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Abstract9

A temporal graph is a graph whose edges only appear at certain points in time. Reachability in10

these graphs is defined in terms of paths that traverse the edges in chronological order (temporal11

paths). This form of reachability is neither symmetric nor transitive, the latter having important12

consequences on the computational complexity of even basic questions, such as computing temporal13

connected components. In this paper, we introduce several parameters that capture how far a14

temporal graph G is from being transitive, namely, vertex-deletion distance to transitivity and arc-15

modification distance to transitivity, both being applied to the reachability graph of G. We illustrate16

the impact of these parameters on the temporal connected component problem, obtaining several17

tractability results in terms of fixed-parameter tractability and polynomial kernels. Significantly,18

these results are obtained without restrictions of the underlying graph, the snapshots, or the lifetime19

of the input graph. As such, our results isolate the impact of non-transitivity and confirm the key20

role that it plays in the hardness of temporal graph problems.21
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1 Introduction28

Temporal graphs have gained attention lately as appropriate tools to capture time-dependent29

phenomena in fields as various as transportation, social networks analysis, biology, robotics,30

scheduling, and distributed computing. On the theoretical side, these graphs generate interest31

mostly for their intriguing features. Indeed, many basic questions are still open, with a32

general feeling that existing techniques from graph theory typically fail on temporal graphs.33

In fact, most of the natural questions considered in static graphs turn out to be intractable34

when formulated in a temporal version, and likewise, most of the temporal analogs of classical35

structural properties are false.36

One of the earliest examples is that the natural analog of Menger’s theorem does not37

hold in temporal graphs [21]. Another early result is that deciding if a temporal connected38

component (set of vertices that can reach each other through temporal paths) of a certain39

size exists is NP-complete [6]. A more recent and striking result is that there exist temporally40

connected graphs on Θ(n2) edges in which every edge is critical for connectivity; in other41

words, no temporal analog of sparse spanners exist unconditionally [5] (though they do,42

probabilistically [11]). Moreover, minimizing the size of such spanners is APX-hard [2, 5].43

Further hardness results for problems whose static versions are generally tractable include44

separators [19], connectivity mitigation [16], exploration [4, 17], flows [1], Eulerian paths [7],45

and even spanning trees [9].46

Faced by these difficulties, the algorithmic community has focused on special cases, and47

tools from parameterized complexity were employed with moderate success. A natural48

approach here is to apply the range of classical graph parameters to restrict either the49

underlying graph of the temporal graph (i.e. which edges can exist at all) or its snapshots50

(i.e. which edges may exist simultaneously). For example, finding temporal paths with51

bounded waiting time at each node (which is NP-hard in general) turns out to be FPT52

when parameterized by treedepth or vertex cover number of the underlying graph. But the53

problem is already W[1]-hard for pathwidth (let alone treewidth) [10]. In fact, as observed54

in [18], most temporal graphs problems remain hard even when the underlying graph has55

bounded treewidth (sometimes, even a tree or a star [3, 4, 16]).56

A possible explanation for these results is that temporal graph problems are very hard.57

Another one is that parameters based on static graph properties are not adequate. Some58

parameters whose definition is based on that of a temporal graph include timed feedback59

vertex sets (counting the cumulative distance to trees over all snapshots) [10] and the p(G)60

parameter from [4], that measures in a certain way how dynamic the temporal graph is and61

enables polynomial kernels for the exploration problem. While these parameters represent62

some progress towards finer-grained restrictions, they remain somewhat structural in the63

sense that their definition is stable under re-shuffling of the snapshots.64

A key aspect of temporal graphs is that the ordering of events matters. Arguably, a65

truly temporal parameter should be sensitive to that. An interesting step in this direction66

was recently made by Bumpus and Meeks [7], introducing interval-membership-width, a67

parameter that quantifies the extent to which the set of intervals defined by the first and last68

appearance of an edge at each vertex can overlap (with application to Eulerian paths). In a69

sense, this parameter measures how complex the interleaving of events could be. Another,70

perhaps even more fundamental feature of temporal graphs is that the reachability relation71

based on temporal paths is not guaranteed to be symmetric or transitive. While the former is72

a well-known limitation of directed graphs, the latter is specific to temporal graphs (directed73

or not), and it has been suspected to be one of the main sources of intractability since the74
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onset of the theory. (Note that a temporal graph of bounded interval-membership-width75

may still be arbitrarily non-transitive.) In the present work, we explore new parameters that76

control how transitive a temporal graph is, thereby isolating, and confirming, the role that77

this aspect plays in the tractability of temporal reachability problems.78

Our Contributions. We introduce and investigate two parameters that measure how far a79

temporal graph is from having transitive reachability. For a temporal graph G, our parameters80

directly address the reachability features of G, and as such, they are formulated in terms81

of its reachability graph GR = (V, {(u, v) : u⇝ v}), a directed graph whose arcs represent82

the existence of temporal paths in G, whether G itself is directed or undirected. Indeed, the83

reachability of G is transitive if and only if the arc relation of GR is transitive. Two natural84

ways of measuring this distance are in terms of vertex deletion and arc modification, namely:85

Vertex-deletion distance to transitivity (δvd) is the minimum number of vertices whose86

deletion from GR makes the resulting graph transitive.87

Arc-modification distance to transitivity (δam) is the minimum number of arcs whose88

addition or deletion from GR makes the resulting graph transitive.89

As for the arc-modification distance, we may occasionally consider its restriction to arc-90

addition only (δaa).91

Among the many problems that were shown intractable in temporal graphs, one of the92

first, and perhaps most iconic one, is the computation of temporal connected components [6]93

(see also [13, 23]). In order to benchmark our new parameters, we investigate their impact on94

the computational complexity of this problem. Informally, given a temporal graph G (defined95

later) on a set of vertices V , a temporal connected component is a subset V ′ ⊆ V such that for96

all u and v in V ′, u can reach v by a temporal path. Interestingly, the non-transitive nature97

of reachability here makes it possible for such vertices to reach each other through temporal98

paths that travel outside the component, without absorbing the intermediate vertices into the99

component. This gives rise to two distinct notions of components: open temporal connected100

components (Open-TCC) and closed temporal connected components (Closed-TCC), the101

latter requiring that only internal vertices are used in the temporal paths, and both being102

NP-hard to compute.103

The statement of our results requires a few more facts. Both algorithmic and structural104

results in temporal graphs are highly sensitive to subtle definitional variations, called settings.105

In the non-strict setting, the labels along a temporal path are only required to be non-106

decreasing, whereas in the strict setting, they must be increasing. It turns out that both107

settings are sometimes incomparable in difficulty, and the techniques developed for each may108

be different. Some temporal graphs, called proper, have the property that no two adjacent109

edges share a common time label, making it possible to ignore the distinction between strict110

and non-strict temporal paths. Whenever possible, hardness results should preferably be111

obtained for proper temporal graphs, so that they apply in both settings at once. Finally,112

with a few exceptions, our results hold for both directed and undirected temporal graphs.113

Bearing these notions in mind, our results are the following. For Open-TCC, we obtain114

an FPT algorithm with parameter δvd, running in time 3δvd · nO(1) (in all the settings).115

Unfortunately, δvd turns out to be too small for obtaining a kernel of polynomial size. In116

fact, we show that under reasonable computational complexity assumptions, no polynomial117

kernel in δvd + vc + k exists (except possibly for the non-strict undirected setting), where k118

denotes the size of the sought tcc and where vc denotes the vertex cover number of the119

underlying graph. Next, we obtain an FPT algorithm running in time 4δam · nO(1) for the120

mostly larger parameter δam, and show that Open-TCC admits a polynomial kernel of size121
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|M |3, where M is a given arc set for which (V, A(GR)∆M) is transitive. It also admits a122

polynomial kernel of size δ2
aa when restricting modification to addition-only (again, all these123

results hold in all the settings). Closed-TCC, in comparison, seems to be a harder problem,124

at least with respect to our parameters. In particular, we show that it remains NP-hard125

even if δam = δvd = 1 in all the settings (through proper graphs). It is also W[1]-hard when126

parameterized by δvd +δam +k in all the settings, except possibly in the non-strict undirected127

setting. In fact, these two results hold even for temporal graphs whose reachability graph128

misses a single arc towards being a bidirectional clique.129

Put together, these results establish clearly that non-transitivity is a genuine source of130

hardness for Open-TCC. The case of Closed-TCC is less clear. On the one hand, the131

parameters do not suffice to make this particular version of the problem tractable. This is132

not so surprising, as the reachability graph itself does not encode which paths are responsible133

for reachability, in particular, whether these paths are internal or external in a component.134

On the other hand, this gives us a separation between both versions of the problem and135

provides some support for the fact that Closed-TCC may be harder than Open-TCC,136

which was not known before. Finally, the negative results for Closed-TCC can serve as137

a landmark result for guiding future efforts in defining transitivity parameters that exploit138

more sophisticated structures than the reachability graph.139

Organization of the Work. The main definitions are given in Section 2. Then, we investigate140

each parameter in a dedicated section (δvd in Section 3 and δam in Section 4). The limitations141

of these parameters in the case of Closed-TCC are presented in Section 5. Finally, Section 6142

concludes the paper with some remarks and open questions. Due to space limitations, the143

proofs of statements marked with (⋆) are deferred to a full version.144

2 Preliminaries145

For concepts of parameterized complexity, like FPT, W[1]-hardness, and polynomial kernels,146

we refer to the standard monographs [14, 15]. A reduction g between two parameterized147

problems is called a polynomial parameter transformation, if the reduction can be computed148

in polynomial time and, if for every input instance (I, k), we have that (I ′, k′) = g(I, k)149

with k′ ∈ kO(1). We call a polynomial time reduction from a problem L to L itself a150

self-reduction.151

Notation. Let j be a positive integer, we denote with [j] the set {1, 2, . . . , j}. Moreover,152

for 1 ≤ i ≤ j, we define [i, j] := [j] \ [i − 1]. For a decision problem L, we say that two153

instances I1, I2 of L are equivalent if I1 is a yes-instance of L if and only if I2 is a yes-instance154

of L. For two sets A and B, we denote with A∆B the symmetric difference of A and B.155

Graphs. We consider a graph G = (V, E) to be a static graph. If not indicated otherwise, we156

assume G to be undirected. Given a (directed) graph G, we denote by V (G) the set of vertices157

of G, by E(G) (respectively, A(G)) the set of edges (arcs) of G. Let G = (V, E) be a graph158

and let X ⊆ V (G) be a set of vertices. We denote by EG(X) = {{u, v} ∈ E | u ∈ X, v ∈ X}159

the edges in G between the vertices of S. Moreover, we define the following operations160

on G: G[X] = (X, EG[X]), G − X = G[V \ X]. We call a sequence ρ = v0, v1, . . . , vr of161

vertices a path in graph G if v0, . . . , vr ∈ V (G) and for each i ∈ [r], {vi−1, vi} ∈ E(G). We162

denote with NG[v] the closed neighborhood of the vertex v ∈ V (G). A vertex set S ⊆ V is163

a clique in an undirected graph, if each pair of vertices in S is adjacent in G. For a directed164

graph G = (V, A), we call a set S ⊆ V a bidirectional clique, if for every pair of distinct165

vertices u, v in S, we have (u, v) ∈ A and (v, u) ∈ A. Let G = (V, A) be a directed graph.166
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A strongly connected component (scc) in G is an inclusion maximal vertex set S ⊆ V under167

the property that there is a directed path in G between any two vertices of S. For each168

directed graph G, there is a unique partition of the vertex set of G into sccs. Moreover, this169

partition can be computed in linear time [24].170

Temporal graphs. A temporal graph G over a set of vertices V is a sequence G =171

(G1, G2, . . . , GL) of graphs such that for all t ∈ [L], V (Gt) = V . We call L the lifetime of172

G and for t ∈ [L], we call Gt = (V, Et) the snapshot graph of G at time step t. We call173

G = (V, E) with E =
⋃

t∈[L] Et the underlying graph of G. We denote by V (G) the set of174

vertices of G. We write V if the temporal graph is clear from context. We call an undirected175

temporal graph G = (G1, G2, . . . , GL) proper, if for each vertex v ∈ V (G) the degree of v in176

Gt is one, for each t ≤ L. We call a directed temporal graph G = (G1, G2, . . . , GL) proper, if177

for each vertex v ∈ V (G) the out-degree or the in-degree of v in Gt is zero, for each t ≤ L.178

We further call a (directed) temporal graph G simple, if each edge (arc) exists in exactly one179

snapshot. We call a sequence v0, v1, . . . , vr of vertices that form a path in the underlying180

graph G of G a strict (non-strict) temporal path in G if for each i ∈ [r], there exists an ji ∈ [L]181

such that {vi−1, vi} ∈ E(Gji
) and the sequence of indices ji is increasing (non-decreasing).182

For a temporal graph G, we say that a vertex u ∈ V strictly (non-strictly) reaches a183

vertex v ∈ V if there is a strict (non-strict) temporal path from u to v, i.e., with v0 = u and184

vr = v. We define the strict (non-strict) reachability relation R ⊆ V × V as: for all u, v ∈ V ,185

(u, v) ∈ R if and only if u strictly (non-strictly) reaches v. We call the directed graph186

GR = (V, R) the strict (non-strict) reachability graph of G. We say that GR is transitive, if187

and only if R is transitive. More generally, we say that a directed graph G is transitive, if188

its set of arcs forms a transitive relation. For a directed graph G = (V, A) we call a set of189

vertices S ⊆ V a transitivity modulator if G − S is transitive.190

▶ Observation 1. Let G be a transitive directed graph. Then, for each vertex v ∈ V (G),191

G[V \ {v}] is also transitive.192

Next we define our main problems of interest in this work: Finding open and closed193

temporal connected components.194

Open Temporal Connected Component (Open-TCC)195

Input: Temporal graph G = (G1, G2, . . . , GL) and integer k.196

Question: Does there exists an open temporal connected component of size at least197

k, i.e., a subset C ⊆ V (G) with |C| ≥ k, such that for each u, v ∈ C, u reaches v, and198

vice versa.199

We differentiate between the strict vs. non-strict and directed vs. undirected version of200

Open-TCC depending on whether we consider strict vs. non-strict reachability and directed201

vs. undirected temporal graphs. We define the problem Closed Temporal Connected202

Component (Closed-TCC) similarly with the additional restriction that at least one203

temporal path over which u reaches v is fully contained in C. We abbreviate a temporal204

connected component as tcc.205

Distance to transitivity. We introduce two parameters that measure how far the reacha-206

bility graph GR = (V, A) of a temporal graph is from being transitive. The first parameter,207

vertex-deletion distance to transitivity, δvd, counts how many vertices need to be deleted from208

GR in order to obtain a transitive reachability graph, i.e., the size of a minimum transitivity209

modulator. This parameter is especially suited for temporal graphs for which the reachability210

graph consists of cliques with small overlaps. The second parameter, arc-modification distance211

MFCS 2024
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to transitivity, δam, counts how many arcs need to be added to or removed from GR in order212

to obtain a transitive reachability graph and is especially suited for directed temporal graphs213

or temporal graphs for which the reachability graph consists of cliques with large overlaps.214

Formally, we define the parameters as follows.215

δvd = min
S⊆V

(|S|) for which G′
R = GR − S is transitive.216

δam = min
M⊆V ×V

(|M |) for which G′
R = (V, A∆M) is transitive.217

218

For δam, we call the set M an arc-modification set. Note that δvd ≤ 2·δam, since the endpoints219

of an arc-modification set form a transitivity modulator.220

2.1 Basic Observations221

Next, we present basic observations that motivate the study of the considered parameters.222

▶ Lemma 2 ([6]). Let G be a temporal graph with reachability graph GR. Then a set S ⊆ V (G)223

is a tcc in G if and only if S is a bidirectional clique in GR.224

▶ Lemma 3 (⋆). Let G be a transitive directed graph. Then every vertex set S ⊆ V (G) is a225

bidirectional clique in G if and only if each pair of vertices of S can reach each other.226

Note that this implies the following.227

▶ Corollary 4. Let G be a transitive directed graph. Then every scc in G is also a maximal228

bidirectional clique and vice versa.229

The previous observations thereby imply that both Open-TCC and Closed-TCC can230

be solved in polynomial time on temporal graphs with transitive reachability graphs.231

3 Vertex-Deletion Distance to Transitivity232

We first focus on the parameter δvd. Note that computing this parameter is NP-hard: In a233

strict temporal graph G with lifetime 1, the reachability graph GR of G is exactly the directed234

graph obtained from orienting each edge of the underlying graph in both directions. Hence,235

on such a temporal graph, computing δvd is exactly the cluster vertex deletion number of236

the underlying graph, that is, the minimum size of any vertex set to remove, such that no237

induced path of length 2 remains. Since computing the latter parameter is NP-hard [22], this238

hardness also translates to computing the parameter δvd.239

Moreover, note that computing this parameter can be done similarly to computing the240

cluster vertex deletion number of a graph: If a directed graph G = (V, A) is not transitive,241

then there are vertices u, v, and w in V , such that (u, v) and (v, w) are arcs of A and (u, w)242

is not an arc of A. Hence, each transitivity modulator for G has to contain at least one of243

the vertices u, v, or w. This implies, that a standard branching algorithm that considers244

each of these three vertices to be removed from the graph to obtain a transitive graph, finds245

a minimum size transitivity modulator in 3δvd · nO(1) time.246

▶ Proposition 5. Let G be a temporal graph with reachability graph GR. Then, we can247

compute in time 3δvd · nO(1) a minimal-size transitivity modulator of GR.248

Based on this result, we now present an FPT-algorithm for Open TCC when parameter-249

ized by δvd.250
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Figure 1 Illustration of the algorithm in Lemma 6. On the left: reachability graph GR with
transitivity modulator S in gray and the chosen subset S′ ⊆ S to extend in blue. On the right: The
subset S′ together with the vertices V ′ that are bidirectionally connected to all vertices in S′.

▶ Lemma 6. Let I := (G, k) be an instance of Open-TCC with reachability graph GR. Let251

S be a given transitivity modulator of GR. Then, we can solve I in time 2|S| · nO(1).252

Proof. By Lemma 4, every scc in GR[V \ S] is a bidirectional clique, since S is a transitivity253

modulator for GR. Lemma 2 then implies that each tcc C in G with C ∩ S = ∅ is an scc254

in GR[V \ S] and vice versa.255

The FPT-algorithm then works as follows: We iterate over all subsets S′ of S with the256

idea to find a tcc that extends S′. If S′ is not a bidirectional clique in GR, we discard the257

current set and continue with the next subset of S, as no superset of S′ is a bidirectional258

clique and thus also not a tcc. Hence, assume that S′ is a bidirectional clique. If S′ has259

size at least k, I is a trivial yes-instance of Open-TCC. Otherwise, we do the following:260

Let V ′ be the vertices of V \ S that are bidirectional connected to every vertex in S′. As261

GR[V \ S] is transitive, Observation 1 implies that GR[V ′] is also transitive. Hence, the262

sccs in GR[V ′] correspond to tccs in G by Corollary 4 and Lemma 2. Since every vertex in263

S′ is bidirectional connected to every other vertex in S′ ∪ V ′ in GR, for each bidirectional264

clique C ⊆ V ′ in GR[V ′], C ∪ S′ is a tcc in G. Hence, it remains to check, whether any scc265

in GR[V ′] has size at least k − |S′|. Figure 1 illustrates the sets S, S′, and V ′.266

Finding the strongly connected components of a graph and identifying whether a set of267

vertices forms a bidirectional clique can be done in polynomial time. Hence, our algorithm268

runs in time 2δvd · nO(1), since we iterate over each subset S′ of S. ◀269

Based on Proposition 5 and Lemma 6, we thus derive our FPT-algorithm for Open-TCC270

when parameterized by δvd.271

▶ Theorem 7. Open-TCC can be solved in 3δvd · nO(1) time.272

Kernelization Lower Bounds273

In this section, we show that a polynomial kernel for Open-TCC when parameterized274

by δvd + vc + k is unlikely, where vc is the vertex cover number of the underlying graph. Note275

that δvd and vc are incomparable: On the one hand, consider a temporal graph G where the276

underlying graph G is a star with leaf set X ∪ Y and center c, such that the edges from X277

to c exist in snapshots G1 and G3 and the edges from Y to c exist in snapshot G2. Then,278

each vertex of X can reach each other vertex, but in the strict setting, no vertex of Y can279

reach any other vertex of Y . Hence, each minimum transitivity modulator has to contain all280

vertices of X or all but one vertex of Y , which implies that for |X| = |Y |, δvd ∈ Θ(|V (G)|),281

whereas the vertex cover number of G is only 1. On the other hand, consider a temporal282
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graph G with only one snapshot G1, such that G1 is a clique. Then, the underlying graph283

of G is exactly G1 and has a vertex cover number of |V (G)| − 1, but the strict reachability284

graph of G is a bidirectional clique, which is a transitive graph. Hence, δvd(G) = 0.285

We now present our kernelization lower bound for the strict undirected version of Open-286

TCC.287

▶ Theorem 8. The strict undirected version of Open-TCC does not admit a polynomial288

kernel when parameterized by vc + δvd + k, unless NP ⊆ coNP/poly, where vc denotes the289

vertex cover number of the underlying graph.290

Proof. This result immediately follows from the known [21] reduction from Clique which,291

in fact, is as a polynomial parameter transformation.292

Clique293

Input: An undirected graph G = (V, E) and integer k.294

Question: Is there a clique of size k in G?295

For the sake of completeness, we recall the reduction. Let I := (G = (V, E), k) be an296

instance of Clique and let G be the temporal graph with lifetime 1, where G is the unique297

snapshot of G.298

Then, for each vertex set X ⊆ V , X is a clique in G if and only if X is a strict299

tcc in G. Hence, I is a yes-instance of Clique if and only if (G, k) is a yes-instance of300

the strict undirected version of Open-TCC. It is known that Clique does not admit a301

polynomial kernel when parameterized by k plus the vertex cover number of G, unless NP ⊆302

coNP/poly [12]. Let S be a minimum size vertex cover of G and let GR be the strict303

reachability graph of G. Note that GR contains an arc (u, v) with u ̸= v if and only if {u, v}304

is an edge of G. Hence, V \ S is an independent set in GR, which implies that S is a305

transitivity modulator of GR. Consequently, δvd ≤ |S|. Recall that Clique does not admit a306

polynomial kernel when parameterized by k + |S|, unless NP ⊆ coNP/poly [12]. This implies307

that the strict undirected version of Open-TCC does not admit a polynomial kernels when308

parameterized by vc + δvd + k, unless NP ⊆ coNP/poly. ◀309

Next, we present the same lower bound for both directed versions of Open-TCC.310

▶ Theorem 9. The directed version of Open-TCC does not admit a polynomial kernel when311

parameterized by vc + δvd + k, unless NP ⊆ coNP/poly, where vc denotes the vertex cover312

number of the underlying graph. This holds both for the strict and the non-strict version of313

the problem.314

Proof. Again, we present a polynomial parameter transformation from Clique.315

Recall that Clique does not admit a polynomial kernel when parameterized by the size316

of a give minimum size vertex cover S of G plus k, unless NP ⊆ coNP/poly [12]. This holds317

even if G[S] is (k − 1)-partite [20], which implies that each clique of size k in G contains318

exactly k − 1 vertices of S and exactly one vertex of V \ S, since V \ S is an independent set.319

Construction. Let I := (G := (V, E), k) be an instance of Clique and let S be a given320

minimum size vertex cover S of G, such that G[S] is (k − 1)-partite. Assume that k > 6.321

We obtain an equivalent instance of Open-TCC in two steps: First, we perform an322

adaptation of a known reduction [6] from the instance (G[S], k − 1) of Clique to an in-323

stance (G̃, k − 1) of the directed version of Open-TCC where each sufficiently large (of size324

at least 5) vertex set X of G̃ is a tcc in G̃ if and only if X is a clique in G[S]. Second, we325
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u vu v

euv

evu

4 5

45

Figure 2 For two adjacent vertices u and v of S the vertices and arcs added to the temporal
graph G̃ in the proof of Theorem 9.

extend G̃ by the vertices of V \ S and some additional connectivity-gadgets, to ensure that326

the resulting temporal graph has a tcc of size k if and only if there is a vertex from V \ S for327

which the neighborhood in G contains a clique of size k − 1.328

329

Let (G̃, k − 1) be the instance of Open-TCC constructed as follows: We initialize G̃ as an330

edgeless temporal graph of lifetime 5 with vertex set S ∪ {euv, evu | {u, v} ∈ EG(S)}. Next,331

for each edge {u, v} ∈ E, we add the arcs (u, euv) and (v, evu) to time step 4 and add the332

arcs (euv, v) and (evu, u) to time step 5. This completes the construction of G̃. An example of333

the arcs added to G̃ is shown in Figure 2. Note that the first three snapshots of G̃ are edgeless.334

This construction is an adaptation of the reduction presented by Bhadra and Ferreira [6]335

to the case of directed temporal graphs. Note that the temporal graph G̃ has the following336

properties that we make use of in our reduction:337

1) G̃ is a proper and simple directed temporal graph,338

2) the vertex set V of G̃ has size O(|S|2) and contains all vertices of S,339

3) each tcc of size at least k − 1 in G̃ contains only vertices of S, and340

4) each vertex set X ⊆ S of size at least k − 1 is a tcc in G̃ if and only if X is a clique341

in G[S].342

Note that the two last properties imply that the largest tcc of G̃ has size at most k − 1,343

since G[S] is (k − 1)-partite.344

Next, we describe how to extend the temporal graph G̃ to obtain a temporal graph G′
345

which has a tcc of size k if and only if I is a yes-instance of Clique. Let n := |V |. Moreover,346

let G′ be a copy of G̃. We extend the vertex set of G′ by all vertices of V \ S, and a vertex vin347

for each vertex v ∈ S.348

For each vertex v ∈ S, we add the arc (vin, v) to time step 3. For each vertex v ∈ S and349

each neighbor w ∈ V \S of v in G, we add the arc (v, w) to time step 2 and the arc (w, vin) to350

time step 1. This completes the construction of G′. Let V ′ denote the newly added vertices,351

that is, V ′ := (V \ S) ∪ {vin | v ∈ S}.352

Next, we show that there is a clique of size k in G if and only if there is a tcc of size k353

in G′.354

(⇒) Let K ⊆ V be a clique of size k in G. We show that K is a tcc in G′. As discussed355

above, K contains exactly k − 1 vertices of S and exactly one vertex w∗ of V \ S. By356

construction of G̃, K \ {w∗} is a tcc in G̃ and thus also a tcc in G′. It thus remains to show357

that each vertex K \ {w∗} can reach vertex w∗ in G′ and vice versa. Since each vertex358

of K \ {w∗} is adjacent to w∗ in G, by construction, w∗ is an out-neighbor of each vertex359

of K \ {w∗} in G′. Hence, it remains to show that w∗ can reach each vertex of K \ {w∗}360

in G′. Let v be a vertex of K \ {w∗}. Since v is adjacent to w∗ in G, there is an arc (w∗, vin)361

in G′ that exists at time step 1. Hence, there is a temporal path from w∗ to v in G′, since362

the arc (vin, v) exists at time step 3. Concluding, K is a tcc in G′.363

(⇐) Let X be a tcc of size k in G′. We show that X is a clique of size k in G. To this end,364

we first show that X contains only vertices of V . Afterwards, we show that X is a clique365
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Table 1 For each vertex v ∈ V (G′) a lower bound for outmin
v and an upper bound for inmax

v .

outmin
v inmax

v

v ∈ S 2 5
v ∈ V (G̃) \ S 4 5
v ∈ V \ S 1 2
v ∈ {uin | u ∈ S} 3 1

in G.366

To show that X contains only vertices of V , we first analyze the reachability of vertices367

of V (G′). For a vertex v ∈ V (G′), we denote368

by outmin
v the smallest time label of any arc exiting v and369

by inmax
v the largest time label of any arc entering v.370

Note that a vertex v cannot reach a distinct vertex w in G′ if inmax
w < outmin

v . Table 1 shows371

for each vertex v ∈ V (G′) a lower bound for outmin
v and an upper bound for inmax

v .372

Based on Table 1, we can derive the following properties about reachability in G′.373

▷ Claim 10. a) No vertex of V (G̃) \ S can reach any vertex of V ′ in G′.374

b) No vertex of {vin | v ∈ S} can reach any other vertex of {vin | v ∈ S} in G′.375

c) No vertex of {vin | v ∈ S} can reach any vertex of V \ S in G′.376

d) No vertex of S can reach any vertex of {vin | v ∈ S} in G′.377

e) No vertex of V \ S can reach any other vertex of V \ S in G′.378

Proof. Based on Table 1, we derive Items a) to d). It remains to show Item e). To this end,379

observe that each arc with a vertex of V \ S as source has a vertex of {vin | v ∈ S} as sink.380

Due to Item c), no vertex of {vin | v ∈ S} can reach any vertex of V \ S in G′. Hence, no381

vertex V \ S can reach any other vertex of V \ S in G′. This implies that Item e) holds. ◁382

Since X is a tcc in G′, Claim 10 implies that X contains at most one vertex of V \ S383

(due to Item e)) and at most one vertex of {vin | v ∈ S} (due to Item b)). In other words, X384

contains at most two vertices of V ′. Since k > 6, this then implies that X contains at least385

one vertex of V (G̃). Claim 10 thus further implies that X contains no vertex of {vin | v ∈ S}386

(due to Items a) and d)). This then implies that X contains at least k − 1 vertices of V (G̃).387

To show that X contains only vertices of V and is a clique in G we now show that the388

reachability between any two vertices of V (G̃) in G′ is the same as in G̃. Let P be a temporal389

path between two distinct vertices of V (G̃) in G′. We show that P is also a temporal path390

in G̃. Assume towards a contradiction that this is not the case. Hence, P visits at least one391

vertex of V ′. Since no vertex of V (G̃) can reach any vertex of {vin | v ∈ S} (due to Items a)392

and d)), P visits no vertex of {vin | v ∈ S}. Moreover, since each vertex of V \ S has only393

out-neighbors in {vin | v ∈ S}, P visits no vertex of V \ S either. Consequently, P contains394

no vertex of V ′; a contradiction.395

Hence, P is a temporal path in G̃, which implies that for each vertex set Y ⊆ V (G̃), Y396

is a tcc in G̃ if and only if Y is a tcc in G′. Recall that X contains at least k − 1 vertices397

of V (G̃). Since the largest tcc in G̃ has size at most k − 1 and each tcc of size k − 1 in G̃ is a398

clique in G, this implies that X ∩ V (G̃) is a clique of size k − 1 in G[S]. Since X contains no399

vertex of {vin | v ∈ S}, this implies that X contains exactly one vertex w∗ of V \ S. Hence,400

it remains to show that each vertex v ∈ X \ {w∗} is adjacent to w∗ in G. Since X is a tcc401

in G′, v can reach w∗ in G′. By construction and illustrated in Table 1, outmin
v ≥ 2 ≥ inmax

w∗ .402

Since v reaches w∗ and G′ is a proper temporal graph, the arc (v, w∗) is contained in G′. By403



A. Casteigts, N. Morawietz, and P. Wolf 28:11

construction, this implies that v and w∗ are adjacent in G. Consequently, X is a clique in G.404

This completes the correctness proof of the reduction.405

Parameter bounds. It thus remains to show that δvd(G′) and the vertex cover of the406

underlying graph of G′ are at most |S|O(1) each. Let V ∗ := V (G′) \ (V \S). Note that V ∗ has407

size |V (G̃)| + |S| ∈ O(|S|2) and is a vertex cover of the underlying graph of G′. Hence, the408

vertex cover number of the underlying graph of G′ is O(|S|2). To show the parameter bounds,409

it thus suffices to show that V ∗ is a transitivity modulator of the reachability graph GR410

of G′. Due to Claim 10, GR − V ∗ = GR[V \ S] is an independent set. Consequently, V ∗ is411

a transitivity modulator of GR. Hence, δvd(G′) ∈ O(|S|2). By the fact that Clique does412

not admit a polynomial kernel when parameterized by |S| + k, unless NP ⊆ coNP/poly,413

Open-TCC does not admit a polynomial kernel when parameterized by δvd(G′) plus the414

vertex cover number of the underlying graph of G′ plus k, unless NP ⊆ coNP/poly. ◀415

Note that our kernelization lower bounds do not include the non-strict undirected version416

of Open-TCC. An modification of Theorem 9 seems difficult, unfortunately. This is due417

to the fact that undirected edges can be traversed in both direction, which makes it very418

difficult to limit the possible reachable vertices in the temporal graph, while preserving a419

small transitivity modulator.420

4 Arc-Modification Distance to Transitivity - A Polynomial Kernel421

Next, we focus on the parameterized complexity of Open-TCC when parameterized by the422

size of a given arc-modification set towards a transitive reachability graph. As discussed423

earlier, for each arc-modification set M towards a transitive reachability graph, δvd does424

not exceed 2 · |M |, since removing the endpoints of all edges of M results in a transitivity425

modulator. This implies the following due to Theorem 7 and the fact that a minimum size426

arc-modification set towards a transitive graph can be computed in 2.57δam · nO(1) time [25].427

▶ Corollary 11. Open-TCC can be solved in 4δam · nO(1) time.428

In the remainder of this section, we thus consider this parameter with respect to kernelization429

algorithms. In contrast to parameterizations by δvd, we now show that a polynomial430

kernelization algorithm can be obtained for Open-TCC when parameterized by the size of a431

given arc-modification set towards a transitive reachability graph.432

In fact, we show an even stronger result, since our kernelization algorithm does not need433

to know the actual arc-modification set but only its endpoints. To formulate this more434

general result, we need the following definition: Let G = (V, A) be a directed graph. A435

transitivity modulator S ⊆ V of G is called inherent, if there is an arc-modification set M436

with M ⊆ S × S for which (V, A∆M) is a transitive graph. Note that the set of endpoint437

of an arc-modification set towards a transitive graph always forms an inherent transitivity438

modulator.439

▶ Theorem 12. Let I = (G, k) be an instance of Open-TCC and let GR = (V, A) be the440

reachability graph of G. Moreover, let B ⊆ V be an inherent transitivity modulator of GR.441

Then, for each version of Open-TCC, one can compute in polynomial time an equivalent442

instance of total size O(|B|3).443

Proof. We first present a compression to Clique. Let Ĝ = (V, E) be an undirected graph that444

contains an edge {u, v} if and only if (u, v) and (v, u) are arcs of GR. Due to Lemma 2, I is a445
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Ĝ G′

Figure 3 Left: the original instance of Clique from Theorem 12 constructed from the reachability
graph of the considered temporal graph. Right: the obtained compressed instance of Clique after
exhaustive application of all reduction rules. In both parts, the blue vertices are the vertices from
the inherent transitivity modulator B and the cycles at the bottom indicate the white clusters. Note
that in both graphs, each blue vertex has neighbors in at most one white cluster (see Claim 14).
Intuitively, RR 1 ensures that small clusters are removed, RR 1 and RR 2 ensure that there are no
isolated white clusters, and RR 3 reduces the size of each white cluster to at most |B| + 1.

yes-instance of Open-TCC if and only if (Ĝ, k) is a yes-instance of Clique. Let W := V \ B.446

We call the vertices of B blue and the vertices of W white. Note that GR[W ] is a transitive447

graph, since B is a transitivity modulator of GR. Moreover, there exists an arc set M ⊆ B×B448

such that G′
R = (V, A∆M) is transitive, since B is an inherent transitivity modulator of GR.449

In the following, we present reduction rules to remove vertices from Ĝ to obtain an equivalent450

instance (G′, k′) of Clique with O(|B|2) vertices and where G′ is an induced subgraph of Ĝ.451

The graphs Ĝ and G′ are conceptually depicted in Figure 3.452

To obtain this smaller instance of Clique, we initialize G′ as a copy of Ĝ and k′ as k and453

exhaustively applying three reduction rules. Our first two reduction rules are the following:454

RR 1: Remove a vertex v from G′, if v has degree less than k′ − 1 in G′.455

RR 2: If a white vertex has at least k′ − 1 white neighbors in G′, output a constant size456

yes-instance.457

Note that the first reduction rule is safe, since no vertex of degree less than k′ − 1 can be458

part of a clique of size at least k′. Moreover, each connected component in G′ has size at459

least k′ after this reduction rule is exhaustively applied. The safeness of the second reduction460

rule relies on the following observation.461

▷ Claim 13. If two white vertices u and v are adjacent in G′, then they are real twins in G′.462

That is, NG′ [u] = NG′ [v].463

Proof. Assume that u and v are adjacent in G′ and assume towards a contradiction that464

there is a vertex w in G′ which is adjacent to u in G′ but not adjacent to v in G′. Since w465

and v are not adjacent in G′, GR contains at most one of the arcs (w, v) or (v, w). Assume466

without loss of generality that (w, v) is not an arc of GR. Since u is adjacent to both v467

and w in G′, GR contains the arcs (v, u) and (u, w). Recall that both u and v are white468

vertices. This implies that the arc-modification set M contains no arc incident with any469

of these two vertices. Hence, M contains none of the arcs of {(v, u), (u, w), (v, w)}, which470

implies that G′
R = (V, A∆M) is not a transitive graph; a contradiction. ◁471

Note that this implies that each connected component in G′[W ] is a clique of real twins472

in G′. We call each such connected component in G′[W ] a white cluster.473

Note that after exhaustive applications of the first two reduction rules, each white cluster474

has size at most k′ − 1 and each connected component in G′ has size at least k′. This implies475

that each connected component in G′ contains at least one blue vertex. Since G′ contains at476

most |B| blue vertices, this implies that G′ has at most |B| connected components.477
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In the following, we show that no blue vertex has neighbors in more than one white478

cluster. This then implies that G′ contains at most |B| · k′ vertices. In a final step, we then479

show how to reduce the value of k′.480

▷ Claim 14. No blue vertex has neighbors in more than one white cluster.481

Proof. Assume towards a contradiction that there is a blue vertex w which is adjacent to482

two white vertices u and v in G′, such that u and v are not part of the same white cluster.483

Since u and v are not part of the same white cluster, u and v are not adjacent in G′ due484

to Claim 13. This implies that GR contains at most one of the arcs (u, v) or (v, u). Assume485

without loss of generality that (u, v) is not an arc of GR. Since w is adjacent to both u486

and v in G′, GR contains the arcs (u, w) and (w, v). By the fact that both u and v are white487

vertices, M contains no arc of {(u, w), (w, v), (u, v)}, which implies that G′
R = (V, A∆M) is488

not a transitive graph; a contradiction. ◁489

As mentioned above, this implies that G′ contains at most |B| · k′ vertices. Next, we490

show how to reduce the size of the white clusters if k′ > |B|. To this end, we introduce our491

last reduction rule:492

RR 3: If k′ > |B| + 1, remove an arbitrary white vertex from each white cluster and493

reduce k′ by 1.494

Note that RR 3 is safe: If k′ > |B| + 1, a clique of size k′ in G′ has to contain at least495

two white vertices, since G′ contains at most |B| blue vertices. Since no clique in G′ can496

contain vertices of different white clusters, we reduce the size of a maximal clique of size at497

least k′ in G′ by exactly one, when removing one vertex of each white cluster.498

Hence, after all reduction rules are applied exhaustively, the resulting instance (G′, k′)499

of Clique contains at most |B| blue vertices and at most |B| white clusters. Each such500

white cluster hast size at most |B| + 1. This implies that the resulting graph G′ contains501

O(|B|2) vertices and O(|B|3) edges, since each vertex has degree O(|B|).502

Based on a known polynomial-time reduction [6], we can compute for an instance (G∗, k∗)503

of Clique, an equivalent instance (G∗, k∗) of Open-TCC, where G∗ is a proper temporal504

graph and has O(n + m) vertices and edges, where n and m denote the number of vertices505

and the number of edges of G∗, respectively. Since G′ has O(|B|2) vertices and O(|B|3) edges,506

this implies that we can obtain an equivalent instance of Open-TCC of total size O(|B|3) in507

polynomial time. By the fact that G∗ is a proper temporal graph, this works for all problem508

versions of Open-TCC. ◀509

Based on the fact that the set B of endpoints of any arc-modification set M towards a510

transitive graph is an inherent transitivity modulator of size at most 2 · |M |, this implies511

the following for kernelization algorithms with respect to arc-modification sets towards a512

transitive graph.513

▶ Theorem 15. Let I = (G, k) be an instance of Open-TCC and let GR = (V, A) be the514

reachability graph of G. Moreover, let M ⊆ V × V be a set of arcs such that G′
R = (V, A∆M)515

is transitive. Then, for each version of Open-TCC, one can compute in polynomial time an516

equivalent instance of total size O(|M |3).517

Moreover, if the arc-modification set M only adds arcs to the reachability graph, we can518

obtain the further even better kernelization result.519
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▶ Lemma 16 (⋆). Let I = (G, k) be an instance of Open-TCC and let GR = (V, A) be the520

reachability graph of G. Moreover, let M ⊆ V × V be a set with A ∩ M = ∅ of arcs such521

that G′
R = (V, A∆M) is transitive. Then, for each version of Open-TCC, one can compute522

in polynomial time an equivalent instance of total size O(|M |2).523

Hence, if we are given an arc-modification set M of size δam, we can compute a polynomial524

kernel. Unfortunately, finding a minimum-size arc-modification set of a given directed graph525

is NP-hard [25] and no polynomial-factor approximations are known that run in polynomial526

time. Hence, we cannot derive a polynomial kernel for the parameter δam. Positively, if527

we only consider arc-additions, we can compute the transitive closure of a given directed528

graph in polynomial time. This implies that we can find a minimum-size arc-modification529

set towards a transitive reachability graph in polynomial time among all such sets that only530

add arcs to to reachability graph. Consequently, we derive the following.531

▶ Corollary 17. Open-TCC admits a kernel of size O(δ2
aa), where δaa denotes the minimum532

number of necessary arc-additions to make the respective reachability graph transitive.533

5 Limits of these Parametrizations for Closed TCCs534

So far, the temporal paths that realize the reachability between two vertices in a tcc could535

lie outside of the temporal connected component. If we impose the restriction that those536

temporal paths must be contained in the tcc, the problem of finding a large tcc becomes537

NP-hard even when the reachability graph is missing only a single arc to become a complete538

bidirectional clique: In other words, the problem becomes NP-hard even if δvd = δam = 1.539

On general temporal graphs, all versions of Closed-TCC are known to be NP-hard [8, 13].540

▶ Theorem 18. For each version of Closed-TCC, there is a polynomial time self-reduction541

that transforms an instance (G, k) with k > 4 of that version of Closed-TCC into an542

equivalent instance (G′, k), such that the reachability graph of G′ is missing only a single arc543

to be a complete bidirectional clique.544

Proof. Let I := (G, k) be an instance of Closed-TCC with underlying graph G = (V, E) and545

let L be the lifetime of G. Moreover, assume for simplicity that the vertices of V are exactly546

the natural numbers from [1, n] with n := |V |. To obtain an equivalent instance I ′ := (G′, k)547

of Closed-TCC, we extends G as follows: We initialize G′ as a copy of G and for each548

vertex v ∈ V , we add a new vertex v′ to G′. Additionally, we add three vertices x1, x2,549

and x3 to G′. Furthermore, we append 2n + 4 empty snapshots to the end of G′ and add the550

following edges to G′: For each vertex v ∈ V , we add the edge {v, v′} to time steps L + 1551

and L + 2n + 4, the edge {v′, x1} to time step L + 1 + v, and the edge {v′, x3} to time552

step L + n + 3 + v. Finally, we add the edge {x1, x2} to time step L + n + 2 and the553

edge {x2, x3} to time step L + n + 3. This completes the construction of G′. An illustration554

of the additional vertices and edges is given in Figure 4.555

Before we show the equivalence between the two instances of Closed-TCC, we first show556

that the reachability graph G′
R of G′ only misses a single arc to be a bidirectional clique.557

▷ Claim 19. The arc (x3, x1) is the only arc that is missing in G′
R.558

Proof. First, we show that (x3, x1) is not an arc of G′
R. By construction of G′, (i) no edge559

of G′ that is incident with x1 exists in any time step larger than L + n + 2, and (ii) no edge560

of G′ that is incident with x3 exists in any time step smaller than L + n + 3. This implies561

that no temporal path in G′ that starts in x3 can reach x1. Hence, (x3, x1) is not an arc562

of G′
R.563
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Figure 4 An illustration of the additional vertices and edges that are added to G in the reduction

of Theorem 18. Here, L denotes the lifetime of G and the labels on the edges indicate in which
snapshots the respective edges exist in the constructed temporal graph.

Next, we show that G′
R contains all other possible arcs. To this end, we present strict564

temporal paths in G′ that guarantee the existence of these arcs in G′
R. Let u and v be vertices565

of V . Consider the temporal path P that starts in vertex u and traverses566

the edge {u, u′} in time step L + 1,567

the edge {u′, x1} in time step L + 1 + u,568

the edge {x1, x2} in time step L + n + 2,569

the edge {x2, x3} in time step L + n + 3,570

the edge {x3, v′} in time step L + n + 3 + v, and571

the edge {v′, v} in time step L + 2n + 4.572

Since each vertex of V is a natural number of [1, n], the times steps in which these edges are tra-573

versed by P are strictly increasing, which implies that P is a strict temporal path of G′. Note574

that each suffix and each prefix of P is also a strict temporal path in G′. Hence, this implies575

that G′
R contains all the arcs {(u, v′), (u, v), (u′, v′), (u′, v)}∪{(u′, x1), (u′, x1), (x1, v′), (x1, v) |576

i ∈ {1, 2, 3}} ∪ {(x1, x3)}. Moreover, since {x1, x2} and {x2, x3} are edges in G′, G′
R also577

contains the arcs {(x1, x2), (x2, x1), (x2, x3), (x3, x2)}. This implies that (x3, x1) is the unique578

arc that is missing in G′
R. ◁579

Next, we show that I is a yes-instance of Closed-TCC if and only if I ′ is a yes-instance580

of Closed-TCC.581

(⇒) This direction follows directly by the fact that G′ is obtained by extending G. Hence,582

a closed tcc S of size k in G is also a closed tcc in G′.583

(⇐) Let S be a closed tcc of size k in G′. Recall that k > 4. We show that S only584

contains vertices of V . To this end, we first show that S does not contain x2.585

▷ Claim 20 (⋆). The set S does not contain x2.586

Next, we show that the vertex x2 is required to have pairwise temporal paths between587

distinct vertices of {w′ | w ∈ V } in G′.588

▷ Claim 21 (⋆). Let u and v be distinct vertices of V with u < v. Then, each temporal path589

from v′ to u′ in G′ visits x2.590

As a consequence, S contains at most one vertex of {w′ | w ∈ V }, since S is a closed591

tcc that does not contain vertex x2. Based on the above two claims, we now show that S592

contains only vertices of V .593

▷ Claim 22 (⋆). Only vertices of V are contained in S.594
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Since no edge between any two vertices of V was added while constructing G′ from G,595

each temporal path in G′ that visits only vertices of V is also a temporal path in G. Together596

with Claim 22, this implies that S is a closed tcc in G, which implies that I is a yes-instance597

of Closed-TCC. ◀598

Recall that all versions of Closed-TCC are NP-hard [8, 13]. Moreover the strict599

undirected version of Closed-TCC is W[1]-hard when parameterized by k [8] and both600

directed versions of Closed-TCC are W[1]-hard when parameterized by k [13]. Together601

with Theorem 18, this implies the following intractability results for Closed-TCC.602

▶ Theorem 23. All versions of Closed-TCC are NP-hard even if δvd = δam = 1. More603

precisely, this hardness holds on instances where the reachability graph is missing only a604

single arc to be a complete bidirectional clique. Excluding the undirected non-strict version605

of Closed-TCC, all versions of Closed-TCC are W[1]-hard when parameterized by k606

under these restrictions607

6 Conclusion608

We introduced two new parameters δvd and δam that capture how far the reachability graph of609

a given temporal graph is from being transitive. We demonstrated their applicability when the610

goal is to find open tccs in a temporal graph, presenting FPT-algorithms for each parameter611

individually, and a polynomial kernel with respect to δam, assuming that the corresponding612

arc-modification set of size δam is given. Computing such a set is NP-hard in general directed613

graphs [25]. An interesting question, also formulated in that paper, is whether this parameter614

is at least approximable to within a polynomial factor of δam. If so, our result implies a615

polynomial kernel for Open-TCC when parameterized by δam. Alternatively, the existence616

of a proper polynomial kernel for Open-TCC when parameterized by δam could also be617

shown by finding an approximation for a minimum-size inherent transitivity modulator due618

to Theorem 12 and the fact that the size of a minimum-size inherent transitivity modulator619

never exceeds 2 · δam.620

Another natural question is to identify what are other (temporal) reachability problems621

for which our transitivity parameters could be useful. For instance, consider a variant of the622

Open-TCC problem where we search for d-tccs, that is, tccs such that the fastest temporal623

path between the vertices has duration at most d. It is plausible that our positive results624

carry over to this version when applied to the d-reachability graph, i.e., the graph whose arcs625

represent temporal paths of duration at most d.626

Regarding Closed-TCC, our intractability results show that neither δvd nor δam suffice627

to make this problem tractable. However, our results do not preclude the existence of an628

FPT-algorithm in the case that the arc modification operations are restricted to deletion629

only, which remains to be investigated. Nonetheless, we still believe that transitivity is a key630

aspect of the problem. The problem with Closed-TCC is that the reachability graph itself631

does not encode whether the paths responsible for reachability travel through internal or632

external vertices.633

We would like to initiate the idea of considering further transitivity parameters based on634

modifications of the temporal graph itself, not only of the reachability graph. In particular,635

could FPT-algorithms for such parameters be achieved for reachability problems such as636

Open-TCC with similar performance as our FPT-algorithms for δvd and δam, and could637

these parameters make Closed-TCC tractable as well? And if so, how difficult is the638

computation of such parameters?639
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