footprint G ∼ Gn,p

2. Permute the edges randomly
(interpret ranks as times)

Ex: n = 7, p = 0.4 a

b c

d

et

g

1

2

5

3

4

6

8

9

7

Another point of view:

1. Take a complete graph Kn

2. Assign random real times in [0, 1] to every edge

3. Restrict your attention to G[0,p]

→ Better for analysis.

18/1 18/1

Random Simple Temporal Graphs (RSTGs)

Temporal analog of Erdös-Reyni graphs, same parameters n and p

An RSTG G ∼ Gn,p:
1. Pick a footprint G ∼ Gn,p

2. Permute the edges randomly
(interpret ranks as times)

Ex: n = 7, p = 0.4 a

b c

d

et

g

1

2

5

3

4

6

8

9

7

Another point of view:

1. Take a complete graph Kn

2. Assign random real times in [0, 1] to every edge

3. Restrict your attention to G[0,p]

→ Better for analysis.

18/1 18/1

Random Simple Temporal Graphs (RSTGs)

Temporal analog of Erdös-Reyni graphs, same parameters n and p

An RSTG G ∼ Gn,p:
1. Pick a footprint G ∼ Gn,p

2. Permute the edges randomly
(interpret ranks as times)

Ex: n = 7, p = 0.4 a

b c

d

et

g
1

2

5

3

4

6

8

9

7

Another point of view:

1. Take a complete graph Kn

2. Assign random real times in [0, 1] to every edge

3. Restrict your attention to G[0,p]

→ Better for analysis.

18/1 18/1

Random Simple Temporal Graphs (RSTGs)

Temporal analog of Erdös-Reyni graphs, same parameters n and p

An RSTG G ∼ Gn,p:
1. Pick a footprint G ∼ Gn,p

2. Permute the edges randomly
(interpret ranks as times)

Ex: n = 7, p = 0.4 a

b c

d

et

g
1

2

5

3

4

6

8

9

7

Another point of view:

1. Take a complete graph Kn

2. Assign random real times in [0, 1] to every edge

3. Restrict your attention to G[0,p]

→ Better for analysis.

19/1 19/1

Timeline of temporal reachability in Gn,p
For sufficiently large n, what happens when p increases?

0 1
1
n

logn
n

Footprint has
giant component

Footprint connected

Most vertex pairs
reach each other
(∼∗⇝ ∼∗)

2 logn
n

First source
(1⇝ ∗)

Most vertices
are sources
(∼∗⇝ ∗)

4 logn
n

Pivotal spanner
(size 2n − 2)

3 logn
n

Temporal
connectivity
(∗⇝ ∗)

Nearly optimal spanner
(size 2n + o(n))

Optimal spanner⋆

(size 2n − 4)

All the thresholds are sharp, except ⋆ (open problem)
(sharp: ∃ϵ(n) = o(1), not true at (1 − ϵ(n))p, true at (1 + ϵ(n))p)

19/1 19/1

Timeline of temporal reachability in Gn,p
For sufficiently large n, what happens when p increases?

0 1
1
n

logn
n

Footprint has
giant component

Footprint connected

Most vertex pairs
reach each other
(∼∗⇝ ∼∗)

2 logn
n

First source
(1⇝ ∗)

Most vertices
are sources
(∼∗⇝ ∗)

4 logn
n

Pivotal spanner
(size 2n − 2)

3 logn
n

Temporal
connectivity
(∗⇝ ∗)

Nearly optimal spanner
(size 2n + o(n))

Optimal spanner⋆

(size 2n − 4)

All the thresholds are sharp, except ⋆ (open problem)
(sharp: ∃ϵ(n) = o(1), not true at (1 − ϵ(n))p, true at (1 + ϵ(n))p)

19/1 19/1

Timeline of temporal reachability in Gn,p
For sufficiently large n, what happens when p increases?

0 1
1
n

logn
n

Footprint has
giant component

Footprint connected

Most vertex pairs
reach each other
(∼∗⇝ ∼∗)

2 logn
n

First source
(1⇝ ∗)

Most vertices
are sources
(∼∗⇝ ∗)

4 logn
n

Pivotal spanner
(size 2n − 2)

3 logn
n

Temporal
connectivity
(∗⇝ ∗)

Nearly optimal spanner
(size 2n + o(n))

Optimal spanner⋆

(size 2n − 4)

All the thresholds are sharp, except ⋆ (open problem)
(sharp: ∃ϵ(n) = o(1), not true at (1 − ϵ(n))p, true at (1 + ϵ(n))p)

19/1 19/1

Timeline of temporal reachability in Gn,p
For sufficiently large n, what happens when p increases?

0 1
1
n

logn
n

Footprint has
giant component

Footprint connected

Most vertex pairs
reach each other
(∼∗⇝ ∼∗)

2 logn
n

First source
(1⇝ ∗)

Most vertices
are sources
(∼∗⇝ ∗)

4 logn
n

Pivotal spanner
(size 2n − 2)

3 logn
n

Temporal
connectivity
(∗⇝ ∗)

Nearly optimal spanner
(size 2n + o(n))

Optimal spanner⋆

(size 2n − 4)

All the thresholds are sharp, except ⋆ (open problem)
(sharp: ∃ϵ(n) = o(1), not true at (1 − ϵ(n))p, true at (1 + ϵ(n))p)

19/1 19/1

Timeline of temporal reachability in Gn,p
For sufficiently large n, what happens when p increases?

0 1
1
n

logn
n

Footprint has
giant component

Footprint connected

Most vertex pairs
reach each other
(∼∗⇝ ∼∗)

2 logn
n

First source
(1⇝ ∗)

Most vertices
are sources
(∼∗⇝ ∗)

4 logn
n

Pivotal spanner
(size 2n − 2)

3 logn
n

Temporal
connectivity
(∗⇝ ∗)

Nearly optimal spanner
(size 2n + o(n))

Optimal spanner⋆

(size 2n − 4)

All the thresholds are sharp, except ⋆ (open problem)
(sharp: ∃ϵ(n) = o(1), not true at (1 − ϵ(n))p, true at (1 + ϵ(n))p)

19/1 19/1

Timeline of temporal reachability in Gn,p
For sufficiently large n, what happens when p increases?

0 1
1
n

logn
n

Footprint has
giant component

Footprint connected

Most vertex pairs
reach each other
(∼∗⇝ ∼∗)

2 logn
n

First source
(1⇝ ∗)

Most vertices
are sources
(∼∗⇝ ∗)

4 logn
n

Pivotal spanner
(size 2n − 2)

3 logn
n

Temporal
connectivity
(∗⇝ ∗)

Nearly optimal spanner
(size 2n + o(n))

Optimal spanner⋆

(size 2n − 4)

All the thresholds are sharp, except ⋆ (open problem)
(sharp: ∃ϵ(n) = o(1), not true at (1 − ϵ(n))p, true at (1 + ϵ(n))p)

19/1 19/1

Timeline of temporal reachability in Gn,p
For sufficiently large n, what happens when p increases?

0 1
1
n

logn
n

Footprint has
giant component

Footprint connected

Most vertex pairs
reach each other
(∼∗⇝ ∼∗)

2 logn
n

First source
(1⇝ ∗)

Most vertices
are sources
(∼∗⇝ ∗)

4 logn
n

Pivotal spanner
(size 2n − 2)

3 logn
n

Temporal
connectivity
(∗⇝ ∗)

Nearly optimal spanner
(size 2n + o(n))

Optimal spanner⋆

(size 2n − 4)

All the thresholds are sharp, except ⋆ (open problem)
(sharp: ∃ϵ(n) = o(1), not true at (1 − ϵ(n))p, true at (1 + ϵ(n))p)

19/1 19/1

Timeline of temporal reachability in Gn,p
For sufficiently large n, what happens when p increases?

0 1
1
n

logn
n

Footprint has
giant component

Footprint connected

Most vertex pairs
reach each other
(∼∗⇝ ∼∗)

2 logn
n

First source
(1⇝ ∗)

Most vertices
are sources
(∼∗⇝ ∗)

4 logn
n

Pivotal spanner
(size 2n − 2)

3 logn
n

Temporal
connectivity
(∗⇝ ∗)

Nearly optimal spanner
(size 2n + o(n))

Optimal spanner⋆

(size 2n − 4)

All the thresholds are sharp, except ⋆ (open problem)
(sharp: ∃ϵ(n) = o(1), not true at (1 − ϵ(n))p, true at (1 + ϵ(n))p)

19/1 19/1

Timeline of temporal reachability in Gn,p
For sufficiently large n, what happens when p increases?

0 1
1
n

logn
n

Footprint has
giant component

Footprint connected

Most vertex pairs
reach each other
(∼∗⇝ ∼∗)

2 logn
n

First source
(1⇝ ∗)

Most vertices
are sources
(∼∗⇝ ∗)

4 logn
n

Pivotal spanner
(size 2n − 2)

3 logn
n

Temporal
connectivity
(∗⇝ ∗)

Nearly optimal spanner
(size 2n + o(n))

Optimal spanner⋆

(size 2n − 4)

All the thresholds are sharp, except ⋆ (open problem)
(sharp: ∃ϵ(n) = o(1), not true at (1 − ϵ(n))p, true at (1 + ϵ(n))p)

20/1 20/1

Main technical tool: growth of a foremost tree

Foremost tree (from s)

- Foremost temporal paths from s to all

- “Prim-like” algorithm.

a

b c

d

et

s
1

2

5

3

4

6

8

9

7

t = 0

t = 1t = 2t = 3t = 4t = 5t = 6t = 7t = 8

Analysis

▶ Consider “growing” a foremost tree in G ∼ Gn,1 from a vertex s.

▶ Once we have reached k vertices, there are k(n− k) potential edges.

▶ The waiting time for one of these to appear is ≈ 1
k(n−k)

=⇒ Expect to reach all vertices at
∑n

k=1
1

k(n−k)
≈ 2 logn

n
.

▶ Azuma’s inequality for concentration.

20/1 20/1

Main technical tool: growth of a foremost tree

Foremost tree (from s)

- Foremost temporal paths from s to all

- “Prim-like” algorithm.

a

b c

d

et

s
1

2

5

3

4

6

8

9

7

t = 0

t = 1

t = 2t = 3t = 4t = 5t = 6t = 7t = 8

Analysis

▶ Consider “growing” a foremost tree in G ∼ Gn,1 from a vertex s.

▶ Once we have reached k vertices, there are k(n− k) potential edges.

▶ The waiting time for one of these to appear is ≈ 1
k(n−k)

=⇒ Expect to reach all vertices at
∑n

k=1
1

k(n−k)
≈ 2 logn

n
.

▶ Azuma’s inequality for concentration.

20/1 20/1

Main technical tool: growth of a foremost tree

Foremost tree (from s)

- Foremost temporal paths from s to all

- “Prim-like” algorithm.

a

b c

d

et

s
1

2

5

3

4

6

8

9

7

t = 0

t = 1

t = 2

t = 3t = 4t = 5t = 6t = 7t = 8

Analysis

▶ Consider “growing” a foremost tree in G ∼ Gn,1 from a vertex s.

▶ Once we have reached k vertices, there are k(n− k) potential edges.

▶ The waiting time for one of these to appear is ≈ 1
k(n−k)

=⇒ Expect to reach all vertices at
∑n

k=1
1

k(n−k)
≈ 2 logn

n
.

▶ Azuma’s inequality for concentration.

20/1 20/1

Main technical tool: growth of a foremost tree

Foremost tree (from s)

- Foremost temporal paths from s to all

- “Prim-like” algorithm.

a

b c

d

et

s
1

2

5

3

4

6

8

9

7

t = 0

t = 1t = 2

t = 3

t = 4t = 5t = 6t = 7t = 8

Analysis

▶ Consider “growing” a foremost tree in G ∼ Gn,1 from a vertex s.

▶ Once we have reached k vertices, there are k(n− k) potential edges.

▶ The waiting time for one of these to appear is ≈ 1
k(n−k)

=⇒ Expect to reach all vertices at
∑n

k=1
1

k(n−k)
≈ 2 logn

n
.

▶ Azuma’s inequality for concentration.

20/1 20/1

Main technical tool: growth of a foremost tree

Foremost tree (from s)

- Foremost temporal paths from s to all

- “Prim-like” algorithm.

a

b c

d

et

s
1

2

5

3

4

6

8

9

7

t = 0

t = 1t = 2t = 3

t = 4

t = 5t = 6t = 7t = 8

Analysis

▶ Consider “growing” a foremost tree in G ∼ Gn,1 from a vertex s.

▶ Once we have reached k vertices, there are k(n− k) potential edges.

▶ The waiting time for one of these to appear is ≈ 1
k(n−k)

=⇒ Expect to reach all vertices at
∑n

k=1
1

k(n−k)
≈ 2 logn

n
.

▶ Azuma’s inequality for concentration.

20/1 20/1

Main technical tool: growth of a foremost tree

Foremost tree (from s)

- Foremost temporal paths from s to all

- “Prim-like” algorithm.

a

b c

d

et

s
1

2

5

3

4

6

8

9

7

t = 0

t = 1t = 2t = 3t = 4

t = 5

t = 6t = 7t = 8

Analysis

▶ Consider “growing” a foremost tree in G ∼ Gn,1 from a vertex s.

▶ Once we have reached k vertices, there are k(n− k) potential edges.

▶ The waiting time for one of these to appear is ≈ 1
k(n−k)

=⇒ Expect to reach all vertices at
∑n

k=1
1

k(n−k)
≈ 2 logn

n
.

▶ Azuma’s inequality for concentration.

20/1 20/1

Main technical tool: growth of a foremost tree

Foremost tree (from s)

- Foremost temporal paths from s to all

- “Prim-like” algorithm.

a

b c

d

et

s
1

2

5

3

4

6

8

9

7

t = 0

t = 1t = 2t = 3t = 4t = 5

t = 6

t = 7t = 8

Analysis

▶ Consider “growing” a foremost tree in G ∼ Gn,1 from a vertex s.

▶ Once we have reached k vertices, there are k(n− k) potential edges.

▶ The waiting time for one of these to appear is ≈ 1
k(n−k)

=⇒ Expect to reach all vertices at
∑n

k=1
1

k(n−k)
≈ 2 logn

n
.

▶ Azuma’s inequality for concentration.

20/1 20/1

Main technical tool: growth of a foremost tree

Foremost tree (from s)

- Foremost temporal paths from s to all

- “Prim-like” algorithm.

a

b c

d

et

s
1

2

5

3

4

6

8

9

7

t = 0

t = 1t = 2t = 3t = 4t = 5t = 6

t = 7

t = 8

Analysis

▶ Consider “growing” a foremost tree in G ∼ Gn,1 from a vertex s.

▶ Once we have reached k vertices, there are k(n− k) potential edges.

▶ The waiting time for one of these to appear is ≈ 1
k(n−k)

=⇒ Expect to reach all vertices at
∑n

k=1
1

k(n−k)
≈ 2 logn

n
.

▶ Azuma’s inequality for concentration.

20/1 20/1

Main technical tool: growth of a foremost tree

Foremost tree (from s)

- Foremost temporal paths from s to all

- “Prim-like” algorithm.

a

b c

d

et

s
1

2

5

3

4

6

8

9

7

t = 0

t = 1t = 2t = 3t = 4t = 5t = 6t = 7

t = 8

Analysis

▶ Consider “growing” a foremost tree in G ∼ Gn,1 from a vertex s.

▶ Once we have reached k vertices, there are k(n− k) potential edges.

▶ The waiting time for one of these to appear is ≈ 1
k(n−k)

=⇒ Expect to reach all vertices at
∑n

k=1
1

k(n−k)
≈ 2 logn

n
.

▶ Azuma’s inequality for concentration.

20/1 20/1

Main technical tool: growth of a foremost tree

Foremost tree (from s)

- Foremost temporal paths from s to all

- “Prim-like” algorithm.

a

b c

d

et

s
1

2

5

3

4

6

8

9

7

t = 0

t = 1t = 2t = 3t = 4t = 5t = 6t = 7t = 8

Analysis

▶ Consider “growing” a foremost tree in G ∼ Gn,1 from a vertex s.

▶ Once we have reached k vertices, there are k(n− k) potential edges.

▶ The waiting time for one of these to appear is ≈ 1
k(n−k)

=⇒ Expect to reach all vertices at
∑n

k=1
1

k(n−k)
≈ 2 logn

n
.

▶ Azuma’s inequality for concentration.

20/1 20/1

Main technical tool: growth of a foremost tree

Foremost tree (from s)

- Foremost temporal paths from s to all

- “Prim-like” algorithm.

a

b c

d

et

s
1

2

5

3

4

6

8

9

7

t = 0

t = 1t = 2t = 3t = 4t = 5t = 6t = 7t = 8

Analysis

▶ Consider “growing” a foremost tree in G ∼ Gn,1 from a vertex s.

▶ Once we have reached k vertices, there are k(n− k) potential edges.

▶ The waiting time for one of these to appear is ≈ 1
k(n−k)

=⇒ Expect to reach all vertices at
∑n

k=1
1

k(n−k)
≈ 2 logn

n
.

▶ Azuma’s inequality for concentration.

20/1 20/1

Main technical tool: growth of a foremost tree

Foremost tree (from s)

- Foremost temporal paths from s to all

- “Prim-like” algorithm.

a

b c

d

et

s
1

2

5

3

4

6

8

9

7

t = 0

t = 1t = 2t = 3t = 4t = 5t = 6t = 7t = 8

Analysis

▶ Consider “growing” a foremost tree in G ∼ Gn,1 from a vertex s.

▶ Once we have reached k vertices, there are k(n− k) potential edges.

▶ The waiting time for one of these to appear is ≈ 1
k(n−k)

=⇒ Expect to reach all vertices at
∑n

k=1
1

k(n−k)
≈ 2 logn

n
.

▶ Azuma’s inequality for concentration.

20/1 20/1

Main technical tool: growth of a foremost tree

Foremost tree (from s)

- Foremost temporal paths from s to all

- “Prim-like” algorithm.

a

b c

d

et

s
1

2

5

3

4

6

8

9

7

t = 0

t = 1t = 2t = 3t = 4t = 5t = 6t = 7t = 8

Analysis

▶ Consider “growing” a foremost tree in G ∼ Gn,1 from a vertex s.

▶ Once we have reached k vertices, there are k(n− k) potential edges.

▶ The waiting time for one of these to appear is ≈ 1
k(n−k)

=⇒ Expect to reach all vertices at
∑n

k=1
1

k(n−k)
≈ 2 logn

n
.

▶ Azuma’s inequality for concentration.

20/1 20/1

Main technical tool: growth of a foremost tree

Foremost tree (from s)

- Foremost temporal paths from s to all

- “Prim-like” algorithm.

a

b c

d

et

s
1

2

5

3

4

6

8

9

7

t = 0

t = 1t = 2t = 3t = 4t = 5t = 6t = 7t = 8

Analysis

▶ Consider “growing” a foremost tree in G ∼ Gn,1 from a vertex s.

▶ Once we have reached k vertices, there are k(n− k) potential edges.

▶ The waiting time for one of these to appear is ≈ 1
k(n−k)

=⇒ Expect to reach all vertices at
∑n

k=1
1

k(n−k)
≈ 2 logn

n
.

▶ Azuma’s inequality for concentration.

20/1 20/1

Main technical tool: growth of a foremost tree

Foremost tree (from s)

- Foremost temporal paths from s to all

- “Prim-like” algorithm.

a

b c

d

et

s
1

2

5

3

4

6

8

9

7

t = 0

t = 1t = 2t = 3t = 4t = 5t = 6t = 7t = 8

Analysis

▶ Consider “growing” a foremost tree in G ∼ Gn,1 from a vertex s.

▶ Once we have reached k vertices, there are k(n− k) potential edges.

▶ The waiting time for one of these to appear is ≈ 1
k(n−k)

=⇒ Expect to reach all vertices at
∑n

k=1
1

k(n−k)
≈ 2 logn

n
.

▶ Azuma’s inequality for concentration.

21/1 21/1

Derived arguments

We note foremost(u) the set of vertices reached by a foremost tree from u.

Reachability thresholds

▶ ∼∗⇝∼∗ ⇐⇒ ∀u, ∀v, a.a.s. v ∈ foremost(u) (logn/n)

▶ 1⇝ ∗ ⇐⇒ a.a.s. ∃u,∀v, v ∈ foremost(u) (2 logn/n)
▶ ∼∗⇝ ∗ ⇐⇒ ∀u, a.a.s. ∀v, v ∈ foremost(u) (2 logn/n)
▶ ∗⇝ ∗ ⇐⇒ a.a.s ∀u, ∀v, v ∈ foremost(u) (3 logn/n)

LB: (∗ ⇝ 1) + (logn/n), each non sink must have at least one new edge.
UB: (∗ ⇝∼∗) + (logn/n), each non sink is reached from at least one sink.

Spanners

▶ Pivotal (∗⇝ 1⇝ ∗) ⇐= (∗⇝ ∼∗) + (∼∗⇝ ∗) (4 logn/n)
▶ Optimal spanner (size 2n− 4) (4 logn/n)

Pivotal square. Sharp ?

▶ Nearly optimal spanner (size 2n+ o(n)) (3 logn/n)
LB: Trivial (not temporally connected)
UB: Explicit construction
Three intervals of length logn/n:

▶ ∼∗ ⇝ 1 (say u) By logn/n
▶ u ⇝∼∗ between 2 logn/n and 3 logn/n.
▶ missing ⇝ u between 0 and 2 logn
▶ u ⇝ missing between logn/n and 3 logn/n
▶ missing ⇝ missing between 0 and 3 logn/n

21/1 21/1

Derived arguments

We note foremost(u) the set of vertices reached by a foremost tree from u.

Reachability thresholds

▶ ∼∗⇝∼∗ ⇐⇒ ∀u, ∀v, a.a.s. v ∈ foremost(u) (logn/n)
▶ 1⇝ ∗ ⇐⇒ a.a.s. ∃u,∀v, v ∈ foremost(u) (2 logn/n)

▶ ∼∗⇝ ∗ ⇐⇒ ∀u, a.a.s. ∀v, v ∈ foremost(u) (2 logn/n)
▶ ∗⇝ ∗ ⇐⇒ a.a.s ∀u, ∀v, v ∈ foremost(u) (3 logn/n)

LB: (∗ ⇝ 1) + (logn/n), each non sink must have at least one new edge.
UB: (∗ ⇝∼∗) + (logn/n), each non sink is reached from at least one sink.

Spanners

▶ Pivotal (∗⇝ 1⇝ ∗) ⇐= (∗⇝ ∼∗) + (∼∗⇝ ∗) (4 logn/n)
▶ Optimal spanner (size 2n− 4) (4 logn/n)

Pivotal square. Sharp ?

▶ Nearly optimal spanner (size 2n+ o(n)) (3 logn/n)
LB: Trivial (not temporally connected)
UB: Explicit construction
Three intervals of length logn/n:

▶ ∼∗ ⇝ 1 (say u) By logn/n
▶ u ⇝∼∗ between 2 logn/n and 3 logn/n.
▶ missing ⇝ u between 0 and 2 logn
▶ u ⇝ missing between logn/n and 3 logn/n
▶ missing ⇝ missing between 0 and 3 logn/n

21/1 21/1

Derived arguments

We note foremost(u) the set of vertices reached by a foremost tree from u.

Reachability thresholds

▶ ∼∗⇝∼∗ ⇐⇒ ∀u, ∀v, a.a.s. v ∈ foremost(u) (logn/n)
▶ 1⇝ ∗ ⇐⇒ a.a.s. ∃u,∀v, v ∈ foremost(u) (2 logn/n)
▶ ∼∗⇝ ∗ ⇐⇒ ∀u, a.a.s. ∀v, v ∈ foremost(u) (2 logn/n)

▶ ∗⇝ ∗ ⇐⇒ a.a.s ∀u, ∀v, v ∈ foremost(u) (3 logn/n)
LB: (∗ ⇝ 1) + (logn/n), each non sink must have at least one new edge.
UB: (∗ ⇝∼∗) + (logn/n), each non sink is reached from at least one sink.

Spanners

▶ Pivotal (∗⇝ 1⇝ ∗) ⇐= (∗⇝ ∼∗) + (∼∗⇝ ∗) (4 logn/n)
▶ Optimal spanner (size 2n− 4) (4 logn/n)

Pivotal square. Sharp ?

▶ Nearly optimal spanner (size 2n+ o(n)) (3 logn/n)
LB: Trivial (not temporally connected)
UB: Explicit construction
Three intervals of length logn/n:

▶ ∼∗ ⇝ 1 (say u) By logn/n
▶ u ⇝∼∗ between 2 logn/n and 3 logn/n.
▶ missing ⇝ u between 0 and 2 logn
▶ u ⇝ missing between logn/n and 3 logn/n
▶ missing ⇝ missing between 0 and 3 logn/n

21/1 21/1

Derived arguments

We note foremost(u) the set of vertices reached by a foremost tree from u.

Reachability thresholds

▶ ∼∗⇝∼∗ ⇐⇒ ∀u, ∀v, a.a.s. v ∈ foremost(u) (logn/n)
▶ 1⇝ ∗ ⇐⇒ a.a.s. ∃u,∀v, v ∈ foremost(u) (2 logn/n)
▶ ∼∗⇝ ∗ ⇐⇒ ∀u, a.a.s. ∀v, v ∈ foremost(u) (2 logn/n)
▶ ∗⇝ ∗ ⇐⇒ a.a.s ∀u, ∀v, v ∈ foremost(u) (3 logn/n)

LB: (∗ ⇝ 1) + (logn/n), each non sink must have at least one new edge.
UB: (∗ ⇝∼∗) + (logn/n), each non sink is reached from at least one sink.

Spanners

▶ Pivotal (∗⇝ 1⇝ ∗) ⇐= (∗⇝ ∼∗) + (∼∗⇝ ∗) (4 logn/n)
▶ Optimal spanner (size 2n− 4) (4 logn/n)

Pivotal square. Sharp ?

▶ Nearly optimal spanner (size 2n+ o(n)) (3 logn/n)
LB: Trivial (not temporally connected)
UB: Explicit construction
Three intervals of length logn/n:

▶ ∼∗ ⇝ 1 (say u) By logn/n
▶ u ⇝∼∗ between 2 logn/n and 3 logn/n.
▶ missing ⇝ u between 0 and 2 logn
▶ u ⇝ missing between logn/n and 3 logn/n
▶ missing ⇝ missing between 0 and 3 logn/n

21/1 21/1

Derived arguments

We note foremost(u) the set of vertices reached by a foremost tree from u.

Reachability thresholds

▶ ∼∗⇝∼∗ ⇐⇒ ∀u, ∀v, a.a.s. v ∈ foremost(u) (logn/n)
▶ 1⇝ ∗ ⇐⇒ a.a.s. ∃u,∀v, v ∈ foremost(u) (2 logn/n)
▶ ∼∗⇝ ∗ ⇐⇒ ∀u, a.a.s. ∀v, v ∈ foremost(u) (2 logn/n)
▶ ∗⇝ ∗ ⇐⇒ a.a.s ∀u, ∀v, v ∈ foremost(u) (3 logn/n)

LB: (∗ ⇝ 1) + (logn/n), each non sink must have at least one new edge.
UB: (∗ ⇝∼∗) + (logn/n), each non sink is reached from at least one sink.

Spanners

▶ Pivotal (∗⇝ 1⇝ ∗) ⇐= (∗⇝ ∼∗) + (∼∗⇝ ∗) (4 logn/n)
▶ Optimal spanner (size 2n− 4) (4 logn/n)

Pivotal square. Sharp ?

▶ Nearly optimal spanner (size 2n+ o(n)) (3 logn/n)
LB: Trivial (not temporally connected)
UB: Explicit construction
Three intervals of length logn/n:

▶ ∼∗ ⇝ 1 (say u) By logn/n
▶ u ⇝∼∗ between 2 logn/n and 3 logn/n.
▶ missing ⇝ u between 0 and 2 logn
▶ u ⇝ missing between logn/n and 3 logn/n
▶ missing ⇝ missing between 0 and 3 logn/n

21/1 21/1

Derived arguments

We note foremost(u) the set of vertices reached by a foremost tree from u.

Reachability thresholds

▶ ∼∗⇝∼∗ ⇐⇒ ∀u, ∀v, a.a.s. v ∈ foremost(u) (logn/n)
▶ 1⇝ ∗ ⇐⇒ a.a.s. ∃u,∀v, v ∈ foremost(u) (2 logn/n)
▶ ∼∗⇝ ∗ ⇐⇒ ∀u, a.a.s. ∀v, v ∈ foremost(u) (2 logn/n)
▶ ∗⇝ ∗ ⇐⇒ a.a.s ∀u, ∀v, v ∈ foremost(u) (3 logn/n)

LB: (∗ ⇝ 1) + (logn/n), each non sink must have at least one new edge.
UB: (∗ ⇝∼∗) + (logn/n), each non sink is reached from at least one sink.

Spanners

▶ Pivotal (∗⇝ 1⇝ ∗) ⇐= (∗⇝ ∼∗) + (∼∗⇝ ∗) (4 logn/n)

▶ Optimal spanner (size 2n− 4) (4 logn/n)
Pivotal square. Sharp ?

▶ Nearly optimal spanner (size 2n+ o(n)) (3 logn/n)
LB: Trivial (not temporally connected)
UB: Explicit construction
Three intervals of length logn/n:

▶ ∼∗ ⇝ 1 (say u) By logn/n
▶ u ⇝∼∗ between 2 logn/n and 3 logn/n.
▶ missing ⇝ u between 0 and 2 logn
▶ u ⇝ missing between logn/n and 3 logn/n
▶ missing ⇝ missing between 0 and 3 logn/n

21/1 21/1

Derived arguments

We note foremost(u) the set of vertices reached by a foremost tree from u.

Reachability thresholds

▶ ∼∗⇝∼∗ ⇐⇒ ∀u, ∀v, a.a.s. v ∈ foremost(u) (logn/n)
▶ 1⇝ ∗ ⇐⇒ a.a.s. ∃u,∀v, v ∈ foremost(u) (2 logn/n)
▶ ∼∗⇝ ∗ ⇐⇒ ∀u, a.a.s. ∀v, v ∈ foremost(u) (2 logn/n)
▶ ∗⇝ ∗ ⇐⇒ a.a.s ∀u, ∀v, v ∈ foremost(u) (3 logn/n)

LB: (∗ ⇝ 1) + (logn/n), each non sink must have at least one new edge.
UB: (∗ ⇝∼∗) + (logn/n), each non sink is reached from at least one sink.

Spanners

▶ Pivotal (∗⇝ 1⇝ ∗) ⇐= (∗⇝ ∼∗) + (∼∗⇝ ∗) (4 logn/n)
▶ Optimal spanner (size 2n− 4) (4 logn/n)

Pivotal square. Sharp ?

▶ Nearly optimal spanner (size 2n+ o(n)) (3 logn/n)
LB: Trivial (not temporally connected)
UB: Explicit construction
Three intervals of length logn/n:

▶ ∼∗ ⇝ 1 (say u) By logn/n
▶ u ⇝∼∗ between 2 logn/n and 3 logn/n.
▶ missing ⇝ u between 0 and 2 logn
▶ u ⇝ missing between logn/n and 3 logn/n
▶ missing ⇝ missing between 0 and 3 logn/n

21/1 21/1

Derived arguments

We note foremost(u) the set of vertices reached by a foremost tree from u.

Reachability thresholds

▶ ∼∗⇝∼∗ ⇐⇒ ∀u, ∀v, a.a.s. v ∈ foremost(u) (logn/n)
▶ 1⇝ ∗ ⇐⇒ a.a.s. ∃u,∀v, v ∈ foremost(u) (2 logn/n)
▶ ∼∗⇝ ∗ ⇐⇒ ∀u, a.a.s. ∀v, v ∈ foremost(u) (2 logn/n)
▶ ∗⇝ ∗ ⇐⇒ a.a.s ∀u, ∀v, v ∈ foremost(u) (3 logn/n)

LB: (∗ ⇝ 1) + (logn/n), each non sink must have at least one new edge.
UB: (∗ ⇝∼∗) + (logn/n), each non sink is reached from at least one sink.

Spanners

▶ Pivotal (∗⇝ 1⇝ ∗) ⇐= (∗⇝ ∼∗) + (∼∗⇝ ∗) (4 logn/n)
▶ Optimal spanner (size 2n− 4) (4 logn/n)

Pivotal square. Sharp ?

▶ Nearly optimal spanner (size 2n+ o(n)) (3 logn/n)
LB: Trivial (not temporally connected)
UB: Explicit construction
Three intervals of length logn/n:

▶ ∼∗ ⇝ 1 (say u) By logn/n
▶ u ⇝∼∗ between 2 logn/n and 3 logn/n.
▶ missing ⇝ u between 0 and 2 logn
▶ u ⇝ missing between logn/n and 3 logn/n
▶ missing ⇝ missing between 0 and 3 logn/n

22/1 22/1

Random Non-Simple Temporal Graphs

Hn,p: Each edge independently appears according to a rate 1 Poisson
process stopped at time p.

5

24
16,65

17,22

73
,7

8

72

60

Theorem
All our thresholds also hold for Hn,p.

23/1 23/1

Simple temporal graphs (beyond spanners)

Special properties and symmetries

24/1 24/1

Equivalence based on reachability (up to time distortion)

Different STGs are equivalent in terms of reachability

6

4 5

1

2 17

2 2
1

3

1

2
1 1

2

1

3

2

∼=

G1

10

8 3

2

3 11

2 2
1

3

1

2
1 1

2

1

3

2

G2

→

4

3 2

1

2 3

Grep

How to capture this equivalence?

▶ Option 1: Local ordering?

▶ Option 2: STG representative

✓

STG representatives have good properties for generation
+ canonization, isomorphism testing, and computation of generators for the
automorphism group, are all feasible in polynomial time.

24/1 24/1

Equivalence based on reachability (up to time distortion)

Different STGs are equivalent in terms of reachability

6

4 5

1

2 17

2 2
1

3

1

2
1 1

2

1

3

2

∼=

G1

10

8 3

2

3 11

2 2
1

3

1

2
1 1

2

1

3

2

G2

→

4

3 2

1

2 3

Grep

How to capture this equivalence?

▶ Option 1: Local ordering?

▶ Option 2: STG representative

✓

STG representatives have good properties for generation
+ canonization, isomorphism testing, and computation of generators for the
automorphism group, are all feasible in polynomial time.

24/1 24/1

Equivalence based on reachability (up to time distortion)

Different STGs are equivalent in terms of reachability

6

4 5

1

2 17

2 2
1

3

1

2
1 1

2

1

3

2

∼=

G1

10

8 3

2

3 11

2 2
1

3

1

2
1 1

2

1

3

2

G2

→

4

3 2

1

2 3

Grep

How to capture this equivalence?

▶ Option 1: Local ordering?

▶ Option 2: STG representative

✓

STG representatives have good properties for generation
+ canonization, isomorphism testing, and computation of generators for the
automorphism group, are all feasible in polynomial time.

24/1 24/1

Equivalence based on reachability (up to time distortion)

Different STGs are equivalent in terms of reachability

6

4 5

1

2 17

2 2
1

3

1

2
1 1

2

1

3

2

∼=

G1

10

8 3

2

3 11

2 2
1

3

1

2
1 1

2

1

3

2

G2

→

4

3 2

1

2 3

Grep

How to capture this equivalence?

▶ Option 1: Local ordering?

▶ Option 2: STG representative

✓

STG representatives have good properties for generation
+ canonization, isomorphism testing, and computation of generators for the
automorphism group, are all feasible in polynomial time.

24/1 24/1

Equivalence based on reachability (up to time distortion)

Different STGs are equivalent in terms of reachability

6

4 5

1

2 17

2 2
1

3

1

2
1 1

2

1

3

2

∼=

G1

10

8 3

2

3 11

2 2
1

3

1

2
1 1

2

1

3

2

G2

→

4

3 2

1

2 3

Grep

How to capture this equivalence?

▶ Option 1: Local ordering?

▶ Option 2: STG representative

✓

STG representatives have good properties for generation
+ canonization, isomorphism testing, and computation of generators for the
automorphism group, are all feasible in polynomial time.

24/1 24/1

Equivalence based on reachability (up to time distortion)

Different STGs are equivalent in terms of reachability

6

4 5

1

2 17

2 2
1

3

1

2
1 1

2

1

3

2

∼=

G1

10

8 3

2

3 11

2 2
1

3

1

2
1 1

2

1

3

2

G2

→

4

3 2

1

2 3

Grep

How to capture this equivalence?

▶ Option 1: Local ordering?

▶ Option 2: STG representative

✓

STG representatives have good properties for generation
+ canonization, isomorphism testing, and computation of generators for the
automorphism group, are all feasible in polynomial time.

24/1 24/1

Equivalence based on reachability (up to time distortion)

Different STGs are equivalent in terms of reachability

6

4 5

1

2 17

2 2
1

3

1

2
1 1

2

1

3

2

∼=

G1

10

8 3

2

3 11

2 2
1

3

1

2
1 1

2

1

3

2

G2

→

4

3 2

1

2 3

Grep

How to capture this equivalence?

▶ Option 1: Local ordering?

▶ Option 2: STG representative

✓

STG representatives have good properties for generation
+ canonization, isomorphism testing, and computation of generators for the
automorphism group, are all feasible in polynomial time.

24/1 24/1

Equivalence based on reachability (up to time distortion)

Different STGs are equivalent in terms of reachability

6

4 5

1

2 17

2 2
1

3

1

2
1 1

2

1

3

2

∼=

G1

10

8 3

2

3 11

2 2
1

3

1

2
1 1

2

1

3

2

G2

→

4

3 2

1

2 3

Grep

How to capture this equivalence?

▶ Option 1: Local ordering?

▶ Option 2: STG representative✓

STG representatives have good properties for generation
+ canonization, isomorphism testing, and computation of generators for the
automorphism group, are all feasible in polynomial time.

25/1 25/1

STG representatives

Canonization

1. Find edges that are local minima

2. Assign them the smallest available time

3. Increment time

4. Repeat on remaining edges

6

4 5

1

2 17

6

4 5

1

2 17

6

4 5

1

2 17

6

4 5

1

2 17

6

4 2

1

2 17

6

4 2

1

2 17

6

3 2

1

2 3

6

3 2

1

2 3

4

3 2

1

2 3

Properties of the labeling

Time induces a proper coloring of the edges (by definition of STGs).

In addition,

Contiguity Lemma: If an edge is labeled t > 1, then an adjacent edge is labeled t− 1.

(If you know a name for this type of edge coloring, please let me know.)

25/1 25/1

STG representatives

Canonization

1. Find edges that are local minima

2. Assign them the smallest available time

3. Increment time

4. Repeat on remaining edges

6

4 5

1

2 17

6

4 5

1

2 17

6

4 5

1

2 17

6

4 5

1

2 17

6

4 2

1

2 17

6

4 2

1

2 17

6

3 2

1

2 3

6

3 2

1

2 3

4

3 2

1

2 3

Properties of the labeling

Time induces a proper coloring of the edges (by definition of STGs).

In addition,

Contiguity Lemma: If an edge is labeled t > 1, then an adjacent edge is labeled t− 1.

(If you know a name for this type of edge coloring, please let me know.)

25/1 25/1

STG representatives

Canonization

1. Find edges that are local minima

2. Assign them the smallest available time

3. Increment time

4. Repeat on remaining edges

6

4 5

1

2 17

6

4 5

1

2 17

6

4 5

1

2 17

6

4 5

1

2 17

6

4 2

1

2 17

6

4 2

1

2 17

6

3 2

1

2 3

6

3 2

1

2 3

4

3 2

1

2 3

Properties of the labeling

Time induces a proper coloring of the edges (by definition of STGs).

In addition,

Contiguity Lemma: If an edge is labeled t > 1, then an adjacent edge is labeled t− 1.

(If you know a name for this type of edge coloring, please let me know.)

25/1 25/1

STG representatives

Canonization

1. Find edges that are local minima

2. Assign them the smallest available time

3. Increment time

4. Repeat on remaining edges

6

4 5

1

2 17

6

4 5

1

2 17

6

4 5

1

2 17

6

4 5

1

2 17

6

4 2

1

2 17

6

4 2

1

2 17

6

3 2

1

2 3

6

3 2

1

2 3

4

3 2

1

2 3

Properties of the labeling

Time induces a proper coloring of the edges (by definition of STGs).

In addition,

Contiguity Lemma: If an edge is labeled t > 1, then an adjacent edge is labeled t− 1.

(If you know a name for this type of edge coloring, please let me know.)

25/1 25/1

STG representatives

Canonization

1. Find edges that are local minima

2. Assign them the smallest available time

3. Increment time

4. Repeat on remaining edges

6

4 5

1

2 17

6

4 5

1

2 17

6

4 5

1

2 17

6

4 5

1

2 17

6

4 2

1

2 17

6

4 2

1

2 17

6

3 2

1

2 3

6

3 2

1

2 3

4

3 2

1

2 3

Properties of the labeling

Time induces a proper coloring of the edges (by definition of STGs).

In addition,

Contiguity Lemma: If an edge is labeled t > 1, then an adjacent edge is labeled t− 1.

(If you know a name for this type of edge coloring, please let me know.)

25/1 25/1

STG representatives

Canonization

1. Find edges that are local minima

2. Assign them the smallest available time

3. Increment time

4. Repeat on remaining edges

6

4 5

1

2 17

6

4 5

1

2 17

6

4 5

1

2 17

6

4 5

1

2 17

6

4 2

1

2 17

6

4 2

1

2 17

6

3 2

1

2 3

6

3 2

1

2 3

4

3 2

1

2 3

Properties of the labeling

Time induces a proper coloring of the edges (by definition of STGs).

In addition,

Contiguity Lemma: If an edge is labeled t > 1, then an adjacent edge is labeled t− 1.

(If you know a name for this type of edge coloring, please let me know.)

25/1 25/1

STG representatives

Canonization

1. Find edges that are local minima

2. Assign them the smallest available time

3. Increment time

4. Repeat on remaining edges

6

4 5

1

2 17

6

4 5

1

2 17

6

4 5

1

2 17

6

4 5

1

2 17

6

4 2

1

2 17

6

4 2

1

2 17

6

3 2

1

2 3

6

3 2

1

2 3

4

3 2

1

2 3

Properties of the labeling

Time induces a proper coloring of the edges (by definition of STGs).

In addition,

Contiguity Lemma: If an edge is labeled t > 1, then an adjacent edge is labeled t− 1.

(If you know a name for this type of edge coloring, please let me know.)

25/1 25/1

STG representatives

Canonization

1. Find edges that are local minima

2. Assign them the smallest available time

3. Increment time

4. Repeat on remaining edges

6

4 5

1

2 17

6

4 5

1

2 17

6

4 5

1

2 17

6

4 5

1

2 17

6

4 2

1

2 17

6

4 2

1

2 17

6

3 2

1

2 3

6

3 2

1

2 3

4

3 2

1

2 3

Properties of the labeling

Time induces a proper coloring of the edges (by definition of STGs).

In addition,

Contiguity Lemma: If an edge is labeled t > 1, then an adjacent edge is labeled t− 1.

(If you know a name for this type of edge coloring, please let me know.)

25/1 25/1

STG representatives

Canonization

1. Find edges that are local minima

2. Assign them the smallest available time

3. Increment time

4. Repeat on remaining edges

6

4 5

1

2 17

6

4 5

1

2 17

6

4 5

1

2 17

6

4 5

1

2 17

6

4 2

1

2 17

6

4 2

1

2 17

6

3 2

1

2 3

6

3 2

1

2 3

4

3 2

1

2 3

Properties of the labeling

Time induces a proper coloring of the edges (by definition of STGs).

In addition,

Contiguity Lemma: If an edge is labeled t > 1, then an adjacent edge is labeled t− 1.

(If you know a name for this type of edge coloring, please let me know.)

25/1 25/1

STG representatives

Canonization

1. Find edges that are local minima

2. Assign them the smallest available time

3. Increment time

4. Repeat on remaining edges

6

4 5

1

2 17

6

4 5

1

2 17

6

4 5

1

2 17

6

4 5

1

2 17

6

4 2

1

2 17

6

4 2

1

2 17

6

3 2

1

2 3

6

3 2

1

2 3

4

3 2

1

2 3

Properties of the labeling

Time induces a proper coloring of the edges (by definition of STGs).

In addition,

Contiguity Lemma: If an edge is labeled t > 1, then an adjacent edge is labeled t− 1.

(If you know a name for this type of edge coloring, please let me know.)

25/1 25/1

STG representatives

Canonization

1. Find edges that are local minima

2. Assign them the smallest available time

3. Increment time

4. Repeat on remaining edges

6

4 5

1

2 17

6

4 5

1

2 17

6

4 5

1

2 17

6

4 5

1

2 17

6

4 2

1

2 17

6

4 2

1

2 17

6

3 2

1

2 3

6

3 2

1

2 3

4

3 2

1

2 3

Properties of the labeling

Time induces a proper coloring of the edges (by definition of STGs).

In addition,

Contiguity Lemma: If an edge is labeled t > 1, then an adjacent edge is labeled t− 1.

(If you know a name for this type of edge coloring, please let me know.)

25/1 25/1

STG representatives

Canonization

1. Find edges that are local minima

2. Assign them the smallest available time

3. Increment time

4. Repeat on remaining edges

6

4 5

1

2 17

6

4 5

1

2 17

6

4 5

1

2 17

6

4 5

1

2 17

6

4 2

1

2 17

6

4 2

1

2 17

6

3 2

1

2 3

6

3 2

1

2 3

4

3 2

1

2 3

Properties of the labeling

Time induces a proper coloring of the edges (by definition of STGs).

In addition,

Contiguity Lemma: If an edge is labeled t > 1, then an adjacent edge is labeled t− 1.

(If you know a name for this type of edge coloring, please let me know.)

26/1 26/1

How to test for equivalence?

Input: Two STGs G1 and G2

Output: Are they equivalent?

Two steps algorithm:

1. Canonize them

2. Test for (classical) isomorphism of the canonical forms

Algorithm for the second step:

4

3 2

1

2 3
4

32

1

23

✓

1. Fix an arbitrary vertex v1 of G1

2. Try to send it to a vertex v2 of G2

3. If OK, answer YES

4. If not, try the next vertex of G2

(or answer NO if none remain)

Key observation: when trying to send v1 to v2, the mapping among neighbors unfolds
recursively without choices (due to the proper coloring of the edges)
→ passes or fails in polynomial time.

Remark: Also feasible using Babai & Luks machinery (1983)

26/1 26/1

How to test for equivalence?

Input: Two STGs G1 and G2

Output: Are they equivalent?

Two steps algorithm:

1. Canonize them

2. Test for (classical) isomorphism of the canonical forms

Algorithm for the second step:

4

3 2

1

2 3
4

32

1

23

✓

1. Fix an arbitrary vertex v1 of G1

2. Try to send it to a vertex v2 of G2

3. If OK, answer YES

4. If not, try the next vertex of G2

(or answer NO if none remain)

Key observation: when trying to send v1 to v2, the mapping among neighbors unfolds
recursively without choices (due to the proper coloring of the edges)
→ passes or fails in polynomial time.

Remark: Also feasible using Babai & Luks machinery (1983)

26/1 26/1

How to test for equivalence?

Input: Two STGs G1 and G2

Output: Are they equivalent?

Two steps algorithm:

1. Canonize them

2. Test for (classical) isomorphism of the canonical forms

Algorithm for the second step:

4

3 2

1

2 3
4

32

1

23

✓

1. Fix an arbitrary vertex v1 of G1

2. Try to send it to a vertex v2 of G2

3. If OK, answer YES

4. If not, try the next vertex of G2

(or answer NO if none remain)

Key observation: when trying to send v1 to v2, the mapping among neighbors unfolds
recursively without choices (due to the proper coloring of the edges)
→ passes or fails in polynomial time.

Remark: Also feasible using Babai & Luks machinery (1983)

26/1 26/1

How to test for equivalence?

Input: Two STGs G1 and G2

Output: Are they equivalent?

Two steps algorithm:

1. Canonize them

2. Test for (classical) isomorphism of the canonical forms

Algorithm for the second step:

4

3 2

1

2 3
4

32

1

23

✓

1. Fix an arbitrary vertex v1 of G1

2. Try to send it to a vertex v2 of G2

3. If OK, answer YES

4. If not, try the next vertex of G2

(or answer NO if none remain)

Key observation: when trying to send v1 to v2, the mapping among neighbors unfolds
recursively without choices (due to the proper coloring of the edges)
→ passes or fails in polynomial time.

Remark: Also feasible using Babai & Luks machinery (1983)

26/1 26/1

How to test for equivalence?

Input: Two STGs G1 and G2

Output: Are they equivalent?

Two steps algorithm:

1. Canonize them

2. Test for (classical) isomorphism of the canonical forms

Algorithm for the second step:

4

3 2

1

2 3
4

32

1

23

✓

1. Fix an arbitrary vertex v1 of G1

2. Try to send it to a vertex v2 of G2

3. If OK, answer YES

4. If not, try the next vertex of G2

(or answer NO if none remain)

Key observation: when trying to send v1 to v2, the mapping among neighbors unfolds
recursively without choices (due to the proper coloring of the edges)
→ passes or fails in polynomial time.

Remark: Also feasible using Babai & Luks machinery (1983)

26/1 26/1

How to test for equivalence?

Input: Two STGs G1 and G2

Output: Are they equivalent?

Two steps algorithm:

1. Canonize them

2. Test for (classical) isomorphism of the canonical forms

Algorithm for the second step:

4

3 2

1

2 3
4

32

1

23

✓
1. Fix an arbitrary vertex v1 of G1

2. Try to send it to a vertex v2 of G2

3. If OK, answer YES

4. If not, try the next vertex of G2

(or answer NO if none remain)

Key observation: when trying to send v1 to v2, the mapping among neighbors unfolds
recursively without choices (due to the proper coloring of the edges)
→ passes or fails in polynomial time.

Remark: Also feasible using Babai & Luks machinery (1983)

26/1 26/1

How to test for equivalence?

Input: Two STGs G1 and G2

Output: Are they equivalent?

Two steps algorithm:

1. Canonize them

2. Test for (classical) isomorphism of the canonical forms

Algorithm for the second step:

4

3 2

1

2 3
4

32

1

23

✓
1. Fix an arbitrary vertex v1 of G1

2. Try to send it to a vertex v2 of G2

3. If OK, answer YES

4. If not, try the next vertex of G2

(or answer NO if none remain)

Key observation: when trying to send v1 to v2, the mapping among neighbors unfolds
recursively without choices (due to the proper coloring of the edges)
→ passes or fails in polynomial time.

Remark: Also feasible using Babai & Luks machinery (1983)

26/1 26/1

How to test for equivalence?

Input: Two STGs G1 and G2

Output: Are they equivalent?

Two steps algorithm:

1. Canonize them

2. Test for (classical) isomorphism of the canonical forms

Algorithm for the second step:

4

3 2

1

2 3
4

32

1

23

✓
1. Fix an arbitrary vertex v1 of G1

2. Try to send it to a vertex v2 of G2

3. If OK, answer YES

4. If not, try the next vertex of G2

(or answer NO if none remain)

Key observation: when trying to send v1 to v2, the mapping among neighbors unfolds
recursively without choices (due to the proper coloring of the edges)
→ passes or fails in polynomial time.

Remark: Also feasible using Babai & Luks machinery (1983)

27/1 27/1

Automorphisms of an STG

Case 1: The underlying graph is connected.

→ Same strategy as for isomorphism.

2
3

1

2
3

1

✓

At most n automorphisms!

Case 2: The underlying graph is not connected
(the complement trick does not works for temporal graphs...)

. . .

1

2

1

1

2

1

1

✓

✓
✓

1. Find the underlying components

2. Search for isomorphisms between pairs of components
(remember one for each)

3. Find the automorphisms within each component type
(trivially extended to G)

Claim: Aut(G) = ⟨ isomorphisms + automorphisms ⟩

→ Generators for Aut(G) can be computed in polynomial time!

27/1 27/1

Automorphisms of an STG

Case 1: The underlying graph is connected.

→ Same strategy as for isomorphism.

2
3

1

2
3

1

✓

At most n automorphisms!

Case 2: The underlying graph is not connected
(the complement trick does not works for temporal graphs...)

. . .

1

2

1

1

2

1

1

✓

✓
✓

1. Find the underlying components

2. Search for isomorphisms between pairs of components
(remember one for each)

3. Find the automorphisms within each component type
(trivially extended to G)

Claim: Aut(G) = ⟨ isomorphisms + automorphisms ⟩

→ Generators for Aut(G) can be computed in polynomial time!

27/1 27/1

Automorphisms of an STG

Case 1: The underlying graph is connected.

→ Same strategy as for isomorphism.

2
3

1

2
3

1

✓

At most n automorphisms!

Case 2: The underlying graph is not connected
(the complement trick does not works for temporal graphs...)

. . .

1

2

1

1

2

1

1

✓

✓
✓

1. Find the underlying components

2. Search for isomorphisms between pairs of components
(remember one for each)

3. Find the automorphisms within each component type
(trivially extended to G)

Claim: Aut(G) = ⟨ isomorphisms + automorphisms ⟩

→ Generators for Aut(G) can be computed in polynomial time!

27/1 27/1

Automorphisms of an STG

Case 1: The underlying graph is connected.

→ Same strategy as for isomorphism.

2
3

1

2
3

1

✓

At most n automorphisms!

Case 2: The underlying graph is not connected
(the complement trick does not works for temporal graphs...)

. . .

1

2

1

1

2

1

1

✓

✓
✓

1. Find the underlying components

2. Search for isomorphisms between pairs of components
(remember one for each)

3. Find the automorphisms within each component type
(trivially extended to G)

Claim: Aut(G) = ⟨ isomorphisms + automorphisms ⟩

→ Generators for Aut(G) can be computed in polynomial time!

27/1 27/1

Automorphisms of an STG

Case 1: The underlying graph is connected.

→ Same strategy as for isomorphism.

2
3

1

2
3

1

✓

At most n automorphisms!

Case 2: The underlying graph is not connected
(the complement trick does not works for temporal graphs...)

. . .

1

2

1

1

2

1

1

✓

✓
✓

1. Find the underlying components

2. Search for isomorphisms between pairs of components
(remember one for each)

3. Find the automorphisms within each component type
(trivially extended to G)

Claim: Aut(G) = ⟨ isomorphisms + automorphisms ⟩

→ Generators for Aut(G) can be computed in polynomial time!

27/1 27/1

Automorphisms of an STG

Case 1: The underlying graph is connected.

→ Same strategy as for isomorphism.

2
3

1

2
3

1

✓

At most n automorphisms!

Case 2: The underlying graph is not connected
(the complement trick does not works for temporal graphs...)

. . .

1

2

1

1

2

1

1

✓

✓
✓

1. Find the underlying components

2. Search for isomorphisms between pairs of components
(remember one for each)

3. Find the automorphisms within each component type
(trivially extended to G)

Claim: Aut(G) = ⟨ isomorphisms + automorphisms ⟩

→ Generators for Aut(G) can be computed in polynomial time!

27/1 27/1

Automorphisms of an STG

Case 1: The underlying graph is connected.

→ Same strategy as for isomorphism.

2
3

1

2
3

1

✓

At most n automorphisms!

Case 2: The underlying graph is not connected
(the complement trick does not works for temporal graphs...)

. . .

1

2

1

1

2

1

1

✓

✓
✓

1. Find the underlying components

2. Search for isomorphisms between pairs of components
(remember one for each)

3. Find the automorphisms within each component type
(trivially extended to G)

Claim: Aut(G) = ⟨ isomorphisms + automorphisms ⟩

→ Generators for Aut(G) can be computed in polynomial time!

27/1 27/1

Automorphisms of an STG

Case 1: The underlying graph is connected.

→ Same strategy as for isomorphism.

2
3

1

2
3

1

✓

At most n automorphisms!

Case 2: The underlying graph is not connected
(the complement trick does not works for temporal graphs...)

. . .

1

2

1

1

2

1

1

✓

✓
✓

1. Find the underlying components

2. Search for isomorphisms between pairs of components
(remember one for each)

3. Find the automorphisms within each component type
(trivially extended to G)

Claim: Aut(G) = ⟨ isomorphisms + automorphisms ⟩

→ Generators for Aut(G) can be computed in polynomial time!

27/1 27/1

Automorphisms of an STG

Case 1: The underlying graph is connected.

→ Same strategy as for isomorphism.

2
3

1

2
3

1

✓

At most n automorphisms!

Case 2: The underlying graph is not connected
(the complement trick does not works for temporal graphs...)

. . .

1

2

1

1

2

1

1

✓

✓
✓

1. Find the underlying components

2. Search for isomorphisms between pairs of components
(remember one for each)

3. Find the automorphisms within each component type
(trivially extended to G)

Claim: Aut(G) = ⟨ isomorphisms + automorphisms ⟩

→ Generators for Aut(G) can be computed in polynomial time!

27/1 27/1

Automorphisms of an STG

Case 1: The underlying graph is connected.

→ Same strategy as for isomorphism.

2
3

1

2
3

1

✓

At most n automorphisms!

Case 2: The underlying graph is not connected
(the complement trick does not works for temporal graphs...)

. . .

1

2

1

1

2

1

1

✓

✓
✓

1. Find the underlying components

2. Search for isomorphisms between pairs of components
(remember one for each)

3. Find the automorphisms within each component type
(trivially extended to G)

Claim: Aut(G) = ⟨ isomorphisms + automorphisms ⟩

→ Generators for Aut(G) can be computed in polynomial time!

27/1 27/1

Automorphisms of an STG

Case 1: The underlying graph is connected.

→ Same strategy as for isomorphism.

2
3

1

2
3

1

✓

At most n automorphisms!

Case 2: The underlying graph is not connected
(the complement trick does not works for temporal graphs...)

. . .

1

2

1

1

2

1

1

✓

✓
✓

1. Find the underlying components

2. Search for isomorphisms between pairs of components
(remember one for each)

3. Find the automorphisms within each component type
(trivially extended to G)

Claim: Aut(G) = ⟨ isomorphisms + automorphisms ⟩

→ Generators for Aut(G) can be computed in polynomial time!

27/1 27/1

Automorphisms of an STG

Case 1: The underlying graph is connected.

→ Same strategy as for isomorphism.

2
3

1

2
3

1

✓

At most n automorphisms!

Case 2: The underlying graph is not connected
(the complement trick does not works for temporal graphs...)

. . .

1

2

1

1

2

1

1

✓

✓
✓

1. Find the underlying components

2. Search for isomorphisms between pairs of components
(remember one for each)

3. Find the automorphisms within each component type
(trivially extended to G)

Claim: Aut(G) = ⟨ isomorphisms + automorphisms ⟩

→ Generators for Aut(G) can be computed in polynomial time!

27/1 27/1

Automorphisms of an STG

Case 1: The underlying graph is connected.

→ Same strategy as for isomorphism.

2
3

1

2
3

1

✓

At most n automorphisms!

Case 2: The underlying graph is not connected
(the complement trick does not works for temporal graphs...)

. . .

1

2

1

1

2

1

1

✓

✓
✓

1. Find the underlying components

2. Search for isomorphisms between pairs of components
(remember one for each)

3. Find the automorphisms within each component type
(trivially extended to G)

Claim: Aut(G) = ⟨ isomorphisms + automorphisms ⟩

→ Generators for Aut(G) can be computed in polynomial time!

27/1 27/1

Automorphisms of an STG

Case 1: The underlying graph is connected.

→ Same strategy as for isomorphism.

2
3

1

2
3

1

✓

At most n automorphisms!

Case 2: The underlying graph is not connected
(the complement trick does not works for temporal graphs...)

. . .

1

2

1

1

2

1

1

✓

✓
✓

1. Find the underlying components

2. Search for isomorphisms between pairs of components
(remember one for each)

3. Find the automorphisms within each component type
(trivially extended to G)

Claim: Aut(G) = ⟨ isomorphisms + automorphisms ⟩

→ Generators for Aut(G) can be computed in polynomial time!

27/1 27/1

Automorphisms of an STG

Case 1: The underlying graph is connected.

→ Same strategy as for isomorphism.

2
3

1

2
3

1

✓

At most n automorphisms!

Case 2: The underlying graph is not connected
(the complement trick does not works for temporal graphs...)

. . .

1

2

1

1

2

1

1

✓

✓
✓

1. Find the underlying components

2. Search for isomorphisms between pairs of components
(remember one for each)

3. Find the automorphisms within each component type
(trivially extended to G)

Claim: Aut(G) = ⟨ isomorphisms + automorphisms ⟩

→ Generators for Aut(G) can be computed in polynomial time!

27/1 27/1

Automorphisms of an STG

Case 1: The underlying graph is connected.

→ Same strategy as for isomorphism.

2
3

1

2
3

1

✓

At most n automorphisms!

Case 2: The underlying graph is not connected
(the complement trick does not works for temporal graphs...)

. . .

1

2

1

1

2

1

1

✓

✓
✓

1. Find the underlying components

2. Search for isomorphisms between pairs of components
(remember one for each)

3. Find the automorphisms within each component type
(trivially extended to G)

Claim: Aut(G) = ⟨ isomorphisms + automorphisms ⟩

→ Generators for Aut(G) can be computed in polynomial time!

27/1 27/1

Automorphisms of an STG

Case 1: The underlying graph is connected.

→ Same strategy as for isomorphism.

2
3

1

2
3

1

✓

At most n automorphisms!

Case 2: The underlying graph is not connected
(the complement trick does not works for temporal graphs...)

. . .

1

2

1

1

2

1

1

✓

✓
✓

1. Find the underlying components

2. Search for isomorphisms between pairs of components
(remember one for each)

3. Find the automorphisms within each component type
(trivially extended to G)

Claim: Aut(G) = ⟨ isomorphisms + automorphisms ⟩

→ Generators for Aut(G) can be computed in polynomial time!

27/1 27/1

Automorphisms of an STG

Case 1: The underlying graph is connected.

→ Same strategy as for isomorphism.

2
3

1

2
3

1

✓

At most n automorphisms!

Case 2: The underlying graph is not connected
(the complement trick does not works for temporal graphs...)

. . .

1

2

1

1

2

1

1

✓

✓

✓

1. Find the underlying components

2. Search for isomorphisms between pairs of components
(remember one for each)

3. Find the automorphisms within each component type
(trivially extended to G)

Claim: Aut(G) = ⟨ isomorphisms + automorphisms ⟩

→ Generators for Aut(G) can be computed in polynomial time!

27/1 27/1

Automorphisms of an STG

Case 1: The underlying graph is connected.

→ Same strategy as for isomorphism.

2
3

1

2
3

1

✓

At most n automorphisms!

Case 2: The underlying graph is not connected
(the complement trick does not works for temporal graphs...)

. . .

1

2

1

1

2

1

1

✓

✓

✓
1. Find the underlying components

2. Search for isomorphisms between pairs of components
(remember one for each)

3. Find the automorphisms within each component type
(trivially extended to G)

Claim: Aut(G) = ⟨ isomorphisms + automorphisms ⟩

→ Generators for Aut(G) can be computed in polynomial time!

27/1 27/1

Automorphisms of an STG

Case 1: The underlying graph is connected.

→ Same strategy as for isomorphism.

2
3

1

2
3

1

✓

At most n automorphisms!

Case 2: The underlying graph is not connected
(the complement trick does not works for temporal graphs...)

. . .

1

2

1

1

2

1

1

✓

✓
✓

1. Find the underlying components

2. Search for isomorphisms between pairs of components
(remember one for each)

3. Find the automorphisms within each component type
(trivially extended to G)

Claim: Aut(G) = ⟨ isomorphisms + automorphisms ⟩

→ Generators for Aut(G) can be computed in polynomial time!

27/1 27/1

Automorphisms of an STG

Case 1: The underlying graph is connected.

→ Same strategy as for isomorphism.

2
3

1

2
3

1

✓

At most n automorphisms!

Case 2: The underlying graph is not connected
(the complement trick does not works for temporal graphs...)

. . .

1

2

1

1

2

1

1

✓

✓
✓

1. Find the underlying components

2. Search for isomorphisms between pairs of components
(remember one for each)

3. Find the automorphisms within each component type
(trivially extended to G)

Claim: Aut(G) = ⟨ isomorphisms + automorphisms ⟩

→ Generators for Aut(G) can be computed in polynomial time!

28/1 28/1

Enumeration up to equivalence

(motivated by conjecture refutation on spanners)

29/1 29/1

Generation tree

Principle: One level = one time unit
→ children of a graph = all the possible ways to add the next time

Key properties

1. Rigidity is inherited

2. Dissimilarity is inherited

1 1 1

2

1
2

1

2

2

1 1

2

1 1

2

2

1 3 2

31
2

1 3

2

31 3

2

1 3

2

2

31

2

2

31 3

2

2

31 1

2

31 13

↓ Rigid world

↓ Isomorphism types separated (forever)

time 1

time 2

time 3

29/1 29/1

Generation tree

Principle: One level = one time unit
→ children of a graph = all the possible ways to add the next time

Key properties

1. Rigidity is inherited

2. Dissimilarity is inherited

1 1 1

2

1
2

1

2

2

1 1

2

1 1

2

2

1 3 2

31
2

1 3

2

31 3

2

1 3

2

2

31

2

2

31 3

2

2

31 1

2

31 13

↓ Rigid world

↓ Isomorphism types separated (forever)

time 1

time 2

time 3

29/1 29/1

Generation tree

Principle: One level = one time unit
→ children of a graph = all the possible ways to add the next time

Key properties

1. Rigidity is inherited

2. Dissimilarity is inherited 1 1 1

2

1
2

1

2

2

1 1

2

1 1

2

2

1 3 2

31
2

1 3

2

31 3

2

1 3

2

2

31

2

2

31 3

2

2

31 1

2

31 13

↓ Rigid world

↓ Isomorphism types separated (forever)

time 1

time 2

time 3

30/1 30/1

How to generate successors at each level?
Input: An STG representative G, whose maximum time is t

Output: All STG representatives that extend G with time t + 1.

First, how to decide if a non-edge is eligible to receive a (t + 1) time label? (E.g. here, time 3)

1

2

1

3× Coloring lemma: (t+1) must be adjacent to (t)

Two cases
G is rigid

2 3

1

→ Enumerate all matchings of eligible non-edges.
Each one defines a successor.

≡ Independent sets in the line graph of eligible
non-edges (standard algorithm)

G has symmetries

1 2

2

|

| ||

||

|||

||
|

→ Enumerate matchings of eligible non-edges
whose multisets of orbits are distinct

1 2

2

1 2

2

1 2

2

1 2

2

1 2

2

1 2

2

1 2

2

1 2

2

Done using the generators for Aut(G)

30/1 30/1

How to generate successors at each level?
Input: An STG representative G, whose maximum time is t

Output: All STG representatives that extend G with time t + 1.

First, how to decide if a non-edge is eligible to receive a (t + 1) time label? (E.g. here, time 3)

1

2

1

3× Coloring lemma: (t+1) must be adjacent to (t)

Two cases
G is rigid

2 3

1

→ Enumerate all matchings of eligible non-edges.
Each one defines a successor.

≡ Independent sets in the line graph of eligible
non-edges (standard algorithm)

G has symmetries

1 2

2

|

| ||

||

|||

||
|

→ Enumerate matchings of eligible non-edges
whose multisets of orbits are distinct

1 2

2

1 2

2

1 2

2

1 2

2

1 2

2

1 2

2

1 2

2

1 2

2

Done using the generators for Aut(G)

30/1 30/1

How to generate successors at each level?
Input: An STG representative G, whose maximum time is t

Output: All STG representatives that extend G with time t + 1.

First, how to decide if a non-edge is eligible to receive a (t + 1) time label? (E.g. here, time 3)

1

2

1

3× Coloring lemma: (t+1) must be adjacent to (t)

Two cases
G is rigid

2 3

1

→ Enumerate all matchings of eligible non-edges.
Each one defines a successor.

≡ Independent sets in the line graph of eligible
non-edges (standard algorithm)

G has symmetries

1 2

2

|

| ||

||

|||

||
|

→ Enumerate matchings of eligible non-edges
whose multisets of orbits are distinct

1 2

2

1 2

2

1 2

2

1 2

2

1 2

2

1 2

2

1 2

2

1 2

2

Done using the generators for Aut(G)

30/1 30/1

How to generate successors at each level?
Input: An STG representative G, whose maximum time is t

Output: All STG representatives that extend G with time t + 1.

First, how to decide if a non-edge is eligible to receive a (t + 1) time label? (E.g. here, time 3)

1

2

1

3×

Coloring lemma: (t+1) must be adjacent to (t)

Two cases
G is rigid

2 3

1

→ Enumerate all matchings of eligible non-edges.
Each one defines a successor.

≡ Independent sets in the line graph of eligible
non-edges (standard algorithm)

G has symmetries

1 2

2

|

| ||

||

|||

||
|

→ Enumerate matchings of eligible non-edges
whose multisets of orbits are distinct

1 2

2

1 2

2

1 2

2

1 2

2

1 2

2

1 2

2

1 2

2

1 2

2

Done using the generators for Aut(G)

30/1 30/1

How to generate successors at each level?
Input: An STG representative G, whose maximum time is t

Output: All STG representatives that extend G with time t + 1.

First, how to decide if a non-edge is eligible to receive a (t + 1) time label? (E.g. here, time 3)

1

2

1

3×

Coloring lemma: (t+1) must be adjacent to (t)

Two cases
G is rigid

2 3

1

→ Enumerate all matchings of eligible non-edges.
Each one defines a successor.

≡ Independent sets in the line graph of eligible
non-edges (standard algorithm)

G has symmetries

1 2

2

|

| ||

||

|||

||
|

→ Enumerate matchings of eligible non-edges
whose multisets of orbits are distinct

1 2

2

1 2

2

1 2

2

1 2

2

1 2

2

1 2

2

1 2

2

1 2

2

Done using the generators for Aut(G)

30/1 30/1

How to generate successors at each level?
Input: An STG representative G, whose maximum time is t

Output: All STG representatives that extend G with time t + 1.

First, how to decide if a non-edge is eligible to receive a (t + 1) time label? (E.g. here, time 3)

1

2

1

3×

Coloring lemma: (t+1) must be adjacent to (t)

Two cases
G is rigid

2 3

1

→ Enumerate all matchings of eligible non-edges.
Each one defines a successor.

≡ Independent sets in the line graph of eligible
non-edges (standard algorithm)

G has symmetries

1 2

2

|

| ||

||

|||

||
|

→ Enumerate matchings of eligible non-edges
whose multisets of orbits are distinct

1 2

2

1 2

2

1 2

2

1 2

2

1 2

2

1 2

2

1 2

2

1 2

2

Done using the generators for Aut(G)

30/1 30/1

How to generate successors at each level?
Input: An STG representative G, whose maximum time is t

Output: All STG representatives that extend G with time t + 1.

First, how to decide if a non-edge is eligible to receive a (t + 1) time label? (E.g. here, time 3)

1

2

1

3×

Coloring lemma: (t+1) must be adjacent to (t)

Two cases
G is rigid

2 3

1

→ Enumerate all matchings of eligible non-edges.
Each one defines a successor.

≡ Independent sets in the line graph of eligible
non-edges (standard algorithm)

G has symmetries

1 2

2

|

| ||

||

|||

||
|

→ Enumerate matchings of eligible non-edges
whose multisets of orbits are distinct

1 2

2

1 2

2

1 2

2

1 2

2

1 2

2

1 2

2

1 2

2

1 2

2

Done using the generators for Aut(G)

30/1 30/1

How to generate successors at each level?
Input: An STG representative G, whose maximum time is t

Output: All STG representatives that extend G with time t + 1.

First, how to decide if a non-edge is eligible to receive a (t + 1) time label? (E.g. here, time 3)

1

2

1

3×

Coloring lemma: (t+1) must be adjacent to (t)

Two cases
G is rigid

2 3

1

→ Enumerate all matchings of eligible non-edges.
Each one defines a successor.

≡ Independent sets in the line graph of eligible
non-edges (standard algorithm)

G has symmetries

1 2

2

|

| ||

||

|||

||
|

→ Enumerate matchings of eligible non-edges
whose multisets of orbits are distinct

1 2

2

1 2

2

1 2

2

1 2

2

1 2

2

1 2

2

1 2

2

1 2

2

Done using the generators for Aut(G)

31/1 31/1

Using the generator https://github.com/acasteigts/STGen

Implemented in Julia

(other versions also in Python and Java)
How to use

include("generation.jl")

n = 5
for g in TGraphs(n)

...
end

Pruning is possible using TGraphs(n, selection_predicate)

Back to the spanner question
Do simple temporal cliques admit spanners of size 2n − 3?

→ True for n ≤ 7 (and for all non-rigid graphs at n = 8). Otherwise still open! :-)

https://github.com/acasteigts/STGen

31/1 31/1

Using the generator https://github.com/acasteigts/STGen

Implemented in Julia

(other versions also in Python and Java)
How to use

include("generation.jl")

n = 5
for g in TGraphs(n)

...
end

Pruning is possible using TGraphs(n, selection_predicate)

Back to the spanner question
Do simple temporal cliques admit spanners of size 2n − 3?

→ True for n ≤ 7 (and for all non-rigid graphs at n = 8). Otherwise still open! :-)

https://github.com/acasteigts/STGen

31/1 31/1

Using the generator https://github.com/acasteigts/STGen

Implemented in Julia

(other versions also in Python and Java)
How to use

include("generation.jl")

n = 5
for g in TGraphs(n)

...
end

Pruning is possible using TGraphs(n, selection_predicate)

Back to the spanner question
Do simple temporal cliques admit spanners of size 2n − 3?

→ True for n ≤ 7 (and for all non-rigid graphs at n = 8). Otherwise still open! :-)

https://github.com/acasteigts/STGen

31/1 31/1

Using the generator https://github.com/acasteigts/STGen

Implemented in Julia

(other versions also in Python and Java)
How to use

include("generation.jl")

n = 5
for g in TGraphs(n)

...
end

Pruning is possible using TGraphs(n, selection_predicate)

Back to the spanner question
Do simple temporal cliques admit spanners of size 2n − 3?

→ True for n ≤ 7 (and for all non-rigid graphs at n = 8). Otherwise still open! :-)

https://github.com/acasteigts/STGen

32/1 32/1

Some numbers

33/1 33/1

Non dismountable clique:

Non pivotable clique (seen as a union of two graphs):

34/1 34/1

Thanks!

next time... :-)

