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a b s t r a c t

We study a new version of the Traveling Salesperson Problem, called Vector TSP, where
the traveler is subject to discrete acceleration constraints, as defined in the paper-and-
pencil game Racetrack (also known as Vector Racer). In this model, the degrees of
freedom at a certain point in time depends on the current velocity, and the speed is
not limited.

The paper introduces this problem and initiates its study, discussing also the main
differences with existing versions of TSP. Not surprisingly, the problem turns out to be
NP-hard. A key feature of Vector TSP is that it deals with acceleration in a discrete,
combinatorial way, making the problem more amenable to algorithmic investigation.
The problem involves two layers of trajectory planning: (1) the order in which cities
are visited, and (2) the physical trajectory realizing such a visit, both interacting with
each other. This interaction is formalized as an interactive protocol between a high-
level tour algorithm and a trajectory oracle, the former calling the latter repeatedly. We
present an exact implementation of the trajectory oracle, adapting the A* algorithm for
paths over multiple checkpoints whose ordering is given (this algorithm being possibly
of independent interest). To motivate the problem further, we perform experiments
showing that the naive approach consisting of solving the instance as an Euclidean
TSP first, then optimizing the trajectory of the resulting tour, is typically suboptimal
and outperformed by simple (but dedicated) heuristics.
© 2025 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The problem of visiting a given set of locations and returning to the starting point, while minimizing the total cost, is
known as the Traveling Salesperson Problem (TSP, for short). The problem was independently formulated by Hamilton
and Kirkman in the 1800s [4] and has been extensively studied since then. Many versions of this problem exist, motivated
by applications in fields as varied as delivery planning [8], stock cutting [36], and DNA computation/reconstruction [25,27].
n the original version, an instance of the problem is equivalent to a graph whose vertices represent the cities (places to
e visited) and whose weights on the edges represent the cost of moving from one city to another. The goal is to find
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the minimum cost tour (optimization version) or to decide whether a tour having at most some cost exists (decision
ersion) subject to the constraint that every city is visited exactly once. Karp proved that the Hamiltonian Cycle problem
s NP-hard, which implies that TSP is NP-hard [21]. On the positive side, while the trivial algorithm has a factorial running
ime (considering all the possible tours), Held and Karp presented in [18] a dynamic programming algorithm running in
ime O(n22n), which as of today remains the fastest known deterministic algorithm for TSP (a faster randomized algorithm
exists [5]). TSP was shown to be inapproximable to within a constant factor by Orponen and Manilla in 1990 [29]. Some
eneralizations of TSP include a version with unknown environment which is discovered while visiting the cities, known
s the Covering Canadian Traveler Problem [17,24], and more recently, a version operating on a temporal graph where
osts between cities are time-dependent, known as Time Dependent TSP [13]. Another problem closely related to the TSP
is the Bamboo Garden Trimming Problem [16,22], where one aims to maintain the height of a forest of bamboos to a
minimum.

In many cases, the problem can be restricted to a more tractable setting. In Metric TSP, the costs must respect the
triangle inequality, namely cost(u, v) ≤ cost(u, w)+ cost(w , v) for all u, v , w, or equivalently, the constraint of visiting a
ity exactly once is relaxed. Metric TSP was shown to be approximable within a ratio of 1.5 by Christofides [9]. This ratio
as been slightly improved recently by Karlin et al. in [20]. A lower bound of 1.0045 is known for the approximation ratio
i.e., no PTAS exists for Metric TSP [31]). A particular case of Metric TSP is the Euclidean TSP, where cities are points in
he plane, and the weights are the Euclidean distance between them. This problem is still NP-hard (see Papadimitriou [30]
nd Garey et al. [15]), but admits a PTAS, discovered independently by Arora [2] and Mitchell [26].
One attempt to add physical constraints to the Euclidean TSP is Dubins TSP [23], which encode inertia through

ounding the curvature of a trajectory by some radius, thereby offering a geometric abstraction to the problem. However,
he radius being a fixed value, the speed is considered constant. Savla et al. present multiple results on Dubins TSP, such
s an elegant algorithm in [34] which modifies every other segment of an Euclidean TSP solution to enforce the curvature

constraint.
More flexible models for acceleration have been considered in the context of path planning problems, where one

ims to find an optimal trajectory between two given locations (typically, with obstacles), while satisfying acceleration
onstraints. More generally, the literature on kinodynamics is pretty vast (see, e.g. [6,7,11]). The constraints are often
ormulated in terms of a number of dimensions, a bounded acceleration and a bounded speed. The positions are typically
epresented by real coordinates, using tools from control theory and analytic functions [32,33,37].

In a recreational column of the Scientific American in 1973 [14], Martin Gardner presented a paper-and-pencil game
nown as Racetrack (not to be confused with a similarly titled TSP heuristic [38] that is not related to acceleration). The
hysical model is as follows. In each step, a vehicle moves according to a discrete-coordinate vector (initially the zero
ector), with the constraint that the vector at step i + 1 cannot differ from the vector at step i by more than one unit
n each dimension. The game consists of finding the best trajectory (smallest number of vectors, regardless of distance)
n a given race track. A nice feature of such models is the ability to think of the state of the vehicle at a given time as a
oint (x, y, dx, dy) in a configuration space. Note that this game is not a version of TSP, since only the starting and final
ositions are specified. In fact, an optimal trajectory in this game can be found by performing a simple breadth-first search
n the configuration graph. These techniques, which we describe in more details in the present paper, were rediscovered
any times, both in the Racetrack context (see e.g. [3,12,28,35]) and in the kinodynamics literature (see e.g. [6,11])—they

can now be considered as folklore. Note that a more efficient algorithm for Racetrack instances of uniform width was
roposed by Bekos et al. [3], as well as ’’local view’’ algorithms in which the track is discovered in an online fashion

during the race. The theoretical complexity of the Racetrack problem has also been studied. In particular, Holzer and
cKenzie [19] proved that Racetrack is NL-complete. They also proved that the reachability problem with a given time

limit (referred to as single-player Racetrack) is NL-complete, and that deciding the existence of a winning strategy in
Gardner’s original game when the positions cannot be occupied by two players simultaneously is P-complete (under
polylogarithmic time reductions).

1.1. Contributions

In this article, we combine TSP and Racetrack into a single problem called Vector TSP, where a vehicle must visit an
initially unordered) set of coordinates (cities), using a trajectory that obeys racetrack-like constraints. The cost measure
is the total number of vectors used, regardless of the distance traveled. Motivations for such a problems a varied. On the
ractical side, there is an increasing interest for using UAVs in delivery planning and patrolling. In the longer term, outer
pace travel will also be subject to similar isotropic constraints, where inertia matters more than speed. On the theoretical
ide, this problem is quite natural and the constraints are simplest possible in a discrete setting. Yet, it requires solutions
hat are significantly different from its standard versions, making this problem intriguing.

The paper starts by describing the Racetrack physical model and some of its basic properties, as well as the concept
of configuration graph and algorithmic tricks based on this graph. Then, we define the Vector TSP problem, together with
a number of preliminary observations. In particular, we investigate the differences between Vector TSP and Euclidean
TSP, showing that solutions visiting the cities according to an optimal Euclidean TSP tour are suboptimal for Vector TSP.
This motivates the study of Vector TSP as a problem of its own.

Then, we prove that Vector TSP is NP-hard. This result is not surprising in itself, but the proof is far from trivial. It
proceeds by defining another version of the problem called Vector TSP With Stops, where every city must be visited
136
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at zero speed. This problem is closer in spirit to Euclidean TSP, making it possible to adapt the arguments used by
Papadimitriou’s reduction from Exact Cover to Euclidean TSP. Then, we show that Vector TSP With Stops reduces to
Vector TSP.

On the positive side, we present an algorithmic framework for tackling Vector TSP, based on an interactive scheme
etween a high-level algorithm and a trajectory oracle. The first is responsible for exploring the space of possible visit
rders, while making queries to the second for assessing the quality of a particular visit order. We present algorithms
or both. The high-level algorithm adapts known heuristics for Euclidean TSP, trying to gradually improve the solution
hrough performing 2-permutations in the tour until a local optimum is found. As for the trajectory oracle, we present an
original algorithm that generalizes A∗ to the search of multi-point paths in the configuration space, with a cost estimation
unction that uses unidimensional projections of the distances.

We present experimental results based on this framework, giving empirical evidence that our algorithmic framework,
s simple as it is, already outperforms solutions based on an optimal resolution of Euclidean TSP. The goal of these

experiments is not so much to evaluate the algorithms themselves as to confirm that Vector TSP is an original problem
that deserves further independent study.

1.2. Organization of the paper

In Section 2, we present the Racetrack physical model and the Vector TSP problem, together with a number of
algorithmic tricks and observations. In Section 3, we characterize a number of basic properties of Vector TSP and compare
t with Euclidean TSP. We prove that Vector TSP is NP-hard in Section 4. The algorithmic framework is presented in
Section 5, and experiments are reported in Section 5.3. Finally, we conclude with some remarks and future research
directions in Section 6.

2. Model and definitions

In this section, we present the Racetrack model and some of its algorithmic features. Then, we define Vector TSP and
establish a few facts about it.

2.1. The racetrack model

The Racetrack model [14] is an acceleration model where both time and space are discrete. The model specifies what
movements a vehicle can make based on its current position and velocity. In the original formulation of [14], the space
s two-dimensional, though the model generalizes naturally to higher dimensions.

Configuration
The state of the vehicle at a certain time is called a configuration. A configuration c is encoded by a position pos(c)

nd a velocity vel(c), both in Z2, being possibly abbreviated as a 4-tuple (x, y, dx, dy), where dx and dy correspond to the
movements the vehicle just made in the last move (initially 0). Given a configuration c , the constraints consist of restricting
the set of legal successors succ(c), which are the configurations c ′ whose velocity differ from vel(c) by at most one unit
n each dimensions, and whose positions correspond to moving the vehicle according to this chosen velocity. (Morally,
 configuration encodes a vector/movement that has just been performed.) Precisely, the successors of a configuration

ci = (xi, yi, dxi, dyi) are all the configurations cj = (xj, yj, dxj, dyj) such that |dxj − dxi| ≤ 1, |dyj − dyi| ≤ 1, xj = xi + dxj
and yj = yi+ dyj. These constraints are illustrated in Fig. 1. Some versions of the model consider stronger restrictions, by
allowing a single dimension to change in one time step. We refer to both versions as the 9-successor model and the 5-
successor model, respectively. These models generalize naturally to d-dimensional spaces by applying similar constraints
for each dimension. For any fixed number of dimensions d, a key aspect is that the number of successors is constant.

Trajectory
A trajectory is a sequence of configurations c1, c2, . . . , ck, with ci+1 ∈ succ(ci) for all i < k. The cost of a trajectory

is its length k. The fact that acceleration constraints are isotropic in the Racetrack model imply that trajectories are
reversible. The reverse of a configuration c = (x, y, dx, dy) is the configuration c−1 = (x + dx, y + dy,−dx,−dy), i.e. the
same movement backwards. (One can think of two superposed vectors in opposite directions.) Thus, if (c1, c2, . . . , ck) is
a trajectory, then (c−1k , . . . , c−12 , c−11 ) is also a trajectory.

Configuration space
The set of all configurations together with the successor relation define an infinite graph called the configuration graph.

et C be the infinite set of all configurations, the configuration graph is the directed graph G = (V , E) where V = C and
= {(ci, cj) ⊆ C × C : cj ∈ succ(ci)}.
Basic path-finding algorithms using the configuration graph have been independently discovered many times, we

consider them as folklore. Concretely, a trajectory in the original space is a path in the configuration graph. This
orrespondence allows for searching optimal trajectories using standard graph search like breadth-first search (BFS), in
n appropriate subset of G (computed on the fly).
137
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Fig. 1. Example of a trajectory in the Racetrack model.

2.2. The Vector TSP problem

We introduce the Vector TSP problem, which consists of finding a minimum length trajectory that visits a given set
f cities and returns to the starting point, starting and finishing at zero speed, and subject to Racetrack-like physical
onstraints. Note that we allow to pass over a city without a visit. The order in which the cities are visited (i.e., the tour)
is not specified in the input. The goal can thus be seen as determining a tour and a trajectory realizing this tour.

To define the problem more formally, let us define what visiting a city means. Here, we say that a city (or more
generally, a point) p is visited by a configuration c if p lies on the segment between the point pa = pos(c) − vel(c) and
pb = pos(c). If several cities are visited by a same configuration, then these cities are considered visited in increasing
rder of distances from pa.

Vector TSP
Input: A set of n cities (points) P ⊆ Zd, for some fixed d, a distinguished city p0 ∈ P , and an integer k encoded in
unary.
Question: Does there exist a trajectory T = (c1, . . . , ck) of length at most k that visits all the cities in P , with

pos(c1) = pos(ck) = p0 and vel(c1) = vel(ck) =
→

0 .

Receiving parameter k in unary guarantees that the problem is not hard for artificial reasons. For example, it prevents
 trivial instance from being hard just because the cities are exponentially far from each other (in the size of the input, see
lso [12,19]). The optimization version of Vector TSP is defined analogously, except that instead of providing k in unary,

one can replace it with any number in unary that is a (polynomially related) lower bound on the optimal trajectory, such
as the length of a trivial trajectory between the two more distant cities.

Stopping at the cities
Although the spirit of the model is that speed is unbounded, it could be useful in some scenarios to stop physically

t the cities (e.g. to avoid blurred pictures, or to drop objects in a delivery scenario). We define the problem Vector TSP
ith Stops similarly as Vector TSP, with the additional requirement that the configurations visiting a city must have zero

peed. Technically, this version of the problem can be seen as somewhat intermediate between Euclidean TSP and Vector
SP. We do not investigate it per se in the present paper, but we use it as a corner stone in our proof of NP-hardness of
ector TSP in Section 4.

Tour/trajectory/solution
As already explained, in Vector TSP, a tour denotes a visit order of the cities (i.e. a permutation), and a trajectory

enotes a sequence of racetrack configurations (that may realize such a tour). Given a tour π , we call racetrack(π )
he set of optimal trajectories realizing the tour π . It is important to keep in mind that the optimality of trajectories in
acetrack(π ) is only relative to π , it does not imply that these trajectories are optimal solutions to the problem instance
if π is itself suboptimal). If no other tour than π exists that admit a shorter realizing trajectory, then, in this case only,
 trajectory in racetrack(π ) is an optimal solution for the Vector TSP problem.

3. Intermediate results and observations

In this section, we establish a number of preliminary results that highlight the differences between Vector TSP and
Euclidean TSP. We also present key properties of the configuration graph, used in subsequent sections.
138
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Fig. 2. On the left, a trajectory in racetrack(π ), where π is an optimal tour for Euclidean TSP; on the right, an optimal Vector TSP solution using
ess vectors along a different tour. The loop on p0 illustrates the final ‘‘move’’ required to finish at zero speed. The alternation of colors is used to
elp distinguish individual moves.

3.1. Differences between Euclidean TSP and Vector TSP

Vector TSP having essentially the same input as Euclidean TSP, namely, a set of coordinates, it is tempting to see it
as just a small variant of that problem. Both problems are however truly different.

To start, observe that the initial city does matter in Vector TSP. This is easy to see on a set of aligned cities. If the
vehicle starts at one of the endpoint cities, then it is able to visit all the cities and return after two phases of acceleration
nd deceleration, whereas if it starts in the middle, at least three such phases will be needed, resulting in a solution of

higher cost despite the fact that the traveled distance is the same.
Beyond the starting point, we now show that optimal tours for Euclidean TSP may be suboptimal for Vector TSP.

Lemma 1. There exists an instance I of Vector TSP, such that the optimal tour π for the corresponding Euclidean TSP
nstance is suboptimal for I.

Proof. We provide a simple example in Fig. 2. On the left, a trajectory in racetrack(π ), where π is an optimal tour
or Euclidean TSP, starting and ending at p0 (whence the final deceleration loop). Realizing this trajectory requires 22
oves, but an optimal trajectory for Vector TSP takes only 20 (right picture) and corresponds to a tour that would be
uboptimal for Euclidean TSP. □

From the same example, observe that optimal Vector TSP solution may self-cross. In fact, the cost of traveling between
two given cities in Vector TSP depends crucially on choices that are made earlier in the trajectory. This feature, together
with the fact that traveling some distance costs essentially the square root of that distance, makes Vector TSP significantly
different from Euclidean TSP and not reducible to it (at least, not straightforwardly), nor even to general TSP (whose costs
between cities are fixed).

Later on, in this paper, we give evidence that this divergence between both problems is not occasional. For sufficiently
large random instances, optimal Euclidean TSP tours become typically suboptimal for Vector TSP.

3.2. The configuration graph is (in effect) bounded

In theory, the positions and velocities are unbounded, which makes the configuration graph infinite. Nevertheless, we
how below that the useful part of the configuration graph is bounded. Moreover, an optimal trajectory can always be
found within a subgraph of the configuration graph whose size is polynomial in the size of the input.

Lemma 2 (Length of an Optimal Solution). Let I be a Vector TSP instance based on a set P of n cities, let L be the
maximum distance in a dimension between two cities of P (euclidean max norm). An optimal solution contains at most O(nL)
configurations.

Proof. A naive (suboptimal) solution consists of visiting the cities in an arbitrary order at unit speed (i.e. the max norm
of the speed is one). Such a trajectory contains O(nL) configurations, which is thus an upper bounds on the size of an
optimal solution. □

Lemma 2 implies that the useful part of the configuration graph can be restricted to a subgraph of polynomial size in
he size of the input.
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Fig. 3. Computation of an optimal (one dimensional) trajectory for k = 12.

Lemma 3 (Bounds on the Configuration Graph). Let I be a (d-dimensional) Vector TSP instance based on a set P of n cities
and a starting city p0 ∈ P. Let L be the maximum distance between two cities of P in a dimension (euclidean max norm). An
optimal trajectory for I can be found in a subgraph of G that contains at most O((nL)3d) configurations.

Proof. For simplicity, consider a renormalized instance in which the coordinate of p0 is 0 in each dimension. By Lemma 2,
n optimal solution has at most O(nL) configurations, thus the maximum absolute value of a position in any dimension is
t most O((nL)2), which is attained, for example, if one accelerates all the time in this dimension. Similarly, the maximum
bsolute value of the velocity in any dimension is O(nL), which implies at most O((nL)3) values for the combined position
nd velocity in each dimension, and thus at most O((nL)3d) values in d dimensions. □

Corollary 1. In two dimensions, an optimal trajectory can be found in a subgraph of the configuration graph containing
((nL)6) vertices and edges.

3.3. One-dimensional cost computation

Some of the computation in the subsequent sections rely on computing the cost of trajectories in one dimension. Here,
e first prove a direct formula for expressing the cost of moving from one position to another in one dimension, starting

and finishing at zero speed. Then, we explain how more general one-dimensional computation reduces to it.

Lemma 4. In one dimension, the cost of covering k space units, starting and finishing at zero speed is ⌈2
√
k⌉.

Proof. Starting at zero speed, a vehicle accelerating over s steps covers a distance of 1+ 2+ · · · + s = s(s+ 1)/2 units.
ymmetrically, a vehicle decelerating down to zero speed over s steps also covers s(s+1)/2 units. Thus, if k = s(s+1) for
ome integer s, a strategy is to accelerate for s steps and then decelerate for s steps, which maximizes the average speed
nd is thus optimal (see the top scenario in Fig. 3). Together with the final loop for reaching zero speed, this corresponds
o a total cost of 2s+ 1. And since s2 < k < (s+ 1

2 )
2, this corresponds to a cost of ⌈2

√
k⌉.

If k cannot be expressed as the product of two consecutive integers, then let s be the largest integer such that
(s+ 1) < k. There are two cases:

1. If s(s+ 1) < k ≤ (s+ 1)2, then s2+ s+ 1 ≤ k ≤ s2+ 2s+ 1 (since k is an integer). In this case, there is a non-empty
gap in the middle and a trajectory of cost 2s + 1 (including the final loop) cannot exist. However, we will show
that a trajectory of cost 2s + 2 always exist in this case. Let k′ ≤ s + 1 be the size of the gap (k′ = 1 in Fig. 3,
middle scenario). One can complete the trajectory by adding a single additional move of length k′. If k′ ≥ s − 1,
this move can be inserted in the middle. If k′ < s − 1, then a move of length k′ already exists in the deceleration
part. It suffices to repeat this move and shift the previous ones accordingly (dashed green vector in Fig. 3, bottom
scenario) in order to obtain a trajectory of cost 2s+ 2. Since (s+ 0.5)2 < k ≤ (s+ 1)2, this cost amounts again to
⌈2
√
k⌉.

2. If (s+ 1)2 < k < (s+ 1)(s+ 2), then s2+ 2s+ 2 ≤ k ≤ s2+ 3s+ 1 (since k is an integer). In this case, there is a gap
of k′ units, with s+ 2 ≤ k′ ≤ 2s+ 1. No trajectory with cost 2s+ 2 exists, since k′ exceeds the size allowed for an
additional vector. However, one can complete the trajectory by splitting k′ in a sum of two numbers ≤ s + 1 and
insert two additional such moves in the decelerating segment. Since (s + 1)2 < k ≤ (s + 1.5)2, this amounts to a
cost of 2s+ 3 = ⌈2

√
k⌉. □

Observe, from the previous lemma, that an optimal trajectory between two points in one dimension, starting and
finishing at zero speed, can always be realized by first accelerating as much as possible without overpassing the middle
oint, then filling the potential gaps upon deceleration. Another case of interest, used in Section 5.2, is when the vehicle

(with position x and speed dx) is moving towards point x′, and it is able to stop before bypassing x′. The strategy in this
140
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case is to simulate that the vehicle has accelerated continuously dx time steps from a virtual starting point located at
x′′ = x − dx(dx + 1)/2 and to compute the cost from x′′ to x′ starting and finishing at zero speed. By the above remark,
the resulting cost (minus the dx virtual steps) must correspond to the optimal cost towards x′ from the current position
and speed.

Also remark that for a pair of cities, placed in any number of dimensions, the cost when starting and stopping at zero
speed, is ⌈2

√
K⌉ where K is the largest distance among all dimensions.

4. NP-hardness of Vector TSP

Although the result itself is not surprising, proving that Vector TSP is NP-hard does not appear to be straightforward.
n this section, we do so in two steps. First, we prove that Vector TSP With Stops is NP-hard (Theorem 2), by adapting
ome ideas from Papadimitriou [30] in his proof that Euclidean TSP is NP-hard, via a reduction from Exact Cover. The
ain conceptual difficulty in this adaptation is to account for the fact that acceleration allows one to travel quadratic
istance in linear time, and counter rounding effects by a scaling argument in continuous space (Theorem 1). Then, we
how that Vector TSP With Stops reduces to Vector TSP (Theorem 3).

4.1. NP-hardness of Vector TSP With Stops

We choose to do most of the reasoning in this section on a slightly modified version of Vector TSP With Stops, referred
o as Continuous VectorTSP with Stops.

Continuous VectorTSP with Stops
Input: A set of n cities (points) P ⊆ Zd, with intercity cost c(pi, pj) = 2

√
K where K is the largest distance between

the cities among all dimensions, and an integer k.
Question: Does there exist a trajectory T = (c1, . . . , ck) of cost at most k that visits all the cities in P , with

pos(c1) = pos(ck) = p0 and vel(c1) = vel(ck) =
→

0 .

Continuous VectorTSP with Stops allows us to avoid some technical details of Vector TSP With Stops, such as the
rounding effects on costs between cities. These effects are taken care of later through a scaling argument which transfers
P-hardness results from Continuous VectorTSP with Stops to Vector TSP With Stops. This version is closer in spirit to
he Euclidean TSP, allowing us to adapt Papadimitriou’s NP-hardness proof for Euclidean TSP [30]. Note that we can talk
about paths for Continuous VectorTSP with Stops instead of trajectories (as there is just the notion of a cost between
cities, not of rounds/vectors). In the case of Vector TSP With Stops, either paths or trajectories can be considered.

The reduction is from Exact Cover, whose definition is as follows. Let U be a set of m elements (the universe), Exact
over takes as input a set F = {Fi} of n subsets of U , and asks if there exists F ′ ⊆ F such that all sets in F ′ are disjoint
nd F ′ covers all the elements of U . For example, if U = {1, 2, 3} and F = {{1, 2}, {3}, {2, 3}}, then F ′ = {{1, 2}, {3}} is a

valid solution, but {{1, 2}, {2, 3}} is not.
High-level view of the reduction: Given an instance I of Exact Cover, we construct an instance I’ of Continuous

VectorTSP with Stops such that I admits a solution if and only if there is a trajectory visiting all the cities of I’ using
at most a prescribed number of vectors. I ′ is composed of several types of gadgets, representing respectively the subsets
Fi ∈ F and the elements of U (with some repetition). For each Fi, a subset gadget Ci is created which consists of a number
of cities placed horizontally (wavy horizontal segments in Fig. 4). For now, we state that each gadget can be traversed
optimally in exactly two possible ways (without considering direction), which ultimately corresponds to including (mode
1) or excluding (mode 2) subset Fi in the Exact Cover solution. The Ci’s are located one below another, starting with C1 at
the top. Between every two consecutive gadgets Ci and Ci+1, copies of element gadgets are placed for each element in U ,
thus the element gadgets Hi,j are indexed by both 1 ≤ i ≤ n−1 and 1 ≤ j ≤ m (see again Fig. 4). The element gadgets are
lso made of a number of cities, whose particular organization is described later on. Finally, every subset gadget Ci above

or below an element gadget representing element j is modified in a way that represents whether Fi contains element j or
not.

Intuitively, a tour visiting all the cities must choose between inclusion or exclusion of each Fi (i.e., mode 1 or 2 for each
i). An element j ∈ U is considered as covered by a subset Fi if Ci does not visit any of the adjacent gadgets representing

j. Each element gadget Hi,j must be visited either from above (from Ci) or from below (from Ci+1). The number of subset
gadgets is n, the number of element gadgets for each element is n−1 (one between every two consecutive subset gadgets),
and the construction guarantees that at most one element gadget for each element j ∈ U is visited from a subset gadget
Ci (or the tour is suboptimal). These three properties collectively imply that for each element j ∈ U , there is exactly one
subset gadget Ci that does not visit any of the element gadgets representing j.

In summary, the tour proceeds from the top left corner through the Cis (in order), visiting all the Hi,j. So long as a Ci
visits a Hi,j (thus, from above), this means that element j has not yet been covered in the Exact Cover solution. Element
is covered by subset Fi in the Exact Cover solution if Ci is the subset gadget that does not visit the corresponding Hi,j,
fter which all the Hk≥i,j will necessarily be visited from below by the corresponding Ck+1, ensuring the element j will not
e covered more than once.
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Fig. 4. Papadimitriou’s high-level construction.

Fig. 5. 1-chain structure which turns 90◦ twice. The distance between consecutive cities is 1. The optimal visit order is shown in (b). We abbreviate
a 1-chain schematically as shown in (c).

Construction 1: Let us now present the details of the gadgets and how to assemble them together, so as to transform
ny given Exact Cover instance into a Continuous VectorTSP with Stops instance.1 Consider the 1-chain structure
resented in Fig. 5. This structure is composed of cities positioned on a line, at distance 1 from one another. 1-chains

can bend at 90 degrees angles. Next, consider the structure in Fig. 6, referred to as a 2-chain. The distance between the
leftmost (or rightmost) city and its nearby cities is

√
2
2 . The closest distance between vertical cities is 1, and 2 between

horizontal cities.
Finally, consider the A, B, and H structures, presented in Figs. 7 to 9 respectively. Structures A and B will replace parts

of 2-chains as shown, and consist of cities positioned on a grid with distance 1 between nearest cities, except for the
ities closest to the middle, which are horizontally distanced by 2 and 6 respectively. Structure H consists of a symmetric
et of cities which will be positioned far away from all other gadgets.
Construct the structure shown in Fig. 10, where n is the number of subsets given in the corresponding Exact Cover

nstance, and m the number of elements in the universe.
Then, for every 2-chain Ci, remove the cities positioned directly above or below an H . In other words, if the H structure

s contained in a bounding box of coordinates (x1, y1) to (x2, y2), the cities of Ci between x-coordinates x1 and x2 are
oncerned. Insert in this emptied space one of two structures, depending on the elements in Fi, Ci’s corresponding subset.
f the subset contains the element corresponding to the above (or below) H , then replace by structure A (see Fig. 8),
otherwise replace by structure B (see Fig. 9). Finally, rotate the whole city set by 45◦. As the city coordinates should be

1 The cost k will be missing from the instance, but we will specify this cost in Theorem 1.
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Fig. 6. 2-chain structure (a). A 2-chain has precisely two optimal 1-trajectories, mode 1 shown in (b) and mode 2 shown in (c). We abbreviate a
-chain schematically as shown in (d).

Fig. 7. Structure H . An optimal 1-trajectory in H is shown in (b). We abbreviate an H structure schematically as shown in (c).

Fig. 8. Structure A with parts of a 2-chain on the sides (see (a)). Visiting structure A in mode 1 makes it suboptimal to visit an H structure above
or below (see (b)). Visiting structure A in mode 2 however, makes it less costly to visit an H structure above or below (see for example (c) for the
former).

integer, after the rotation we scale everything by
√
2. (The rotation and the scaling are the only changes we add w.r.t.

apadimitriou’s original construction.) This concludes Construction 1.
The following definitions are from Papadimitriou [30]. A subset Q of the set of cities is an a-component if for all q ∈ Q

e have min(cost(q, p) : p ̸ ∈ Q ) ≥ a and max(cost(q, p) : p ∈ Q ) < a. A k-path for a set of cities is a set of k, not
ecessarily closed paths visiting all cities. A solution for a Continuous VectorTSP with Stops instance is thus a closed
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Fig. 9. Structure B (see (a)). Visiting structure B in any mode allows it to optimally visit an H structure above or below (see (b) and (c)).

Fig. 10. Construction 1 from Exact Cover to Continuous VectorTSP with Stops (before adding structures A and B and rotating the city set).

(or cyclic) 1-path. A subset of cities is a-compact if, for all positive integers k, an optimal k-path has cost less than the
ost of an optimal (k+ 1)-path plus a. Note that a-components are trivially a-compact.

Lemma 5 (Papadimitriou [30]). Suppose we have N a-components P1, . . . , PN ⊆ P, such that the cost to connect any two
omponents is at least 2a, and P0 = P \

⋃N
i=1 Pi is a-compact. Suppose that any optimal 1-path of this instance does not

irectly connect any two a-components (but rather indirectly connects them through P0). Let K1, . . . , KN be the costs of the
ptimal 1-paths of P1, . . . , PN and K0 the cost of the optimal (N + 1)-path of P0. If there is a 1-path S of P consisting of the
nion of an optimal (N + 1)-path of P0, N optimal 1-paths of P1, . . . , PN and 2N paths of cost a connecting a-components to
0, then S is optimal. If no such 1-path exists, the optimal 1-path of P has a cost greater than K = K0 + K1 + · · · + KN + 2Na.
Papadimitriou proposed the following optimal k-paths in his construction:

– For 1-chains, the 1-path shown in Fig. 5;
– For 2-chains, the path zigzagging one way (mode 1) or the other (mode 2) as shown in Fig. 6;
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Fig. 11. Example of an undesired but optimal 1-path for a 2-chain before rotation (a). Papadimitrou’s proposed optimal 1-path (in mode 2) after
otation (b).

– For A structures, a 1-path for mode 1, and a 2-path for mode 2, such as those shown in Fig. 8. Note that no 2-path
exists for mode 1 such that the endpoints would align with vertices of a structure H directly above or below (as
they do for the 2-path in mode 2);

– For B structures, independent of the mode, a 2-path aligning with vertices of a structure H above or below such as
shown in Fig. 9;

– For H structures, the 1-path shown in Fig. 7. Among all 1-paths for H having as endpoints two of the cities
a, a′, b, b′, c, c ′, d, d′, there are 4 optimal 1-paths, namely those with endpoints (a, a′), (b, b′), (c, c ′), (d, d′).

It can be shown that these k-paths are optimal for Continuous VectorTSP with Stops as well, although due to the nature
of Continuous VectorTSP with Stops, other paths would have been optimal as well before rotating the city set, for
example for 2-chains, the path shown in Fig. 11 is optimal, but it completely disobeys any ’’mode‘‘. After rotation, only
the described k-paths are optimal (see again Fig. 11).

These optimal k-paths in our Continuous VectorTSP with Stops construction have a cost of:

– 2(n− 1) for a 1-chain of n cities, or 2ℓ for a 1-chain of length ℓ. Let us denote the latter as c1,ℓ;
– 6+ (2+ 2

√
2) n−42 for a 2-chain of n cities, or 6+ (2+ 2

√
2) ℓ−1

2 for a 2-chain of length ℓ. Let us denote the latter as
c2,ℓ;

– 52+ 2
√
2 for a structure A in mode 1 (resp. 52 in mode 2), or 42− 6

√
2 (resp. 42− 8

√
2) more than the part of the

2-chain tour it replaces. Let us denote the latter as cA,1 (resp. cA,2);
– 36 for a structure B independent of the mode, or 26 − 8

√
2 more than the part of the 2-chain tour it replaces. Let

us denote the latter as cB;
– 36+ 8

√
2+ 2

√
6 for a structure H . Let us denote this cost as cH .

We are now ready to prove the main theorem based on the presented construction and lemmas.

Theorem 1. Continuous VectorTSP with Stops is NP-hard.

Proof. We reduce from Exact Cover with Construction 1. We show that this construction fits the hypothesis of Lemma 5.
bserve that connecting a k-path from some 2-chain Ci (with structures A and/or B) with a k-path from some Hi,j

(or Hi−1,j) has optimal cost 4
√
5. This optimal cost is only attained by connecting some extremity city of structure H

(a, a′, b, b′, c, c ′, d, d′ in Fig. 7) to the closest city of 2-chain C positioned at distance 20 with a 45◦ angle. The optimal cost
to connect two k-paths between two Hi,j, is more than 4

√
5 (it is at least 4

√
11 to connect Hi,j and Hi+1,j and at least 20

o connect Hi,j and Hi,j+1) vectors. It should be clear that an optimal 1-path must have X and Y as endpoints (see again
Fig. 10). This construction meets the hypotheses of Lemma 5 with a = 4

√
5, N = m(n − 1), K1 = · · · = KN = cH and

K0 = 2c1,1000 + 2(n − 1)c1,100 + (n − 1)c1,51 + nc2,8m+100(m−1) + mcA,1 + (p − m)cA,2 + (nm − p)cB, where p is the sum
of cardinalities of all given subsets of the Exact Cover instance, which in turn describes the ratio of A structures vs B
structures, of which the costs are distinct. Note that some distances in the construction (such as 22 and 21) were chosen
very carefully (so the cost between A (or B) structures and H structures is exactly a, as the former are larger by 2 units at
the bottom, and 1 unit at the top w.r.t. 2-chains). We examine when this structure has an optimal 1-path S, as described
in the lemma. S traverses all 1-chains in the obvious way, and all 2-chains in one of the two modes. Since its portion on P0
has to be optimal, S must visit a structure H from any structure B encountered, and it must return to the symmetric city
of B, since its portion on H must be optimal, too. If S encounters a structure A and the corresponding chain is traversed
in mode 2, S will also visit a structure H . However, if the corresponding 2-chain is traversed in mode 1, S will traverse
A without visiting any structure H , since trajectories connecting P0 and any H structure must be of cost a. Moreover this
must happen exactly once for each column of the structure, since there are n− 1 copies of H and n structures A or B in
each column. (In particular, this implies that an H structure not visited from the current 2-chain must be visited from
the following 2-chain.) Hence, if we consider the fact that Cj is traversed in mode 1 (resp. mode 2) to mean that the
corresponding subset is (resp. is not) contained in the Exact Cover solution, we see that the existence of a 1-path S, as
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described in Lemma 5, implies the Exact Cover instance admits a solution. Conversely, if the Exact Cover instance admits
 solution, we assign, as above, modes to the chains according to whether or not the corresponding subset is included
n the solution. It is then possible to exhibit a 1-path S meeting the requirements of Lemma 5. Hence the structure at
and has a 1-path of cost no more than K = K0 + m(n − 1)(2a + cH ) if and only if the given instance of Exact Cover
s positive. Finally, to obtain a valid Continuous VectorTSP with Stops tour, connect both endpoints X and Y in Fig. 10
with a 1-chain, and increase K accordingly. □

Lemma 6. The difference in cost between positive Continuous VectorTSP with Stops instances and negative ones (of a
same size) in Construction 1 is at least

√
42− 2

√
10 > 0.15.

Proof. In Papadimitriou’s construction, it is stated that the minimum precision necessary is
√
401 − 20 > 0.02, which

orresponds to distinguishing between optimally connecting a 1-path from a structure A or B to a 1-path from a structure
, or connecting it suboptimally (all other suboptimal connections/paths can be recognized with lower precision). This
mplies that a gap between positive and negative instances must be at least this large.

In Construction 1, this distinction remains the smallest one (i.e. the one requiring the highest precision), and the gap
valuates to

√
42− 2

√
10 > 0.15. □

We remark that scaling up the construction by some factor r2 multiplies the cost of a solution tour, as well as the gap,
y r .

Lemma 7. If an optimal Continuous VectorTSP with Stops tour has cost K on an instance of n cities, then an optimal
ector TSP With Stops trajectory has a cost of at most K + n.

Proof. The cost between any pair of cities pi, pj in Vector TSP With Stops is c(pi, pj) = ⌈2
√
K⌉ where K is the largest

distance between the cities among all dimensions, and for Continuous VectorTSP with Stops this cost is 2
√
K . Note

hat the difference between such costs is at most 1. An optimal tour in Continuous VectorTSP with Stops is exactly n
ntercity costs (in some order), meaning the difference between optimal trajectories is at most n. □

Theorem 2. Vector TSP With Stops is NP-hard.

Proof. Take Construction 1 and scale it up by a sufficiently large factor, say R = (100n)2. The gap from Lemma 6 is now
at least 13n. Since Continuous VectorTSP with Stops is NP-hard (Theorem 1), and since the cost of an optimal Vector
SP With Stops trajectory is at most that of an optimal Continuous VectorTSP with Stops tour plus n (Lemma 7), which

fits within the gap of size at least 13n, Vector TSP With Stops is also NP-hard. □

Note that a gap of any (constant) size is attainable for Vector TSP With Stops, by changing R in the proof of Theorem 2
accordingly. This will be useful for proving that Vector TSP is NP-hard in Section 4.2.

4.2. NP-hardness of Vector TSP

Through a scaling argument and use of the gap from Section 4.1, we show that the NP-hardness from Vector TSP With
Stops (Theorem 2) transfers to Vector TSP.

Construction 2 and Construction 3: Consider Construction 1. Define grid factor G = 100n2, and the scaling factor
=

100
0.13G

2n3. As established in Section 4.1, the gap between positive Vector TSP With Stops instances and negative
nes can be increased by scaling up the construction sufficiently; scale until the gap is at least (nG)2. This concludes
onstruction 2. Scale up again by S2 and replace each city with a G×G square of cities (so containing (G+1)2 cities) with
he left top corner city in the original city location. This concludes Construction 3.

We define each square of size 5G× 5G centered on such a square of cities as a region, the square itself as the inner
egion and the region without the inner region as the (empty) outer region. (See also Fig. 12.) A region visit is a segment
of trajectory intersecting the inner region; it is counted from the entry into the corresponding region until the trajectory
leaves the region (a single region visit can leave and re-enter the inner region). A region visit is fast if a speed component
(in some dimension) is always larger than zero during the entire region visit. Otherwise the region visit is called slow.
(See again Fig. 12.) Note that a slow visit might never come to a complete stop, as speed components may turn to zero
at different points in time.

Lemma 8. Any slow region visit can be locally converted to a region visit that stops within the inner region, then visits all the
cities, stopping at each one. The conversion does not change the trajectory outside the region visit and costs at most 2G2

+15G
additional vectors.

Proof. A slow region visit means that all speed components must be zero at some point in time (although not necessarily
t the same time). Take the first time it comes to a stop in some dimension. Keep this dimension to a stop (instead of
hatever acceleration it had during the slow visit) until the other dimension comes to a stop (as it does in the original
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Fig. 12. Illustrative examples of a region and visits of a region. The larger gray dashed square indicates the outer region, while the other square
shows the inner region containing the cities. Note that due to scaling, the outer region is much larger in actuality than depicted. The alternating
ed and blue lines are successive segments of trajectories. (For interpretation of the references to color in this figure legend, the reader is referred
o the web version of this article.)

slow visit). Now the vehicle is at a stop somewhere in the region. Using at most 5G vectors, the vehicle can travel to
he inner region and come at a stop there at a corner city. Visiting the cities then requires at most 2G2 vectors. Finally,
e describe how to make the vehicle join back up with the original slow region visit at the latest configuration where

 speed component is zero, say w.l.o.g. configuration c = (x, y, dx, 0). Move the vehicle to (x − dx(|dx|+1)
2 , y, 0, 0) using at

ost 5G vectors since the position is in the region as in the original slow visit, the vehicle was able to accelerate from
ero speed to dx speed at position (x, y) while staying inside the region. From that configuration it can reach c using at
ost 5G vectors, linking it back up to the original slow visit. □

Lemma 9. A fast region visit can visit at most G cities.

Proof. W.l.o.g. suppose the speed component which is always larger than zero to be dx. The position coordinate x is thus
onotonically increasing or monotonically decreasing during the fast region visit, meaning it can visit at most one city
er coordinate on the x axis, of which there are at most G in a region. □

Corollary 2. If a trajectory visits all cities in a region, it must do so either with at least one slow region visit, or with at least
G fast region visits.

Lemma 10. A segment of a trajectory containing five fast region visits to the same region of cost K, can be replaced by a slow
egion visit of cost at most K + 13G.

Proof. If a trajectory leaves the region and then returns, the velocity along at least one dimension has changed sign
passing through the zero in the process). Moreover, if the sign of the velocity along some other dimension has not
hanged, then this speed must be below G, as leaving and returning to the inner region takes more than one unit of time.
herefore between each two region visits for each dimension there is a moment with a relatively low speed along this
imension (not necessarily the same moment).
For each dimension we independently modify the trajectory as follows. After the low speed moment between the

irst two visits, try to get within the inner region with zero speed (both — along this coordinate) as fast as possible. This
annot take longer than until the second low-speed moment plus time 2G in case there was no full stop in between. We
do the same transformation in reversed time from the fourth low-speed moment towards the third one. Note that without
changing the trajectory outside of the segment, these two modifications will replace at most 6G vectors into the third
isit. (This in principle can lead to an overlap.) Now we shift the second replaced segment and everything afterwards by
G, by simply adding null vectors in-between the first replaced segment and the second one.
Observe that thanks to this idle time in all dimensions, we must obtain a point in time where the modified trajectory

s within the inner region with zero speed (in all dimensions), which is thus a slow region visit. □

Note that the new slow region visit may not visit other regions/cities potentially visited by the original segment.
147



A. Casteigts, M. Raffinot, M. Raskin et al. Discrete Applied Mathematics 368 (2025) 135–152

f

T

K

c

t

w

F
t

f

o
a
b

Lemma 11. Given a solution of cost K for Vector TSP in Construction 3, one can construct a solution of cost at most K+4nG2

or Vector TSP With Stops in Construction 3.

Proof. Consider all the regions and all the region visits. Let us call a region processed whenever it has been modified so
that the cities are visited with stops. All the slow region visits can be processed at the cost of 3G2 per region. Afterwards,
segments with five fast region visits to the same unprocessed region, no overlap to any already chosen segments, and the
minimum number of visits to other unprocessed regions, are modified to a slow region visit at the cost of G2, which in
turn can again be processed at the cost of 3G2 extra vectors. Note that if some region remains unprocessed, then we have
processed fewer than n regions, and each processed region can spend no more than 4 visits to each of the other regions.
hus each unprocessed region has G − 4n usable fast region visits, split into at most n groups by the previously chosen

slow region visits and segments of five fast region visits. Since G−4n
n > 5, we can always continue to process cities until

no unprocessed city remains. □

We are now ready to prove the main result.

Theorem 3. Vector TSP is NP-hard.

Proof. We reduce from Vector TSP With Stops, which we have proven NP-hard in Theorem 2. More precisely, we have
proven it has an NP-hard gap, which in Construction 2 we have widened through a scaling argument to be at least (nG)2.
It suffices to show that Construction 3 has a gap corresponding to this one. Consider a solution for Vector TSP With
Stops in Construction 2 with cost K . It can be scaled to a solution for Vector TSP in Construction 3 with cost at most
S + n + 3nG2. Consider a solution for Vector TSP in Construction 3 with cost at most KS + 4nG2. We can modify it

so it visits cities at a stop for a total cost of at most KS + 8nG2, by forgetting the points except the original city in the
orner. Then, scale it down to a solution of cost at most K + 8nG2

S + nG2. This is a solution for Vector TSP With Stops in
Construction 2 and observe that 8nG2

S + nG2 < (nG)2. Thus we have constructed a gap for Vector TSP in Construction 3
o which the gap for Vector TSP With Stops in Construction 2 reduces. □

5. Algorithmic aspects and experimental investigation

In this section, we investigate some algorithmic approaches for tackling Vector TSP. The proposed framework is
based on an interaction between a high-level part that compute the tour (i.e. visit order), and a trajectory algorithm
that evaluates the cost of racetrack(π ), i.e., the cost of an optimal trajectory realizing this tour. Our solution to the
latter problem is perhaps the main contribution of this section, it relies on a multi-point adaptation of the A* algorithm,
hich may be of independent interest. Experiments are conducted for quantifying how often a trajectory based on an

optimal tour for Euclidean TSP tend to be suboptimal for Vector TSP. The main goal of these experiment is to legitimate
the study of Vector TSP as an independent problem.

5.1. Computing the tours (FlipTour)

A classical heuristic in the TSP literature is the Flip algorithm [10] (also called 2-opt although it is not an approxi-
mation algorithm). In each step, every possible flip, i.e. inversion of a subtour, of the current tour π is evaluated. If the
resulting tour π ′ improves upon π , then it is selected and the algorithm tries to improve π ′ in turn. Eventually, the
algorithm finds a tour that is a local optimum with respect to the flip operation. The high level part of our algorithm,
called FlipTour, implements a similar approach for exploring the tours for Vector TSP. The main difference between
lip and FlipTour is that the cost of a tour is not evaluated in terms of distance, but in terms of the cost of an optimal
rajectory realizing it (obtained by calling the Multi Point A∗ algorithm presented in Section 5.2).

Let arbitrary_tour() be a function that returns a trivial initial tour of length at most O(nL), starting and terminating
at the desired city. Such a tour can be obtained easily by using the strategy described in the proof of Lemma 2. Let
racetrack() be the function that returns the cost of an optimal trajectory for the given tour, and let flip() be the
unction that inverts the desired segment of the underlying tour. Then FlipTour is described by Algorithm 1.

Theorem 4. The above algorithm always reaches a local optimum after calling the oracle at most O(n3L) many times, where
n is the number of cities and L is the maximum distance (in a dimension) between two cities.

Proof. The initial tour corresponds to a trajectory of length at most O(nL) (Lemma 2), thus Copt is initialized with a value
f at most O(nL) in Line 2. Now, the main loop iterates only when a shorter trajectory is found, which can occur at most
s many times as the length of the initial trajectory. Finally, in each iteration, at most O(n2) modified tours are evaluated
y the oracle. □
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Algorithm 1 : FlipTour.
Input: a set P of cities and a starting city p0 ∈ P .
Output: a tour whose optimal trajectory cannot be improved by inverting a subtour.
1: πopt ← arbitrary_tour(P, p0)
2: Copt ← oracle(πopt)
3: improved← true
4: while improved do
5: improved← false
6: for each city i ∈ P \ {p0} do
7: for each city j ∈ P \ {p0, i} do
8: πtest ← flip(πopt , i, j)
9: Ctest ← oracle(πtest)

10: if Ctest < Copt then
1: πopt ← πtest
2: Copt ← Ctest
3: improved← true
4: break
5: if improved then
6: break
7: return πopt

5.2. Optimal trajectory for a given tour (Multi Point A∗)

Here, we discuss the problem of computing an optimal trajectory that realizes a given tour, i.e., how to compute
racetrack(π ) for a given π . A previous work of interest is Bekos et al. [3], which addresses the problem of computing
n optimal Racetrack trajectory in the so-called ‘‘Indianapolis’’ track, where the track has a fixed width and right-angle

turns. The Indianapolis setting makes it possible to decompose the computation by using dynamic programming between
the (constant sized) corner areas of the track. In contrast, we consider an open space with no simple way to decompose
the computation. Our strategy adapts the A∗ algorithm to searching a multi-point optimal path in the configuration graph.
Namely, given a sequence of points π = (p1, p2, . . . , pn), compute (the cost of) an optimal trajectory visiting the points
n order, starting at p1 and ending at pn at zero speed. (In the special case of Vector TSP, p1 and pn coincide.)

Hence, the main difficulty is that the optimal trajectory for a tour in open space does not reduce to gluing together
subtrajectories for given parts of the tour. Our contribution is to design an estimation function that guides A∗ through
these constraints and finds the actual optimum efficiently.

Overview of the estimation function
The general principle of A∗ is to explore the search space by generating a set of successors of the current node (in our

ase, a configuration) whose remaining costs towards destination are estimated by a custom function. The most promising
odes are explored first (typically, based on a priority queue). Then, A∗ is guaranteed to find the optimal solution (i.e., path

in the search space) as long as the provided function does not overestimate the cost of a node. Furthermore, as is usual
for A∗, the running time of the algorithm is primarily determined by the accuracy of the estimation.

Our estimation function relies on the following key idea. Given a tour π (in d-dimensions), a trajectory realizing this
tour must have at least the cost of a trajectory realizing the projection of this tour separately in each dimension. Thus, one
can use the maximum over these one-dimensional costs as an estimation for π . Consider for example the 2-dimensional
tour π = ((5, 10), (10, 12), (14, 7), (8, 1), (3, 5), (5, 10)) illustrated on Fig. 13. A vehicle realizing this tour must pass
through the x-coordinates (5, 10, 14, 8, 3, 5) in this order. A similar statement holds for the y-coordinates. The sequence
can be simplified further by retaining only the inflexion points, namely the coordinates where the vehicle begins, ends, or
switches direction at zero speed (in the considered dimension). Here, the inflexion points are (5, 14, 3, 5), their visit can
be realized by the trajectory depicted in red along the x-axis. Again, a similar statement holds for the y-coordinates (in
blue along the y-axis). Thus, the main work is to estimate the cost of such one-dimensional trajectories.

The fact that the speed is zero at the inflexion points makes it possible to decompose the computation as a sum of
independent costs — one for each consecutive pair (whose calculation is described in Section 3.3). This does not imply
that the d-dimensional trajectory computed by A∗ will necessarily reach zero speed in the considered dimension, as other
constraints may arise from combining the dimensions, which is fine because we are only lower bounding the costs here.

The main difficulty is that, as A∗ progresses, what needs to be estimated is a suffix of the initial tour rather than the
ntire tour. Also, the current speed of the vehicle may be different from zero. Let (x, dx) be the projection of the current
osition and velocity of the vehicle in the considered dimension, and let x′ be the position of the next inflexion point in
he projection of the tour suffix. Either the vehicle is towards x′ (that is, x′− x and dx have the same sign), or it is moving
n the opposite direction. In the first case, the vehicle must stop first, then come back to x′. Stopping takes dx time units
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Fig. 13. Lower bounding the cost of a tour by its one-dimensional projections. (For interpretation of the references to color in this figure legend,
he reader is referred to the web version of this article.)

and dx(dx + 1)/2 space units, then the calculation reduces to computing the cost between two points with starting and
finishing speed zero, as above. In the second case, either the vehicle is able to stop without bypassing x′, or it is not. If it is
not, we replace x′ in the projected suffix with the earliest position where the vehicle can stop, which is x+ dx(dx+ 1)/2,
at a cost of dx. The last case, where the vehicle is going towards x′ and is able to stop by x′ is dealt with in Section 3.3,
howing that this case can again be reduced to a case with zero initial speed.
In summary, the estimation of a suffix of the tour in a certain configuration reduces to computing, in each dimension

separately (1) the cost from the current position and velocity to the next inflexion point (in the considered dimension),
possibly changing the position of this point as explained above, and (2) the cost between all consecutive pairs of inflexion
points in the projected suffix (in the considered dimension), each time starting and finishing at zero speed.

5.3. Euclidean TSP tours are typically not optimal

In this section, we present experimental evidence that optimal tours for Euclidean TSP are typically not optimal for
Vector TSP. The experiments are conducted using the algorithmic components discussed in Sections 5.1 and 5.2. The
nstances are generated by placing cities uniformly at random within a two-dimensional square area. For each instance,
we first use an external Euclidean TSP solver (namely, Concorde [1]) to obtain an optimal Euclidean TSP tour π , then
e compute an optimal racetrack trajectory for this tour, racetrack(π ), using the Multi Point A∗ algorithm presented
bove. Then, in order to see if a better solution than racetrack(π ) exists for this instance, we take π as a starting point
nd try to improve this tour using the FlipTour heuristic (also presented above), with Multi Point A∗ for computing

the cost of the flipped tours.
Given the goal of the experiments, the only metric that we consider is how often the optimal tour for Euclidean TSP

urns out to be suboptimal for Vector TSP. In other words, how often at least one flip leads to an improvement of the
resulting trajectory. Two series of experiments were conducted in two-dimensional space. The results are averaged over
100 iterations. In the first experiment (Fig. 14, left), the space is limited to a 100 × 100 subset of Z2, in which n cities are
distributed uniformly at random, for n ranging over 4, 6, 8, 10, 12. In order to eliminate the potential effects of a restricted
pace, the second experiments (Fig. 14, right) adapts the same scenario on a growing space, so that the density of cities
s constant. The results suggest clearly that Euclidean TSP tours tend to be suboptimal as the number of cities grows,
s well as when the space is less restricted, with nearly 60% suboptimal tours for instances of 12 cities. Recall that the
lipTour algorithm is only a heuristic that stops when a local optimum is reached, whereas the reference Euclidean
SP tour is a global optimum. As a result, our experiments can under-estimate the discrepancy between Vector TSP and
uclidean TSP (which only makes our point stronger).
To conclude this section, Fig. 15 shows a larger instance of 20 cities and two corresponding trajectories; on the left

side, an optimal trajectory realizing an optimal Euclidean TSP tour π returned by the Concorde solver (with a cost of
150
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Fig. 14. Probability that an Euclidean TSP solution is improved (by a flip).

Fig. 15. Example of an instance where the optimal Euclidean TSP tour can be improved.

128); on the right side, an optimal trajectory realizing a different tour π ′ obtained after two flips of π (with a cost of
20).

6. Conclusion and future work

In this paper, we have presented and studied a new version of the TSP called Vector TSP, where the movements of
the vehicle must obey initial constraints according to the Racetrack model. After proving a number of basic properties
about this problem and about the Racetrack model, we showed that Vector TSP is NP-hard. While not really surprising,
the proof of this result turned out to be highly non-trivial. More direct transformation from existing problems may exist,
we leave this as an open question.

We used several of the preliminary observations for devising and motivating an algorithmic framework based on
two interacting layers, namely a high level tour computation algorithm, and an exact guided pathfinding algorithm
for trajectory evaluation. As simple as it is, we showed through experiments that this framework outperforms optimal
solutions based on the Euclidean TSP, thereby motivating further study of the problem.

One question of interest is how far an optimal trajectory of an optimal Euclidean TSP tour could be from the optimal
ector TSP solution. Our work also leaves a number of algorithmic questions open. For example, the high-level part of the
lgorithm relies on a standard TSP heuristics. Would there be dedicated heuristics for this component in Vector TSP? On
he other hand, our Multi Point A∗ algorithm for trajectory computation could be of independent interest and it would be
interesting to find other problems beyond TSP where such a component is useful. Indeed, the Racetrack model is appealing
or its simplicity and amenability to algorithmic investigation. Several geometric, robotic, and mobility-related problems
could certainly be revisited from a Racetrack perspective, generating new insights and potential for useful applications.

Data availability

No data was used for the research described in the article.
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