
Temporal graphs (Spring 2024)

3. Some facts about temporal graphs

Teacher: Arnaud Casteigts

In this third (and last) lesson, we discuss a number of features of temporal graphs, which
differ from static graphs.

3.1 Time matters more than structure

Consider the temporal graph given in fig. 1 and suppose that its schedule repeats periodically
(say, every 5 time units). Looking at the structure of the graph, i.e. its footprint only, node
c is clearly the most central, and nodes a and e appear to be similarly excentered. However,
the role of these nodes changes dramatically when time is added: node a can reach every
other node within one full period, whereas node e may take up to 4 periods to reach node
a, and node c has an intermediate score at this game.

a b c d e

1 2 3 4

Figure 1: A temporal graph that repeats every 5 time units.

The conclusion of this simple observation is that classical centrality measures based on
the structure of the graph only have very limited relevance. What matters is time!

3.2 Reachability is non-symmetric and non-transitive

In contrast to static graphs, the reachability relation in a temporal graph is non-symmetric:
u⇝ v does not imply v ⇝ u. In this respect, temporal graphs are closer in spirit to directed
graphs. However, unlike directed graphs, the reachability relation is also non-transitive:
having u⇝ v and v ⇝ w does not imply u⇝ w, as illustrated in fig. 2.

a b c d

2 1,3 2

Figure 2: Reachability is non-transitive (e.g. a⇝ c and c⇝ d, but a ⇝̸ d)

1

3.3 Connected components

A connected component in a temporal graph is a subset of vertices V ′ ⊆ V such that
for all u, v ∈ V ′, we have u ⇝ v. An important effect of non-transitivity is that maximal
connected components may overlap, as illustrated in fig. 3.

a
b c

d2 1,3
2

Figure 3: Overlapping components

This overlapping property is typical of temporal graphs. In static graphs (directed or not),
maximal components do not overlap, they partition V into disjoint subsets. Unfortunately,
non-transitivity is a source of computational hardness. This is easy to see in the case of
connected components, as it allows us to design simple reductions from the classical NP-hard
Clique problem (in static graphs) to the Connected Component problem in temporal
graphs. In the case of the “strict setting” (only strict temporal paths are allowed), the
reduction is straightforward.

Theorem 1. Strict Connected Component is NP-hard.

Proof. Given an instance of the CLIQUE problem, say, a graph G = (V,E) and an integer
k (where the question is whether G admits a clique of size k), one can construct a temporal
graph G whose footprint is G itself and λ assigns a single and identical label to every edge.
Because the temporal paths in G are required to be strict, two vertices can reach each other
if and only if an edge exists between them. Thus, the connected components in G are exactly
the cliques in G, and consequently:

A clique of size k exists in G if and only if a connected component of size k exists in G.

This shows that an algorithm for Strict Connected Component can be used to
solve the Clique problem (which is NP-hard). Thus, this problem is also NP-hard.

Clearly, the above construction does not work in the non-strict setting, because the con-
structed temporal graph would then form a single component. A slightly more complicated
reduction can be designed, that works for both the strict and the non-strict settings.

Theorem 2. Non-strict Connected Component is NP-hard.

Proof. Given an instance (G = (V,E), k) for the Clique problem, one can build a temporal
graph where every edge {u, v} ∈ E is replaced with a semaphore gadget, i.e. an alternating
cycle (u, u′, v, v′), where u′ and v′ are new extra vertices, and the labels along the cycle are
respectively set to 2, 3, 2, 3 (see fig. 4). As before, we obtain that two vertices u and v in V

2

(a) An instance of Clique.

−→

u

v

u

v

u′v′
2

32

3

(b) The semaphore gadget.

Figure 4: Reduction from Clique to Connected Component in temporal graphs.

can reach each other in G if and only if they share an edge in G. However, some of the extra
vertices can also reach each other, which prevents us from concluding that components in
G have the same size as cliques in G. To circumvent this problem, we add a new external
vertex x and add an edge between x and every extra vertex, with labels 1 and 4. Note that
all the 2 · |E| extra vertices are now in the same component (through x). These vertices
can also reach (and be reached by) all the original vertices. But this construction does not
increase the reachability among original vertices. Consequently, we have:

A clique of size k exists in G iff a connected component of size 2 · |E|+1+ k exists in G.

This shows that an algorithm for Non-strict Connected Component can be used
to solve the Clique problem (which is NP-hard). Thus, this problem is also NP-hard.

In this case, the problem turns out to be hard in both the strict and the non-strict
settings. However, there exists problems that are hard only in the strict setting, and others
that are hard only in the non-strict setting. Both settings are really incomparable!

3.4 Always-connected graphs and diameters

The diameter of a static graph G is the maximum distance between any pair of vertices. In
temporal graphs, this notion can be extended in various ways. One of them is the temporal
diameter, defined as the maximum time needed for any pair of vertices to reach each other.
When seeing the temporal graph as a sequence of snapshots G = ⟨G1, G2, G3, ...⟩, is it possible
that every snapshot has a small diameter and yet, the temporal diameter is large? (This
question makes sense only in the strict setting.)

It turns out the answer is yes, this could be the case, and so, to a very large extent.
To see this, it is convenient to pretend that the snapshots are chosen by an adversary that
tries to slow down a temporal path from some node u to all the other vertices. Even if the
diameter is only 3, the adversary can delay u from reaching some nodes until n − 1 time
steps!

3

The temporal graph is built as follows. At each time steps, V is divided into two parts:
one part contains all the vertices that have already been reached by u, and the other part
contains the others. Each part is connected as a clique, and a single edge is added between
the two parts (see fig. 5). Initially, u is alone in the informed part. Then, the newly informed

Informed nodes Non-informed nodes

Figure 5: Small diameter vs. large temporal diameter.

vertex after G1 joins the informed part in G2, and so on. More generally, each Gi contains a
clique of i informed vertices, connected by a single edge to a vertex in a clique of size n− i.
Clearly, such a process will inform exactly one new vertex in each time step, and terminate
only after n− 1 time steps.

3.5 Temporal spanners

Given a connected graph G = (V,E), a spanning tree of G is a subgraph G′ = (V ′, E ′) ⊆ G
such that V ′ = V and G′ is a tree (see fig. 6). Spanning trees always exist. Furthermore,

Figure 6: A spanning tree of a graph.

finding a spanning tree is an easy problem.

Given a temporal graph G = (V,E, λ) that is temporally connected, we can similarly
define a temporal spanning tree of G as a subgraph G ′ = (V ′, E ′, λ′) ⊆ G such that
V ′ = V , the footprint (V ′, E ′) is a tree, and G ′ is temporally connected. (See fig. 7.)

Is the existence of a temporal spanning tree guaranteed as long as the initial graph is
temporally connected? In the case of fig. 7, it does. But in general, it does not, and deciding
if a given temporal graph admits a temporal spanning tree is (again) an NP-hard problem!

4

a

b

c

d

2,7 3,5

1,4

1,64

Figure 7: A temporal spanning tree.

3.6 Exercises

1. Could we have the opposite effect as the one discussed in section 3.4, namely, having
a large diameter in each snapshot (say, diameter n − 1 in each Gi), and yet allow a
specific vertex to reach all the others fast? We can indeed! Find how, and how quick
this could be done (you are designing the snapshots here). (Solved in class.)

2. Find a temporal graph that is temporally connected but does not admit a temporal
spanning tree. (Solved in class.)

3. Since temporal spanning trees do not always exist, we want to replace this notion by
a more flexible one: given a temporal graph G, we want to remove as many edges
as possible from its footprint, while preserving temporal connectivity. The remaining
graph is called a temporal spanner of G.

For each of the following graphs, how many edges does a minimum size spanner have?
Indicate the corresponding set of edges to be removed (simultaneously):

a b

cd

1

2

1

2
3 3

a b

cd

3

2

1

4
5 6

5

