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P Strict - ex: ((a, ¢, 3), (¢,d,4), (d, e, 5)) (increasing)

Temporal connectivity: 3 temporal paths between all vertices.

— Warning: Reachability is non-symmetrical... and non-transitive!
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Can we do better?
» 2n — 4 labels needed, even if you choose the values! (Bumby’79, gossip theory)

Do spanners of size 2n — 4 always exist?
» 3 minimally connected temp. graphs with Q(n log n) labels (Kleinberg, Kempe, Kumar, 2000)

» In fact, 3 some with Q(n?) labels (Axiotis, Fotakis, 2016)

How about complexity?
» Minimum-size spanner is APX-hard (Akrida, Gasieniec, Mertzios, Spirakis, 2017)
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Bad news and good news

Recall the bad news:

> Q(nlogn) - easy

> Q(n?) - rather unexpected

Good news 1: (C., Peters, Schoeters, ICALP 2019): /q/u\-“ 0
» Spanners of size O(nlogn) always exist N i /
in complete temporal graphs N

Good news 2: (C., Raskin, Renken, Zamaraev, FOCS 2021):

» Nearly optimal spanners (of size 2n + o(n)) almost surely exist in random
temporal graphs, as soon as the graph is temporally connected
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Before we start... an easier model

Simple Temporal Graphs (STGs):
1. A single presence time per edge (A : E — N)
2. Adjacent edges have different times () is locally injective)

Generality for spanners:

» Most negative results still apply
» Positive results extend to general case
» No distinction between strict and non-strict temporal paths

Further motivations:

» Distributed models by pairwise interactions,
e.g. population protocols or gossip models (without repetition)

» Close model to edge-ordered graphs (Chvatal, Komlés, 1971)
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Dismountability
Three nodes u, v, w such that:
» yv =min-edge (v)

» yww =max-edge (w)

Then spanner (G) = spanner (G[V\u]) + uv + uw

Recursively, 9/' ) /C )
N

o 5 o o 5 o o

spanner of size 2n — 3.

. unfortunately
Both techniques fail in some cases.
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Transitive delegations (“fireworks”)

Principle:

> Transitive delegations towards emitters
» Spanner = forest of min edges + edges of emitters

Wait a minute... could be lot of emitters!

— Local transformation of the forest:
» At most n/2 emitters

Theorem: 3 spanners of size 3 () + O(n)

Backward spanner also possible

— Spanner = max edges + all edges of collectors




Combining both directions

» Each vertex can reach at least one emitter w
through u’s min edge

\Tw\
o
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— Spanner = min edges + max edges 2/

+ edges between emitters and collectors o l/

» Each vertex can be reached by a collector v
through v’s max edge

» Each emitter can reach all collectors
through direct edges

Theorem:

At most n/2 emitters and n /2 collectors = | 3 Spanners of size ('2‘)/2 + O(n) ‘

= half of the edges
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New objective:
— Sparsify H while preserving journeys from each emitter to all collectors

Technique: Partial delegations among emitters

> Find a 2-hop journey from one emitter to another,
arriving through a “locally small” edge

> Pay extra edges (penalty) to reach missed collectors

Iterative procedure:

In each step i:
» Half of the emitters partially delegate to other half

» Penalty doubles in each step, but #emitters halves
»> O(n) edges over O(logn) iterations — O(n logn) edges.

Conclusion:

3 spanner of size O(nlogn) O
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Open questions (deterministic)

Better spanners for temporal cliques?

> |Is O(nlogn) optimal for cliques? Is O(n) possible?
» Even better, does 2n — 4 < OPT < 2n — 3?

(so far, no counter-example found)
Relaxing the complete graph assumption

» Can more general classes of dense graphs be sparsified?
— Recall that 3 unsparsifiable graphs of density ©(n?)
— Is there a family of graphs of density < 1 which admits sparse spanners?

What about random temporal graphs?



Good news 2:
Spanners of size 2n + o(n) almost surely exist

in random temporal graphs

(with)
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. 5
Random simple temporal graphs: 3 p )
1. Pick an Erdés-Rényi G ~ G, p 4 1
2. Permute the edges randomly, 8 -
interpret as (unique) presence time 3
Timeline for p (as n — oo):
logn 2 logn 3 logn 4 logn
O n n n n 1
Standard connectivity ) / / Pivotal spanner
First source Iinmnp(:?crt?\llit (size 2n — 2)
. (1~ ) * ok Y
Most vertex pairs Most vertices Nearly optimal spanner ook
reach each other are sources (size 2n + o(n)) E)z 5 P 4
(~% ~> k) (o ~ %) (size 2n — 4)

All the thresholds are sharp, except x (open problem)
(sharp: 3e(n) = o(1), nottrue at (1 — e(n))p, true at (1 + €(n))p)
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Random Simple Temporal Graphs (RSTGs)
Temporal analog of Erdds-Reyni graphs, same parameters n and p
AnRSTG G ~ Gn p:

1. Pick a footprint G ~ G,

2. Permute the edges randomly
(interpret ranks as times)

Ex:n=7p=04

Another point of view:

1. Take a complete graph K,
2. Assign random real times in [0, 1] to every edge
3. Restrict your attention to Gig ;|

— Better for analysis.
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Timeline of temporal reachability in G, ,

For sufficiently large n, what happens when p increases?

logn 2logn 3 logn 410gn
n n n

e

Footprint has
giant component

Pivotal spanner

) . (size 2n — 2)
Footprint connected First source Temporal
(1~ %) connectivity N
) (¥~ %) Optimal spanner
Most vertex pairs (size 2n — 4)
reach each other
(¥~ %) Most vertices Nearly optimal spanner
are sources (size 2n + o(n))
(~% ~ k)

All the thresholds are sharp, except x (open problem)
(sharp: 3e(n) = o(1), nottrue at (1 — e(n))p, true at (1 + €(n))p)
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Main technical tool: growth of a foremost tree

Foremost tree (from s)
- Foremost temporal paths from s to all

- “Prim-like” algorithm.

Analysis
> Consider “growing” a foremost tree in G ~ G,, 1 from a vertex s.
> Once we have reached k vertices, there are k(n — k) potential edges.
» The waiting time for one of these to appear is ~ m
—> Expect to reach all vertices at > m ~ 21‘%".

» Azuma’s inequality for concentration.
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Derived arguments

We note foremost(u) the set of vertices reached by a foremost tree from w.

Reachability thresholds

> kx> Yu,Vv,a.a.5. v € foremost(u) (logn/n)
> 1% < a.a.s. Ju,Vv,v € foremost(u) (2logn/n)
> ko k <= Yu,a.a.s. Vu,v € foremost(u) (2logn/n)
> ks ox < a.a.s Yu,Vv,v € foremost(u) (3logn/n)
LB: (x ~» 1) + (log n/n), each non sink must have at least one new edge.
UB: (* ~»~=x) + (log n/n), each non sink is reached from at least one sink.
Spanners
> Pivotal (k ~» 1~ %) <= (k ~» ~k) 4 (~k ~= %) (4logn/n)
» Optimal spanner (size 2n — 4) (4logn/n)
Pivotal square. Sharp ?
»> Nearly optimal spanner (size 2n + o(n)) (3logmn/n)
LB: Trivial (not temporally connected)
UB: Explicit construction
Three intervals of length log n/n:
~* ~ 1 (say u) By logn/n
U~ ok between 2log n/n and 3log n/n.

missing ~> u
U~ missing
missing ~» missing

vVYYVYY

between 0 and 2 log n.
between log n/n and 3log n/n
between 0 and 3 log n/n



Random Non-Simple Temporal Graphs

‘Hn,p: Each edge independently appears according to a rate 1 Poisson
process stopped at time p.

qrb‘ ’6:5
5
72
@ N Y '33
© R
Theorem
/2

All our thresholds also hold for Hr, .



Simple temporal graphs (beyond spanners)

Special properties and symmetries

231

231
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Equivalence based on reachability (up to time distortion)

Different STGs are equivalent in terms of reachability

2 17 3 11 2 3
1 2
o —
4 5 8 3 3
6 10 4
G1 Go Grep

How to capture this equivalence?
» Option 1: Local ordering?
» Option 2: STG representative v/

STG representatives have good properties for generation

+ canonization, isomorphism testing, and computation of generators for the
automorphism group, are all feasible in polynomial time.
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STG representatives

Canonization

1. Find edges that are /local minima 2,/ \3
2. Assign them the smallest available time / ) \
3. Increment time TL S
4. Repeat on remaining edges 3, 12
| |
[ S ——

Properties of the labeling
Time induces a proper coloring of the edges (by definition of STGs).

In addition,

Contiguity Lemma: If an edge is labeled ¢ > 1, then an adjacent edge is labeled ¢ — 1.

(If you know a name for this type of edge coloring, please let me know.)
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How to test for equivalence?

Input: Two STGs G; and Go
Output: Are they equivalent?

Two steps algorithm:

1. Canonize them
2. Test for (classical) isomorphism of the canonical forms
Algorithm for the second step:

Fix an arbitrary vertex v1 of G1

Try to send it to a vertex v of Go
If OK, answer YES

If not, try the next vertex of G2
4 (or answer NO if none remain)

@
™
LD~

Key observation: when trying to send v; to v2, the mapping among neighbors unfolds
recursively without choices (due to the proper coloring of the edges)

— passes or fails in polynomial time.

Remark: Also feasible using Babai & Luks machinery (1983)
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Case 1: The underlying graph is connected.

— Same strategy as for isomorphism.

fZ >- At most n automorphisms!
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Automorphisms of an STG

Case 1: The underlying graph is connected.

— Same strategy as for isomorphism.

Case 2: The underlying graph is not connected
(the complement trick does not works for temporal graphs...)

1/ 1/ 1. Find the underlying components
( ( ? 2. Search for isomorphisms between pairs of components
Jz\ Jz\ 1 (remember one for each)
1 1 3. Find the automorphisms within each component type
N N (trivially extended to G)

Claim: Aut(G) = ( isomorphisms + automorphisms )

— Generators for Aut(G) can be computed in polynomial time!



Enumeration up to equivalence

(motivated by conjecture refutation on spanners)

28/1 28/
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Generation tree

Principle: One level = one time unit
— children of a graph = all the possible ways to add the next time

Key properties

1. Rigidity is inherited
2. Dissimilarity is inherited

J Isomorphism types separated (forever)
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How to generate successors at each level?

Input: An STG representative G, whose maximum time is ¢
Output: All STG representatives that extend G with time ¢ + 1.

First, how to decide if a non-edge is eligible to receive a (¢ + 1) time label? (E.g. here, time 3)

2 M Coloring lemma: (t+1) must be adjacent to (t)

G has symmetries
Two cases

— Enumerate matchings of eligible non-edges
whose multisets of orbits are distinct

OEZEANEN
= Independent sets in the line graph of eligible 2 CRERY, CREEY SRRV &
non-edges (standard algorithm) X k EN S Z¢7 57 .'

Done using the generators for Aut(G)

— Enumerate all matchings of eligible non-edges.
Each one defines a successor.
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USing the generator https://github.com/acasteigts/STGen

Implemented in Julia
(other versions also in Python and Java)

How to use

include ("generation.j1")

n=>5
for g in TGraphs (n)

end

Pruning is possible using TGraphs (n, selection_predicate)

Back to the spanner question
Do simple temporal cliques admit spanners of size 2n — 3?

— True for n < 7 (and for all non-rigid graphs at n = 8). Otherwise still open! :-)
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Some numbers

# Vertices

# STGs
1
2
4
62
15378
89769096

13828417028594

?

# Temporally connected STGs
1
1
1
32
10207
70557834
?

?

# Simple Temporal cliques
1
1
1
20
4524
23218501

3128434545680

?



Non dismountable clique:

Non pivotable clique (seen as a union of two graphs):
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Thanks!

next time... :-)



