Spanners and connectivity problems in temporal graphs

Arnaud Casteigts
LaBRI, Université de Bordeaux

> November 10, 2022
> (Liverpool CS seminar)

Based on two joint works with:

Jason Schoeters (Le Havre)

Joseph Peters (Vancouver)

Michael Raskin (Munich)

Malte Renken (Berlin)

(Liverpool)

(Highly) dynamic networks?

$\theta=0$

Example of scenario

(Highly) dynamic networks?

Modeling

Example of scenario

(Highly) dynamic networks?

Modeling

Example of scenario
(x+5

(Highly) dynamic networks?

Example of scenario

Modeling
Properties:

- Repeatedly?
- Recurrent links?
- In bounded time?
- ...
\rightarrow Classes of temporal graphs
- Temporal connectivity? $\mathcal{T C}$

ne
ene

Some classes of temporal graphs

infinite lifetime

Some classes of temporal graphs

Distributed algorithm

Some classes of temporal graphs

Distributed algorithm

Centralized algorithm

Some classes of temporal graphs

Distributed algorithm

Temporal graphs for their own sake

What does make them truly different?

Basic definitions

Temporal graphs (a.k.a. time-varying, time-dependent, evolving, dynamic,...) $\mathcal{G}=(V, E, \lambda)$, where $\lambda: E \rightarrow 2^{\mathbb{N}}$ assigns presence times to edges.

Example:

Basic definitions

Temporal graphs (a.k.a. time-varying, time-dependent, evolving, dynamic,...)
$\mathcal{G}=(\underline{V, E}, \lambda)$, where $\lambda: E \rightarrow 2^{\mathbb{N}}$ assigns presence times to edges. footprint of \mathcal{G}

Example:

Basic definitions

Temporal graphs (a.k.a. time-varying, time-dependent, evolving, dynamic,...)
$\mathcal{G}=(\underline{V, E}, \lambda)$, where $\lambda: E \rightarrow 2^{\mathbb{N}}$ assigns presence times to edges. footprint of \mathcal{G}

Example:

> Can also be viewed as a sequence of snapshots $\left\{G_{i}=\{e \in E: i \in \lambda(e)\}\right\}$

Basic definitions

Temporal graphs (a.k.a. time-varying, time-dependent, evolving, dynamic,...)
$\mathcal{G}=\left(\frac{V, E}{\mid}, \lambda\right)$, where $\lambda: E \rightarrow 2^{\mathbb{N}}$ assigns presence times to edges. footprint of \mathcal{G}

Example:

> Can also be viewed as a sequence of snapshots $\left\{G_{i}=\{e \in E: i \in \lambda(e)\}\right\}$

Temporal paths

Basic definitions

Temporal graphs (a.k.a. time-varying, time-dependent, evolving, dynamic,...)
$\mathcal{G}=(\underline{V, E}, \lambda)$, where $\lambda: E \rightarrow 2^{\mathbb{N}}$ assigns presence times to edges. footprint of \mathcal{G}

Example:

> Can also be viewed as a sequence of snapshots $\left\{G_{i}=\{e \in E: i \in \lambda(e)\}\right\}$

Temporal paths

- Non-strict - ex: $\langle(a, c, 3),(c, d, 4),(d, e, 4)\rangle$
- Strict - ex: $\langle(a, c, 3),(c, d, 4),(d, e, 5)\rangle$

Basic definitions

Temporal graphs (a.k.a. time-varying, time-dependent, evolving, dynamic,...)
$\mathcal{G}=(\underline{V, E}, \lambda)$, where $\lambda: E \rightarrow 2^{\mathbb{N}}$ assigns presence times to edges. footprint of \mathcal{G}

Example:

> Can also be viewed as a sequence of snapshots $\left\{G_{i}=\{e \in E: i \in \lambda(e)\}\right\}$

Temporal paths

- Non-strict - ex: $\langle(a, c, 3),(c, d, 4),(d, e, 4)\rangle$
- Strict - ex: $\langle(a, c, 3),(c, d, 4),(d, e, 5)\rangle$

Temporal connectivity: \exists temporal paths between all vertices.

Basic definitions

Temporal graphs (a.k.a. time-varying, time-dependent, evolving, dynamic,...)
$\mathcal{G}=(\underline{V, E}, \lambda)$, where $\lambda: E \rightarrow 2^{\mathbb{N}}$ assigns presence times to edges. footprint of \mathcal{G}

Example:

Temporal paths

- Non-strict - ex: $\langle(a, c, 3),(c, d, 4),(d, e, 4)\rangle$
- Strict - ex: $\langle(a, c, 3),(c, d, 4),(d, e, 5)\rangle$

Temporal connectivity: \exists temporal paths between all vertices.

Basic definitions

Temporal graphs (a.k.a. time-varying, time-dependent, evolving, dynamic,...)
$\mathcal{G}=(\underline{V, E}, \lambda)$, where $\lambda: E \rightarrow 2^{\mathbb{N}}$ assigns presence times to edges. footprint of \mathcal{G}

Example:

Temporal paths

- Non-strict - ex: $\langle(a, c, 3),(c, d, 4),(d, e, 4)\rangle$
- Strict - ex: $\langle(a, c, 3),(c, d, 4),(d, e, 5)\rangle$

Temporal connectivity: \exists temporal paths between all vertices.
\rightarrow Warning: Reachability is non-symmetrical...

Basic definitions

Temporal graphs (a.k.a. time-varying, time-dependent, evolving, dynamic,...)
$\mathcal{G}=(\underline{V, E}, \lambda)$, where $\lambda: E \rightarrow 2^{\mathbb{N}}$ assigns presence times to edges. footprint of \mathcal{G}

Example:

Temporal paths

- Non-strict - ex: $\langle(a, c, 3),(c, d, 4),(d, e, 4)\rangle$
- Strict - ex: $\langle(a, c, 3),(c, d, 4),(d, e, 5)\rangle$

Temporal connectivity: \exists temporal paths between all vertices.
\rightarrow Warning: Reachability is non-symmetrical... and non-transitive!

Temporal spanners

Input: a graph \mathcal{G} that is temporally connected $(\mathcal{G} \in T C)$
Output: a graph $\mathcal{G}^{\prime} \subseteq \mathcal{G}$ that preserves temporal connectivity $\left(\mathcal{G}^{\prime} \in T C\right)$
Cost measure: size of the spanner (say, in number of labels)

Temporal spanners

Input: a graph \mathcal{G} that is temporally connected $(\mathcal{G} \in T C)$
Output: a graph $\mathcal{G}^{\prime} \subseteq \mathcal{G}$ that preserves temporal connectivity $\left(\mathcal{G}^{\prime} \in T C\right)$
Cost measure: size of the spanner (say, in number of labels)

Temporal spanners

Input: a graph \mathcal{G} that is temporally connected $(\mathcal{G} \in T C)$
Output: a graph $\mathcal{G}^{\prime} \subseteq \mathcal{G}$ that preserves temporal connectivity $\left(\mathcal{G}^{\prime} \in T C\right)$
Cost measure: size of the spanner (say, in number of labels)

Temporal spanners

Input: a graph \mathcal{G} that is temporally connected $(\mathcal{G} \in T C)$
Output: a graph $\mathcal{G}^{\prime} \subseteq \mathcal{G}$ that preserves temporal connectivity $\left(\mathcal{G}^{\prime} \in T C\right)$
Cost measure: size of the spanner (say, in number of labels)

Can we do better?

- $2 n-4$ labels needed, even if you choose the values!

Temporal spanners

Input: a graph \mathcal{G} that is temporally connected $(\mathcal{G} \in T C)$
Output: a graph $\mathcal{G}^{\prime} \subseteq \mathcal{G}$ that preserves temporal connectivity $\left(\mathcal{G}^{\prime} \in T C\right)$
Cost measure: size of the spanner (say, in number of labels)

Can we do better?

- $2 n-4$ labels needed, even if you choose the values!

Do spanners of size $2 n-4$ always exist?

Temporal spanners

Input: a graph \mathcal{G} that is temporally connected $(\mathcal{G} \in T C)$
Output: a graph $\mathcal{G}^{\prime} \subseteq \mathcal{G}$ that preserves temporal connectivity $\left(\mathcal{G}^{\prime} \in T C\right)$
Cost measure: size of the spanner (say, in number of labels)

Can we do better?

- $2 n-4$ labels needed, even if you choose the values!
(Bumby'79, gossip theory)
Do spanners of size $2 n-4$ always exist?
- \exists minimally connected temp. graphs with $\Omega(n \log n)$ labels
(Kleinberg, Kempe, Kumar, 2000)

Temporal spanners

Input: a graph \mathcal{G} that is temporally connected $(\mathcal{G} \in T C)$
Output: a graph $\mathcal{G}^{\prime} \subseteq \mathcal{G}$ that preserves temporal connectivity $\left(\mathcal{G}^{\prime} \in T C\right)$
Cost measure: size of the spanner (say, in number of labels)

Can we do better?

- $2 n-4$ labels needed, even if you choose the values!
(Bumby'79, gossip theory)
Do spanners of size $2 n-4$ always exist?
- \exists minimally connected temp. graphs with $\Omega(n \log n)$ labels
(Kleinberg, Kempe, Kumar, 2000)
- In fact, \exists some with $\Omega\left(n^{2}\right)$ labels
(Axiotis, Fotakis, 2016)

Temporal spanners

Input: a graph \mathcal{G} that is temporally connected $(\mathcal{G} \in T C)$
Output: a graph $\mathcal{G}^{\prime} \subseteq \mathcal{G}$ that preserves temporal connectivity $\left(\mathcal{G}^{\prime} \in T C\right)$
Cost measure: size of the spanner (say, in number of labels)

Can we do better?

- $2 n-4$ labels needed, even if you choose the values!
(Bumby'79, gossip theory)
Do spanners of size $2 n-4$ always exist?
- \exists minimally connected temp. graphs with $\Omega(n \log n)$ labels
(Kleinberg, Kempe, Kumar, 2000)
- In fact, \exists some with $\Omega\left(n^{2}\right)$ labels

How about complexity?

- Minimum-size spanner is APX-hard

Bad news and good news

Recall the bad news:

- $\Omega(n \log n)$ - easy
- $\Omega\left(n^{2}\right)$ - rather unexpected

Bad news and good news

Recall the bad news:

- $\Omega(n \log n)$ - easy
- $\Omega\left(n^{2}\right)$ - rather unexpected

Good news 1: (C., Peters, Schoeters, ICALP 2019):

- Spanners of size $O(n \log n)$ always exist in complete temporal graphs

Bad news and good news

Recall the bad news:

- $\Omega(n \log n)$ - easy
- $\Omega\left(n^{2}\right)$ - rather unexpected

Good news 1: (C., Peters, Schoeters, ICALP 2019):

- Spanners of size $O(n \log n)$ always exist in complete temporal graphs

Good news 2: (C., Raskin, Renken, Zamaraev, FOCS 2021):

- Nearly optimal spanners (of size $2 n+o(n)$) almost surely exist in random temporal graphs, as soon as the graph is temporally connected

Before we start... an easier model

Simple Temporal Graphs (STGs):

1. A single presence time per edge $(\lambda: E \rightarrow \mathbb{N})$
2. Adjacent edges have different times (λ is locally injective)

Before we start... an easier model

Simple Temporal Graphs (STGs):

1. A single presence time per edge $(\lambda: E \rightarrow \mathbb{N})$
2. Adjacent edges have different times (λ is locally injective)

Generality for spanners:

- Most negative results still apply
- Positive results extend to general case
- No distinction between strict and non-strict temporal paths

Before we start... an easier model

Simple Temporal Graphs (STGs):

1. A single presence time per edge $(\lambda: E \rightarrow \mathbb{N})$
2. Adjacent edges have different times (λ is locally injective)

Generality for spanners:

- Most negative results still apply
- Positive results extend to general case
- No distinction between strict and non-strict temporal paths

Further motivations:

- Distributed models by pairwise interactions, e.g. population protocols or gossip models (without repetition)
- Close model to edge-ordered graphs (Chvátal, Komlós, 1971)

Good news 1:

Temporal cliques admit sparse spanners

(with)

Two promising techniques...

Pivotability

Pivot node v and time t such that:

- all nodes can reach v before t
- v can reach all nodes after t

Then in-tree \cup out-tree $=$ spanner of size $2 n-2$ (in fact $2 n-3 \ldots$)

Two promising techniques...

Pivotability

Pivot node v and time t such that:

- all nodes can reach v before t
- v can reach all nodes after t

Then in-tree \cup out-tree $=$ spanner of size $2 n-2$ (in fact $2 n-3 \ldots$)

Dismountability

Three nodes u, v, w such that:

- uv $=$ min $-\operatorname{edge}(v)$
- uw $=$ max-edge (w)

Then spanner $(\mathcal{G}):=\operatorname{spanner}(\mathcal{G}[V \backslash u])+u v+u w$

Recursively,

spanner of size $2 n-3$.

Two promising techniques...

Pivotability

Pivot node v and time t such that:

- all nodes can reach v before t
- v can reach all nodes after t

Then in-tree \cup out-tree $=$ spanner of size $2 n-2$ (in fact $2 n-3 \ldots$)

Dismountability

Three nodes u, v, w such that:
$-u v=\min -\operatorname{edge}(v)$

- $u w=\max -\operatorname{edge}(w)$

Then spanner $(\mathcal{G}):=\operatorname{spanner}(\mathcal{G}[V \backslash u])+u v+u w$

Recursively,

spanner of size $2 n-3$.

... unfortunately

Both techniques fail in some cases.

Transitive delegations ("fireworks")

Transitive delegations ("fireworks")

Principle:

- Transitive delegations towards emitters
- Spanner = forest of min edges + edges of emitters

Transitive delegations ("fireworks")

Principle:

- Transitive delegations towards emitters
- Spanner = forest of min edges + edges of emitters

Wait a minute... could be lot of emitters!

Transitive delegations ("fireworks")

Principle:

- Transitive delegations towards emitters
- Spanner = forest of min edges + edges of emitters

Wait a minute... could be lot of emitters!
\rightarrow Local transformation of the forest:

- At most $n / 2$ emitters

Transitive delegations ("fireworks")

Principle:

- Transitive delegations towards emitters
- Spanner = forest of min edges + edges of emitters

Wait a minute... could be lot of emitters!
\rightarrow Local transformation of the forest:

- At most $n / 2$ emitters

Theorem: \exists spanners of size $\frac{3}{4}\binom{n}{2}+O(n)$

Transitive delegations ("fireworks")

Principle:

- Transitive delegations towards emitters
- Spanner = forest of min edges + edges of emitters

Wait a minute... could be lot of emitters!

\rightarrow Local transformation of the forest:

- At most $n / 2$ emitters

Theorem: \exists spanners of size $\frac{3}{4}\binom{n}{2}+O(n)$

Backward spanner also possible

\rightarrow Spanner $=$ max edges + all edges of collectors

Combining both directions

- Each vertex can reach at least one emitter u through u 's min edge
- Each vertex can be reached by a collector v through v 's max edge
- Each emitter can reach all collectors through direct edges
\rightarrow Spanner $=$ min edges + max edges
+ edges between emitters and collectors

Theorem:

At most $n / 2$ emitters and $n / 2$ collectors $\Rightarrow \exists$ Spanners of size $\binom{n}{2} / 2+O(n)$
\approx half of the edges

Recurse or sparsify?

Recurse or sparsify?

Case 1: emitters \cup collectors $\neq V$
Lemma: There exists a " 2 -hop dismountable" vertex v
\rightarrow select 4 edges, recurse on $\mathcal{G}[V-v]$

Recurse or sparsify?

Case 1: emitters \cup collectors $\neq V$

Lemma: There exists a " 2 -hop dismountable" vertex v
\rightarrow select 4 edges, recurse on $\mathcal{G}[V-v]$

Case 2: emitters \cup collectors $=V$

\rightarrow All vertices are either emitters or collectors (not both)!

Recurse or sparsify?

Case 1: emitters \cup collectors $\neq V$

Lemma: There exists a " 2 -hop dismountable" vertex v
\rightarrow select 4 edges, recurse on $\mathcal{G}[V-v]$

Case 2: emitters \cup collectors $=V$

\rightarrow All vertices are either emitters or collectors (not both)!

Recurse or sparsify?

Case 1: emitters \cup collectors $\neq V$

Lemma: There exists a " 2 -hop dismountable" vertex v
\rightarrow select 4 edges, recurse on $\mathcal{G}[V-v]$

Case 2: emitters \cup collectors $=V$

\rightarrow All vertices are either emitters or collectors (not both)!

A lot of structure to work with:

- Complete bipartite graph \mathcal{H} between emitters and collectors
- Min edges and max edges form two perfect matchings
- W.l.o.g. min edges (max edges) are reciprocal in \mathcal{H}

Recurse or sparsify?

Case 1: emitters \cup collectors $\neq V$

Lemma: There exists a " 2 -hop dismountable" vertex v
\rightarrow select 4 edges, recurse on $\mathcal{G}[V-v]$

Case 2: emitters \cup collectors $=V$

\rightarrow All vertices are either emitters or collectors (not both)!

A lot of structure to work with:

- Complete bipartite graph \mathcal{H} between emitters and collectors
- Min edges and max edges form two perfect matchings
- W.I.o.g. min edges (max edges) are reciprocal in \mathcal{H}

New objective:

\rightarrow Sparsify \mathcal{H} while preserving journeys from each emitter to all collectors

Sparsification of the bipartite graph

New objective:
\rightarrow Sparsify \mathcal{H} while preserving journeys from each emitter to all collectors
Technique: Partial delegations among emitters

- Find a 2-hop journey from one emitter to another, arriving through a "locally small" edge
- Pay extra edges (penalty) to reach missed collectors

Sparsification of the bipartite graph

New objective:
\rightarrow Sparsify \mathcal{H} while preserving journeys from each emitter to all collectors

Technique: Partial delegations among emitters

- Find a 2-hop journey from one emitter to another, arriving through a "locally small" edge
- Pay extra edges (penalty) to reach missed collectors

Iterative procedure:

In each step i :

- Half of the emitters partially delegate to other half
- Penalty doubles in each step, but \#emitters halves
- $O(n)$ edges over $O(\log n)$ iterations $\rightarrow \boldsymbol{O}(\boldsymbol{n} \log \boldsymbol{n})$ edges.

Sparsification of the bipartite graph

New objective:
\rightarrow Sparsify \mathcal{H} while preserving journeys from each emitter to all collectors

Technique: Partial delegations among emitters

- Find a 2-hop journey from one emitter to another, arriving through a "locally small" edge
- Pay extra edges (penalty) to reach missed collectors

Iterative procedure:

In each step i :

- Half of the emitters partially delegate to other half
- Penalty doubles in each step, but \#emitters halves
- $O(n)$ edges over $O(\log n)$ iterations $\rightarrow \boldsymbol{O}(n \log n)$ edges.

Conclusion:

\exists spanner of size $O(n \log n) \quad \square$

Open questions (deterministic)

Better spanners for temporal cliques?

- Is $O(n \log n)$ optimal for cliques? Is $O(n)$ possible?
- Even better, does $2 n-4 \leq O P T \leq 2 n-3$? (so far, no counter-example found)

Open questions (deterministic)

Better spanners for temporal cliques?

- Is $O(n \log n)$ optimal for cliques? Is $O(n)$ possible?
- Even better, does $2 n-4 \leq O P T \leq 2 n-3$? (so far, no counter-example found)

Relaxing the complete graph assumption

- Can more general classes of dense graphs be sparsified?
\rightarrow Recall that \exists unsparsifiable graphs of density $\Theta\left(n^{2}\right)$
\rightarrow Is there a family of graphs of density <1 which admits sparse spanners?

Open questions (deterministic)

Better spanners for temporal cliques?

- Is $O(n \log n)$ optimal for cliques? Is $O(n)$ possible?
- Even better, does $2 n-4 \leq O P T \leq 2 n-3$? (so far, no counter-example found)

Relaxing the complete graph assumption

- Can more general classes of dense graphs be sparsified?
\rightarrow Recall that \exists unsparsifiable graphs of density $\Theta\left(n^{2}\right)$
\rightarrow Is there a family of graphs of density <1 which admits sparse spanners?

What about random temporal graphs?

Good news 2:

Spanners of size $2 n+o(n)$ almost surely exist in random temporal graphs
(with)

Sharp thresholds in random temporal graphs (C., Raskin, Renken, Zamaraev, 2021)

Random simple temporal graphs:

1. Pick an Erdös-Rényi $G \sim G_{n, p}$
2. Permute the edges randomly, interpret as (unique) presence time

Timeline for p (as $n \rightarrow \infty$):

$$
0
$$

Standard connectivity

Sharp thresholds in random temporal graphs (C., Raskin, Renken, Zamaraev, 2021)

Random simple temporal graphs:

1. Pick an Erdös-Rényi $G \sim G_{n, p}$
2. Permute the edges randomly, interpret as (unique) presence time

Timeline for p (as $n \rightarrow \infty$):

Sharp thresholds in random temporal graphs (C., Raskin, Renken, Zamaraev, 2021)

Random simple temporal graphs:

1. Pick an Erdös-Rényi $G \sim G_{n, p}$
2. Permute the edges randomly, interpret as (unique) presence time

Timeline for p (as $n \rightarrow \infty$):

Sharp thresholds in random temporal graphs (C., Raskin, Renken, Zamaraev, 2021)

Random simple temporal graphs:

1. Pick an Erdös-Rényi $G \sim G_{n, p}$
2. Permute the edges randomly, interpret as (unique) presence time

Timeline for p (as $n \rightarrow \infty$):

Sharp thresholds in random temporal graphs (C., Raskin, Renken, Zamaraev, 2021)

Random simple temporal graphs:

1. Pick an Erdös-Rényi $G \sim G_{n, p}$
2. Permute the edges randomly, interpret as (unique) presence time

Timeline for p (as $n \rightarrow \infty$):

Sharp thresholds in random temporal graphs (C., Raskin, Renken, Zamaraev, 2021)

Random simple temporal graphs:

1. Pick an Erdös-Rényi $G \sim G_{n, p}$
2. Permute the edges randomly, interpret as (unique) presence time

Timeline for p (as $n \rightarrow \infty$):

Sharp thresholds in random temporal graphs (C., Raskin, Renken, Zamaraev, 2021)

Random simple temporal graphs:

1. Pick an Erdös-Rényi $G \sim G_{n, p}$
2. Permute the edges randomly, interpret as (unique) presence time

Timeline for p (as $n \rightarrow \infty$):

Sharp thresholds in random temporal graphs (C., Raskin, Renken, Zamaraev, 2021)

Random simple temporal graphs:

1. Pick an Erdös-Rényi $G \sim G_{n, p}$
2. Permute the edges randomly, interpret as (unique) presence time

Timeline for p (as $n \rightarrow \infty$):

Sharp thresholds in random temporal graphs (C., Raskin, Renken, Zamaraev, 2021)

Random simple temporal graphs:

1. Pick an Erdös-Rényi $G \sim G_{n, p}$
2. Permute the edges randomly, interpret as (unique) presence time

Timeline for p (as $n \rightarrow \infty$):

All the thresholds are sharp, except \star (open problem)
(sharp: $\exists \epsilon(n)=o(1)$, not true at $(1-\epsilon(n)) p$, true at $(1+\epsilon(n)) p)$

Random Simple Temporal Graphs (RSTGs)

Temporal analog of Erdös-Reyni graphs, same parameters n and p

Random Simple Temporal Graphs (RSTGs)

Temporal analog of Erdös-Reyni graphs, same parameters n and p
An RSTG $\mathcal{G} \sim \mathcal{G}_{n, p}$:

1. Pick a footprint $G \sim G_{n, p}$
2. Permute the edges randomly (interpret ranks as times)

Random Simple Temporal Graphs (RSTGs)

Temporal analog of Erdös-Reyni graphs, same parameters n and p
An RSTG $\mathcal{G} \sim \mathcal{G}_{n, p}$:

1. Pick a footprint $G \sim G_{n, p}$
2. Permute the edges randomly (interpret ranks as times)

$$
\text { Ex: } n=7, p=0.4 \quad a \bullet \quad \stackrel{\bullet}{g} \quad \bullet d
$$

Random Simple Temporal Graphs (RSTGs)

Temporal analog of Erdös-Reyni graphs, same parameters n and p
An RSTG $\mathcal{G} \sim \mathcal{G}_{n, p}$:

1. Pick a footprint $G \sim G_{n, p}$
2. Permute the edges randomly (interpret ranks as times)
$\mathrm{Ex}: n=7, p=0.4$

Random Simple Temporal Graphs (RSTGs)

Temporal analog of Erdös-Reyni graphs, same parameters n and p
An RSTG $\mathcal{G} \sim \mathcal{G}_{n, p}$:

1. Pick a footprint $G \sim G_{n, p}$
2. Permute the edges randomly (interpret ranks as times)
$\mathrm{Ex}: n=7, p=0.4$

Random Simple Temporal Graphs (RSTGs)

Temporal analog of Erdös-Reyni graphs, same parameters n and p
An RSTG $\mathcal{G} \sim \mathcal{G}_{n, p}$:

1. Pick a footprint $G \sim G_{n, p}$
2. Permute the edges randomly (interpret ranks as times)

Ex: $n=7, p=0.4$

Another point of view:

1. Take a complete graph K_{n}
2. Assign random real times in $[0,1]$ to every edge
3. Restrict your attention to $\mathcal{G}_{[0, p]}$
\rightarrow Better for analysis.

Timeline of temporal reachability in $\mathcal{G}_{n, p}$

For sufficiently large n, what happens when p increases?

Timeline of temporal reachability in $\mathcal{G}_{n, p}$

For sufficiently large n, what happens when p increases?

Timeline of temporal reachability in $\mathcal{G}_{n, p}$

For sufficiently large n, what happens when p increases?

Timeline of temporal reachability in $\mathcal{G}_{n, p}$

For sufficiently large n, what happens when p increases?

Timeline of temporal reachability in $\mathcal{G}_{n, p}$

For sufficiently large n, what happens when p increases?

Timeline of temporal reachability in $\mathcal{G}_{n, p}$

For sufficiently large n, what happens when p increases?

Timeline of temporal reachability in $\mathcal{G}_{n, p}$

For sufficiently large n, what happens when p increases?

Timeline of temporal reachability in $\mathcal{G}_{n, p}$

For sufficiently large n, what happens when p increases?

Timeline of temporal reachability in $\mathcal{G}_{n, p}$

For sufficiently large n, what happens when p increases?

All the thresholds are sharp, except \star (open problem)
(sharp: $\exists \epsilon(n)=o(1)$, not true at $(1-\epsilon(n)) p$, true at $(1+\epsilon(n)) p$)

Main technical tool: growth of a foremost tree

Foremost tree (from s)

- Foremost temporal paths from s to all
- "Prim-like" algorithm.

Main technical tool: growth of a foremost tree

Foremost tree (from s)

- Foremost temporal paths from s to all
- "Prim-like" algorithm.

Main technical tool: growth of a foremost tree

Foremost tree (from s)

- Foremost temporal paths from s to all
- "Prim-like" algorithm.

Main technical tool: growth of a foremost tree

Foremost tree (from s)

- Foremost temporal paths from s to all
- "Prim-like" algorithm.

Main technical tool: growth of a foremost tree

Foremost tree (from s)

- Foremost temporal paths from s to all
- "Prim-like" algorithm.

Main technical tool: growth of a foremost tree

Foremost tree (from s)

- Foremost temporal paths from s to all
- "Prim-like" algorithm.

Main technical tool: growth of a foremost tree

Foremost tree (from s)

- Foremost temporal paths from s to all
- "Prim-like" algorithm.

$$
t=6
$$

Main technical tool: growth of a foremost tree

Foremost tree (from s)

- Foremost temporal paths from s to all
- "Prim-like" algorithm.

Main technical tool: growth of a foremost tree

Foremost tree (from s)

- Foremost temporal paths from s to all
- "Prim-like" algorithm.

Main technical tool: growth of a foremost tree

Foremost tree (from s)

- Foremost temporal paths from s to all
- "Prim-like" algorithm.

Analysis

Main technical tool: growth of a foremost tree

Foremost tree (from s)

- Foremost temporal paths from s to all
- "Prim-like" algorithm.

Analysis

- Consider "growing" a foremost tree in $\mathcal{G} \sim \mathcal{G}_{n, 1}$ from a vertex s.

Main technical tool: growth of a foremost tree

Foremost tree (from s)

- Foremost temporal paths from s to all
- "Prim-like" algorithm.

Analysis

- Consider "growing" a foremost tree in $\mathcal{G} \sim \mathcal{G}_{n, 1}$ from a vertex s.
- Once we have reached k vertices, there are $k(n-k)$ potential edges.

Main technical tool: growth of a foremost tree

Foremost tree (from s)

- Foremost temporal paths from s to all
- "Prim-like" algorithm.

Analysis

- Consider "growing" a foremost tree in $\mathcal{G} \sim \mathcal{G}_{n, 1}$ from a vertex s.
- Once we have reached k vertices, there are $k(n-k)$ potential edges.
- The waiting time for one of these to appear is $\approx \frac{1}{k(n-k)}$

Main technical tool: growth of a foremost tree

Foremost tree (from s)

- Foremost temporal paths from s to all
- "Prim-like" algorithm.

Analysis

- Consider "growing" a foremost tree in $\mathcal{G} \sim \mathcal{G}_{n, 1}$ from a vertex s.
- Once we have reached k vertices, there are $k(n-k)$ potential edges.
- The waiting time for one of these to appear is $\approx \frac{1}{k(n-k)}$
\Longrightarrow Expect to reach all vertices at $\sum_{k=1}^{n} \frac{1}{k(n-k)} \approx 2 \frac{\log n}{n}$.

Main technical tool: growth of a foremost tree

Foremost tree (from s)

- Foremost temporal paths from s to all
- "Prim-like" algorithm.

Analysis

- Consider "growing" a foremost tree in $\mathcal{G} \sim \mathcal{G}_{n, 1}$ from a vertex s.
- Once we have reached k vertices, there are $k(n-k)$ potential edges.
- The waiting time for one of these to appear is $\approx \frac{1}{k(n-k)}$
\Longrightarrow Expect to reach all vertices at $\sum_{k=1}^{n} \frac{1}{k(n-k)} \approx 2 \frac{\log n}{n}$.
- Azuma's inequality for concentration.

Derived arguments

We note foremost (u) the set of vertices reached by a foremost tree from u.

Reachability thresholds

$\triangleright \sim^{*} \rightsquigarrow \sim * \Longleftrightarrow \forall u, \forall v$, a.a.s. $v \in \operatorname{foremost}(u)$

Derived arguments

We note foremost (u) the set of vertices reached by a foremost tree from u.

Reachability thresholds

$\triangleright \sim * \rightsquigarrow \sim * \Longleftrightarrow \forall u, \forall v$, a.a.s. $v \in$ foremost (u)
$(\log n / n)$

- $1 \rightsquigarrow * \Longleftrightarrow$ a.a.s. $\exists u, \forall v, v \in \operatorname{foremost}(u)$
$(2 \log n / n)$

Derived arguments

We note foremost (u) the set of vertices reached by a foremost tree from u.

Reachability thresholds

$\triangleright \sim^{*} \rightsquigarrow \sim * \Longleftrightarrow \forall u, \forall v$, a.a.s. $v \in \operatorname{foremost}(u)$
$(\log n / n)$

- $1 \rightsquigarrow * \Longleftrightarrow$ a.a.s. $\exists u, \forall v, v \in \operatorname{foremost}(u)$
- $\sim * \rightsquigarrow * \Longleftrightarrow \forall u$, a.a.s. $\forall v, v \in$ foremost (u)

Derived arguments

We note foremost (u) the set of vertices reached by a foremost tree from u.

Reachability thresholds

- $\sim * \rightsquigarrow \sim * \Longleftrightarrow \forall u, \forall v$, a.a.s. $v \in \operatorname{foremost}(u)$
$(\log n / n)$
- $1 \rightsquigarrow * \Longleftrightarrow$ a.a.s. $\exists u, \forall v, v \in \operatorname{foremost}(u)$
- $\sim * \rightsquigarrow * \Longleftrightarrow \forall u$, a.a.s. $\forall v, v \in$ foremost (u)
- $* \rightsquigarrow * \Longleftrightarrow$ a.a.s $\forall u, \forall v, v \in \operatorname{foremost}(u)$
$(2 \log n / n)$

LB: $(* \rightsquigarrow 1)+(\log n / n)$, each non sink must have at least one new edge.
UB: $(* \rightsquigarrow \sim *)+(\log n / n)$, each non sink is reached from at least one sink.
$(2 \log n / n)$
(3log n / n)

Derived arguments

We note foremost (u) the set of vertices reached by a foremost tree from u.

Reachability thresholds

- $\sim * \rightsquigarrow \sim * \Longleftrightarrow \forall u, \forall v$, a.a.s. $v \in \operatorname{foremost}(u)$
$(\log n / n)$
- $1 \rightsquigarrow * \Longleftrightarrow$ a.a.s. $\exists u, \forall v, v \in \operatorname{foremost}(u)$
($2 \log n / n$)
- $\sim * \rightsquigarrow * \Longleftrightarrow \forall u$, a.a.s. $\forall v, v \in$ foremost (u)
$(2 \log n / n)$
- $* \rightsquigarrow * \Longleftrightarrow$ a.a.s $\forall u, \forall v, v \in$ foremost (u)
$(3 \log n / n)$
LB: $(* \rightsquigarrow 1)+(\log n / n)$, each non sink must have at least one new edge.
UB: $(* \rightsquigarrow \sim *)+(\log n / n)$, each non sink is reached from at least one sink.

Spanners

Derived arguments

We note foremost (u) the set of vertices reached by a foremost tree from u.

Reachability thresholds

- $\sim * \rightsquigarrow \sim * \Longleftrightarrow \forall u, \forall v$, a.a.s. $v \in \operatorname{foremost}(u)$
$(\log n / n)$
- $1 \rightsquigarrow * \Longleftrightarrow$ a.a.s. $\exists u, \forall v, v \in \operatorname{foremost}(u)$
$(2 \log n / n)$
- $\sim * \rightsquigarrow * \Longleftrightarrow \forall u$, a.a.s. $\forall v, v \in$ foremost (u)
$(2 \log n / n)$
- $* \rightsquigarrow * \Longleftrightarrow$ a.a.s $\forall u, \forall v, v \in \operatorname{foremost}(u)$
$(3 \log n / n)$
LB: $(* \rightsquigarrow 1)+(\log n / n)$, each non sink must have at least one new edge.
UB: $(* \rightsquigarrow \sim *)+(\log n / n)$, each non sink is reached from at least one sink.

Spanners

- Pivotal $(* \rightsquigarrow 1 \rightsquigarrow *) \Longleftarrow(* \rightsquigarrow \sim *)+(\sim * \rightsquigarrow *)$

Derived arguments

We note foremost (u) the set of vertices reached by a foremost tree from u.

Reachability thresholds

- $\sim * \rightsquigarrow \sim * \Longleftrightarrow \forall u, \forall v$, a.a.s. $v \in \operatorname{foremost}(u)$
$(\log n / n)$
- $1 \rightsquigarrow * \Longleftrightarrow$ a.a.s. $\exists u, \forall v, v \in$ foremost (u)
$(2 \log n / n)$
- $\sim * \rightsquigarrow * \Longleftrightarrow \forall u$, a.a.s. $\forall v, v \in$ foremost (u)
$(2 \log n / n)$
- $* \rightsquigarrow * \Longleftrightarrow$ a.a.s $\forall u, \forall v, v \in$ foremost (u)
$(3 \log n / n)$
LB: $(* \rightsquigarrow 1)+(\log n / n)$, each non sink must have at least one new edge.
UB: $(* \leadsto \sim *)+(\log n / n)$, each non sink is reached from at least one sink.

Spanners

- Pivotal $(* \rightsquigarrow 1 \rightsquigarrow *) \Longleftarrow(* \rightsquigarrow \sim *)+(\sim * \rightsquigarrow *)$
$(4 \log n / n)$
- Optimal spanner (size $2 n-4$)
$(4 \log n / n)$
Pivotal square. Sharp ?

Derived arguments

We note foremost (u) the set of vertices reached by a foremost tree from u.

Reachability thresholds

- $\sim * \rightsquigarrow \sim * \Longleftrightarrow \forall u, \forall v$, a.a.s. $v \in \operatorname{foremost}(u)$
$(\log n / n)$
- $1 \rightsquigarrow * \Longleftrightarrow$ a.a.s. $\exists u, \forall v, v \in \operatorname{foremost}(u)$
$(2 \log n / n)$
$>\sim * \rightsquigarrow * \Longleftrightarrow \forall u$, a.a.s. $\forall v, v \in$ foremost (u)
$(2 \log n / n)$
- $* \rightsquigarrow * \Longleftrightarrow$ a.a.s $\forall u, \forall v, v \in$ foremost (u)
$(3 \log n / n)$
LB: $(* \rightsquigarrow 1)+(\log n / n)$, each non sink must have at least one new edge.
UB: $(* \rightsquigarrow \sim *)+(\log n / n)$, each non sink is reached from at least one sink.

Spanners

- Pivotal $(* \rightsquigarrow 1 \rightsquigarrow *) \Longleftarrow(* \rightsquigarrow \sim *)+(\sim * \rightsquigarrow *)$
$(4 \log n / n)$
- Optimal spanner (size $2 n-4$)
$(4 \log n / n)$
Pivotal square. Sharp?
- Nearly optimal spanner (size $2 n+o(n)$)

LB: Trivial (not temporally connected)
UB: Explicit construction
Three intervals of length $\log n / n$:

- $\sim * \rightsquigarrow 1$ (say u)
- $u \rightsquigarrow \sim *$
- missing $\rightsquigarrow u$
- $u \rightsquigarrow$ missing
- missing \rightsquigarrow missing

Random Non-Simple Temporal Graphs

$\mathcal{H}_{n, p}$: Each edge independently appears according to a rate 1 Poisson process stopped at time p.

Theorem
All our thresholds also hold for $\mathcal{H}_{n, p}$.

Simple temporal graphs (beyond spanners)
Special properties and symmetries

Equivalence based on reachability (up to time distortion)

Different STGs are equivalent in terms of reachability

Equivalence based on reachability (up to time distortion)

Different STGs are equivalent in terms of reachability

How to capture this equivalence?

Equivalence based on reachability (up to time distortion)

Different STGs are equivalent in terms of reachability

How to capture this equivalence?

- Option 1: Local ordering?

Equivalence based on reachability (up to time distortion)
Different STGs are equivalent in terms of reachability

How to capture this equivalence?

- Option 1: Local ordering?

Equivalence based on reachability (up to time distortion)
Different STGs are equivalent in terms of reachability

How to capture this equivalence?

- Option 1: Local ordering?

Equivalence based on reachability (up to time distortion)

Different STGs are equivalent in terms of reachability

How to capture this equivalence?

- Option 1: Local ordering?
- Option 2: STG representative

Equivalence based on reachability (up to time distortion)

Different STGs are equivalent in terms of reachability

How to capture this equivalence?

- Option 1: Local ordering?
- Option 2: STG representative

Equivalence based on reachability (up to time distortion)

Different STGs are equivalent in terms of reachability

How to capture this equivalence?

- Option 1: Local ordering?
- Option 2: STG representative \checkmark

STG representatives have good properties for generation

+ canonization, isomorphism testing, and computation of generators for the automorphism group, are all feasible in polynomial time.

STG representatives

Canonization

1. Find edges that are local minima
2. Assign them the smallest available time
3. Increment time
4. Repeat on remaining edges

STG representatives

Canonization

1. Find edges that are local minima
2. Assign them the smallest available time
3. Increment time
4. Repeat on remaining edges

STG representatives

Canonization

1. Find edges that are local minima
2. Assign them the smallest available time
3. Increment time
4. Repeat on remaining edges

STG representatives

Canonization

1. Find edges that are local minima
2. Assign them the smallest available time
3. Increment time
4. Repeat on remaining edges

STG representatives

Canonization

1. Find edges that are local minima
2. Assign them the smallest available time
3. Increment time
4. Repeat on remaining edges

STG representatives

Canonization

1. Find edges that are local minima
2. Assign them the smallest available time
3. Increment time
4. Repeat on remaining edges

STG representatives

Canonization

1. Find edges that are local minima
2. Assign them the smallest available time
3. Increment time
4. Repeat on remaining edges

STG representatives

Canonization

1. Find edges that are local minima
2. Assign them the smallest available time
3. Increment time
4. Repeat on remaining edges

STG representatives

Canonization

1. Find edges that are local minima
2. Assign them the smallest available time
3. Increment time
4. Repeat on remaining edges

STG representatives

Canonization

1. Find edges that are local minima
2. Assign them the smallest available time
3. Increment time
4. Repeat on remaining edges

Properties of the labeling

Time induces a proper coloring of the edges (by definition of STGs).

STG representatives

Canonization

1. Find edges that are local minima
2. Assign them the smallest available time
3. Increment time
4. Repeat on remaining edges

Properties of the labeling

Time induces a proper coloring of the edges (by definition of STGs).
In addition,

Contiguity Lemma: If an edge is labeled $t>1$, then an adjacent edge is labeled $t-1$.

STG representatives

Canonization

1. Find edges that are local minima
2. Assign them the smallest available time
3. Increment time
4. Repeat on remaining edges

Properties of the labeling

Time induces a proper coloring of the edges (by definition of STGs).
In addition,

Contiguity Lemma: If an edge is labeled $t>1$, then an adjacent edge is labeled $t-1$.
(If you know a name for this type of edge coloring, please let me know.)

How to test for equivalence?

How to test for equivalence?

Input: Two STGs \mathcal{G}_{1} and \mathcal{G}_{2}
Output: Are they equivalent?

Two steps algorithm:

1. Canonize them
2. Test for (classical) isomorphism of the canonical forms

How to test for equivalence?

Input: Two STGs \mathcal{G}_{1} and \mathcal{G}_{2}
Output: Are they equivalent?

Two steps algorithm:

1. Canonize them
2. Test for (classical) isomorphism of the canonical forms

Algorithm for the second step:

1. Fix an arbitrary vertex v_{1} of G_{1}
2. Try to send it to a vertex v_{2} of G_{2}
3. If OK, answer Yes
4. If not, try the next vertex of G_{2} (or answer no if none remain)

How to test for equivalence?

Input: Two STGs \mathcal{G}_{1} and \mathcal{G}_{2}
Output: Are they equivalent?

Two steps algorithm:

1. Canonize them
2. Test for (classical) isomorphism of the canonical forms

Algorithm for the second step:

1. Fix an arbitrary vertex v_{1} of G_{1}
2. Try to send it to a vertex v_{2} of G_{2}
3. If OK, answer Yes
4. If not, try the next vertex of G_{2} (or answer no if none remain)

How to test for equivalence?

Input: Two STGs \mathcal{G}_{1} and \mathcal{G}_{2}
Output: Are they equivalent?

Two steps algorithm:

1. Canonize them
2. Test for (classical) isomorphism of the canonical forms

Algorithm for the second step:

1. Fix an arbitrary vertex v_{1} of G_{1}
2. Try to send it to a vertex v_{2} of G_{2}
3. If OK, answer Yes
4. If not, try the next vertex of G_{2} (or answer No if none remain)

How to test for equivalence?

Input: Two STGs \mathcal{G}_{1} and \mathcal{G}_{2}
Output: Are they equivalent?

Two steps algorithm:

1. Canonize them
2. Test for (classical) isomorphism of the canonical forms

Algorithm for the second step:

1. Fix an arbitrary vertex v_{1} of G_{1}
2. Try to send it to a vertex v_{2} of G_{2}
3. If OK, answer Yes
4. If not, try the next vertex of G_{2} (or answer No if none remain)

How to test for equivalence?

Input: Two STGs \mathcal{G}_{1} and \mathcal{G}_{2}
Output: Are they equivalent?

Two steps algorithm:

1. Canonize them
2. Test for (classical) isomorphism of the canonical forms

Algorithm for the second step:

1. Fix an arbitrary vertex v_{1} of G_{1}
2. Try to send it to a vertex v_{2} of G_{2}
3. If OK, answer YES
4. If not, try the next vertex of G_{2} (or answer No if none remain)

Key observation: when trying to send v_{1} to v_{2}, the mapping among neighbors unfolds recursively without choices (due to the proper coloring of the edges)
\rightarrow passes or fails in polynomial time.

How to test for equivalence?

Input: Two STGs \mathcal{G}_{1} and \mathcal{G}_{2}
Output: Are they equivalent?

Two steps algorithm:

1. Canonize them
2. Test for (classical) isomorphism of the canonical forms

Algorithm for the second step:

1. Fix an arbitrary vertex v_{1} of G_{1}
2. Try to send it to a vertex v_{2} of G_{2}
3. If OK, answer YES
4. If not, try the next vertex of G_{2} (or answer no if none remain)

Key observation: when trying to send v_{1} to v_{2}, the mapping among neighbors unfolds recursively without choices (due to the proper coloring of the edges)
\rightarrow passes or fails in polynomial time.
Remark: Also feasible using Babai \& Luks machinery (1983)

Automorphisms of an STG

Case 1: The underlying graph is connected.
\rightarrow Same strategy as for isomorphism.

Automorphisms of an STG

Case 1: The underlying graph is connected.
\rightarrow Same strategy as for isomorphism.

Automorphisms of an STG

Case 1: The underlying graph is connected.
\rightarrow Same strategy as for isomorphism.

Automorphisms of an STG

Case 1: The underlying graph is connected.
\rightarrow Same strategy as for isomorphism.

Automorphisms of an STG

Case 1: The underlying graph is connected.
\rightarrow Same strategy as for isomorphism.

Automorphisms of an STG

Case 1: The underlying graph is connected.
\rightarrow Same strategy as for isomorphism.

Automorphisms of an STG

Case 1: The underlying graph is connected.
\rightarrow Same strategy as for isomorphism.

At most n automorphisms!

Automorphisms of an STG

Case 1: The underlying graph is connected.
\rightarrow Same strategy as for isomorphism.

Case 2: The underlying graph is not connected (the complement trick does not works for temporal graphs...)

Automorphisms of an STG

Case 1: The underlying graph is connected.
\rightarrow Same strategy as for isomorphism.

Case 2: The underlying graph is not connected (the complement trick does not works for temporal graphs...)

1. Find the underlying components
2. Search for isomorphisms between pairs of components (remember one for each)
3. Find the automorphisms within each component type (trivially extended to \mathcal{G})

Automorphisms of an STG

Case 1: The underlying graph is connected.
\rightarrow Same strategy as for isomorphism.

Case 2: The underlying graph is not connected (the complement trick does not works for temporal graphs...)

1. Find the underlying components
2. Search for isomorphisms between pairs of components (remember one for each)
3. Find the automorphisms within each component type (trivially extended to \mathcal{G})

Automorphisms of an STG

Case 1: The underlying graph is connected.
\rightarrow Same strategy as for isomorphism.

Case 2: The underlying graph is not connected (the complement trick does not works for temporal graphs...)

1. Find the underlying components
2. Search for isomorphisms between pairs of components (remember one for each)
3. Find the automorphisms within each component type (trivially extended to \mathcal{G})

Automorphisms of an STG

Case 1: The underlying graph is connected.
\rightarrow Same strategy as for isomorphism.

Case 2: The underlying graph is not connected (the complement trick does not works for temporal graphs...)

1. Find the underlying components
2. Search for isomorphisms between pairs of components (remember one for each)
3. Find the automorphisms within each component type (trivially extended to \mathcal{G})

Automorphisms of an STG

Case 1: The underlying graph is connected.
\rightarrow Same strategy as for isomorphism.

Case 2: The underlying graph is not connected (the complement trick does not works for temporal graphs...)

1. Find the underlying components
2. Search for isomorphisms between pairs of components (remember one for each)
3. Find the automorphisms within each component type (trivially extended to \mathcal{G})

Automorphisms of an STG

Case 1: The underlying graph is connected.
\rightarrow Same strategy as for isomorphism.

Case 2: The underlying graph is not connected (the complement trick does not works for temporal graphs...)

1. Find the underlying components
2. Search for isomorphisms between pairs of components (remember one for each)
3. Find the automorphisms within each component type (trivially extended to \mathcal{G})

Automorphisms of an STG

Case 1: The underlying graph is connected.
\rightarrow Same strategy as for isomorphism.

Case 2: The underlying graph is not connected (the complement trick does not works for temporal graphs...)

1. Find the underlying components
2. Search for isomorphisms between pairs of components (remember one for each)
3. Find the automorphisms within each component type (trivially extended to \mathcal{G})

Automorphisms of an STG

Case 1: The underlying graph is connected.
\rightarrow Same strategy as for isomorphism.

Case 2: The underlying graph is not connected (the complement trick does not works for temporal graphs...)

1. Find the underlying components
2. Search for isomorphisms between pairs of components (remember one for each)
3. Find the automorphisms within each component type (trivially extended to \mathcal{G})

Automorphisms of an STG

Case 1: The underlying graph is connected.
\rightarrow Same strategy as for isomorphism.

Case 2: The underlying graph is not connected (the complement trick does not works for temporal graphs...)

1. Find the underlying components
2. Search for isomorphisms between pairs of components (remember one for each)
3. Find the automorphisms within each component type (trivially extended to \mathcal{G})

Automorphisms of an STG

Case 1: The underlying graph is connected.
\rightarrow Same strategy as for isomorphism.

Case 2: The underlying graph is not connected (the complement trick does not works for temporal graphs...)

1. Find the underlying components
2. Search for isomorphisms between pairs of components (remember one for each)
3. Find the automorphisms within each component type (trivially extended to \mathcal{G})

Automorphisms of an STG

Case 1: The underlying graph is connected.
\rightarrow Same strategy as for isomorphism.

Case 2: The underlying graph is not connected (the complement trick does not works for temporal graphs...)

1. Find the underlying components
i) $\sqrt{ } 2$. Search for isomorphisms between pairs of components (remember one for each)
2. Find the automorphisms within each component type (trivially extended to \mathcal{G})

Automorphisms of an STG

Case 1: The underlying graph is connected.
\rightarrow Same strategy as for isomorphism.

Case 2: The underlying graph is not connected (the complement trick does not works for temporal graphs...)

1. Find the underlying components
2. Search for isomorphisms between pairs of components (remember one for each)
3. Find the automorphisms within each component type (trivially extended to \mathcal{G})

Claim: $\operatorname{Aut}(\mathcal{G})=\langle$ isomorphisms + automorphisms \rangle

Automorphisms of an STG

Case 1: The underlying graph is connected.
\rightarrow Same strategy as for isomorphism.

Case 2: The underlying graph is not connected (the complement trick does not works for temporal graphs...)

1. Find the underlying components
2. Search for isomorphisms between pairs of components (remember one for each)
3. Find the automorphisms within each component type (trivially extended to \mathcal{G})

Claim: $\operatorname{Aut}(\mathcal{G})=\langle$ isomorphisms + automorphisms \rangle
\rightarrow Generators for $\operatorname{Aut}(\mathcal{G})$ can be computed in polynomial time!

Enumeration up to equivalence
(motivated by conjecture refutation on spanners)

Generation tree

Principle: One level = one time unit
\rightarrow children of a graph $=$ all the possible ways to add the next time

Generation tree

Principle: One level = one time unit
\rightarrow children of a graph $=$ all the possible ways to add the next time

Key properties

1. Rigidity is inherited

Generation tree

Principle: One level = one time unit
\rightarrow children of a graph $=$ all the possible ways to add the next time

Key properties

1. Rigidity is inherited
2. Dissimilarity is inherited

How to generate successors at each level?

Input: An STG representative \mathcal{G}, whose maximum time is t
Output: All STG representatives that extend \mathcal{G} with time $t+1$.

How to generate successors at each level?

Input: An STG representative \mathcal{G}, whose maximum time is t
Output: All STG representatives that extend \mathcal{G} with time $t+1$.

First, how to decide if a non-edge is eligible to receive a $(t+1)$ time label? (E.g. here, time 3)

How to generate successors at each level?

Input: An STG representative \mathcal{G}, whose maximum time is t
Output: All STG representatives that extend \mathcal{G} with time $t+1$.

First, how to decide if a non-edge is eligible to receive a $(t+1)$ time label? (E.g. here, time 3)

Coloring lemma: $(\mathrm{t}+1)$ must be adjacent to (t)

How to generate successors at each level?

Input: An STG representative \mathcal{G}, whose maximum time is t
Output: All STG representatives that extend \mathcal{G} with time $t+1$.

First, how to decide if a non-edge is eligible to receive a $(t+1)$ time label? (E.g. here, time 3)

Coloring lemma: $(\mathrm{t}+1)$ must be adjacent to (t)

How to generate successors at each level?

Input: An STG representative \mathcal{G}, whose maximum time is t
Output: All STG representatives that extend \mathcal{G} with time $t+1$.

First, how to decide if a non-edge is eligible to receive a $(t+1)$ time label? (E.g. here, time 3)

Coloring lemma: $(t+1)$ must be adjacent to (t)

Two cases
\mathcal{G} has symmetries

How to generate successors at each level?

Input: An STG representative \mathcal{G}, whose maximum time is t
Output: All STG representatives that extend \mathcal{G} with time $t+1$.

First, how to decide if a non-edge is eligible to receive a $(t+1)$ time label? (E.g. here, time 3)

Coloring lemma: $(\mathrm{t}+1)$ must be adjacent to (t)

Two cases
\mathcal{G} has symmetries

\rightarrow Enumerate all matchings of eligible non-edges.
Each one defines a successor.

How to generate successors at each level?

Input: An STG representative \mathcal{G}, whose maximum time is t
Output: All STG representatives that extend \mathcal{G} with time $t+1$.

First, how to decide if a non-edge is eligible to receive a $(t+1)$ time label? (E.g. here, time 3)

Coloring lemma: $(\mathrm{t}+1)$ must be adjacent to (t)

Two cases
\mathcal{G} has symmetries

\rightarrow Enumerate all matchings of eligible non-edges.
Each one defines a successor.
\equiv Independent sets in the line graph of eligible non-edges (standard algorithm)

How to generate successors at each level?

Input: An STG representative \mathcal{G}, whose maximum time is t
Output: All STG representatives that extend \mathcal{G} with time $t+1$.

First, how to decide if a non-edge is eligible to receive a $(t+1)$ time label? (E.g. here, time 3)

Coloring lemma: $(\mathrm{t}+1)$ must be adjacent to (t)

\mathcal{G} has symmetries
\rightarrow Enumerate all matchings of eligible non-edges. Each one defines a successor.
\equiv Independent sets in the line graph of eligible non-edges (standard algorithm)

\rightarrow Enumerate matchings of eligible non-edges whose multisets of orbits are distinct

Done using the generators for $\operatorname{Aut}(\mathcal{G})$

Using the generator

How to use

```
include("generation.jl")
n = 5
for g in TGraphs(n)
end
```

Implemented in Julia (other versions also in Python and Java)

Using the generator

How to use
Implemented in Julia (other versions also in Python and Java)

```
include("generation.jl")
n = 5
for g in TGraphs(n)
end
```

Pruning is possible using TGraphs(n, selection_predicate)

Using the generator

How to use
Implemented in Julia (other versions also in Python and Java)

```
include("generation.jl")
n = 5
for g in TGraphs(n)
end
```

Pruning is possible using TGraphs(n, selection_predicate)
Back to the spanner question
Do simple temporal cliques admit spanners of size $2 n-3$?

Using the generator

How to use
Implemented in Julia (other versions also in Python and Java)

```
include("generation.jl")
n = 5
for g in TGraphs(n)
end
```

Pruning is possible using TGraphs(n, selection_predicate)
Back to the spanner question
Do simple temporal cliques admit spanners of size $2 n-3$?
\rightarrow True for $n \leq 7$ (and for all non-rigid graphs at $n=8$).
Otherwise still open! :-)

Some numbers

\# Vertices	\# STGs	\# Temporally connected STGs	\# Simple Temporal cliques
1	1	1	1
2	2	1	1
3	4	1	1
4	62	32	20
5	15378	10207	4524
6	89769096	70557834	23218501
7	13828417028594	$?$	3129434545680
8	$?$	$?$	$?$

Non dismountable clique:

Non pivotable clique (seen as a union of two graphs):

Thanks!

next time... :-)

