Algorithmique de la mobilité

(présentation du module)

ENSEIRB (2ème année)
Bordeaux INP
(+ M2 U.Bordeaux)

Arnaud Casteigts

September 15, 2020

Informations pratiques

- ho 12 semaines \simeq 40% cours intégré, 60% séances machine
- ▶ Le mercredi matin
- □ URL du cours: ("algomob" sur google)
 http://www.labri.fr/perso/acasteig/teaching/algomob/
 - → Source principale d'information (à consulter avant chaque cours)
- ▷ Philosophie du cours: théorie + pratique (algorithmique + simulation)
- Des Possibilité d'influencer le cours ! Vos idées sont les bienvenues.

 $\rightarrow \mbox{ Algorithmique dans ce contexte ?}$

 \rightarrow Algorithmique dans ce contexte ?

Algorithmes pour :

- ▷ synthèse de mouvements
- ⊳ calcul d'itinéraire
- ▷ coordination de groupe
- ▷ communications réseaux
- ▷ graphes dynamiques

→ Algorithmique dans ce contexte ?

Algorithmes pour:

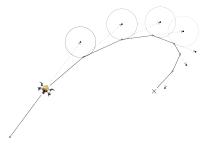
- ⊳ synthèse de mouvements
- ▷ coordination de groupe

Axes du cours :

- Scénarios particuliers (axe "horizontal")
- ▶ Aspects fondamentaux (axe "vertical")

→ Algorithmique dans ce contexte ?

Algorithmes pour :


- ▷ synthèse de mouvements
- ▷ coordination de groupe

Axes du cours :

- Scénarios particuliers (axe "horizontal")
- ▶ Aspects fondamentaux (axe "vertical")

Démarche : Théorie et pratique (implémentation en simulateur)

Synthèse de mouvements

Synthèse de mouvements (1)

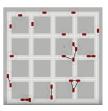
Macroscopique (\simeq itinéraire)

(Ex : Voyageur de commerce, Plus court chemin)

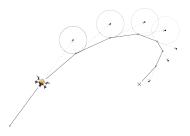
Synthèse de mouvements (1)

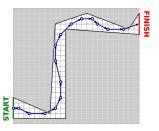
Macroscopique (\simeq itinéraire)

(Ex : Voyageur de commerce, Plus court chemin)



Mésoscopique (modèles de mobilités)

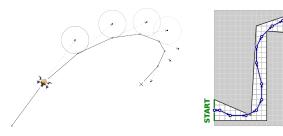




(Ex : Marche aléatoire, Réseaux véhiculaire type Manhattan, Random Waypoint, ...)

Synthèse de mouvements (2)

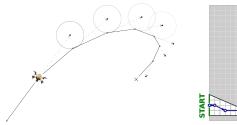
Modèles physiques discrets pour l'accélération



(Recherche de trajectoire optimale)

Synthèse de mouvements (2)

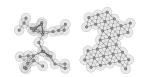
Modèles physiques discrets pour l'accélération

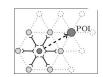


(Recherche de trajectoire optimale)

Exemple d'algorithme: BFS dans l'**espace des configurations** ("méta-graphe" dont les sommets sont des couples (*position*, *vitesse*))

Synthèse de mouvements (2)

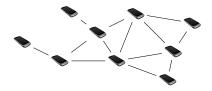

Modèles physiques discrets pour l'accélération



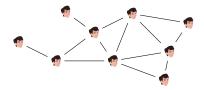
(Recherche de trajectoire optimale)

Exemple d'algorithme: BFS dans l'espace des configurations ("méta-graphe" dont les sommets sont des couples (position, vitesse))

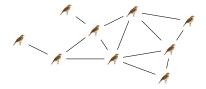
Forces virtuelles artificielles



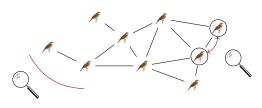
Coordination et communications


On représentera un réseau par un graphe G = (V, E)

- \rightarrow Ensemble de noeuds V (a.k.a. entités, sommets)
- \rightarrow Ensemble de liens E entre eux (a.k.a. relations, arêtes)


On représentera un réseau par un graphe G=(V,E)

- \rightarrow Ensemble de noeuds V (a.k.a. entités, sommets)
- \rightarrow Ensemble de liens E entre eux (a.k.a. relations, arêtes)


On représentera un réseau par un graphe G=(V,E)

- \rightarrow Ensemble de noeuds V (a.k.a. entités, sommets)
- \rightarrow Ensemble de liens E entre eux (a.k.a. relations, arêtes)

On représentera un réseau par un graphe G = (V, E)

- \rightarrow Ensemble de noeuds V (a.k.a. entités, sommets)
- \rightarrow Ensemble de liens E entre eux (a.k.a. relations, arêtes)

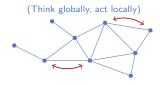
Complex networks

- → compute global metrics
- → explain and reproduce phenomena

Communication networks

- \rightarrow design interactions among entities
- ightarrow study what can be done from within

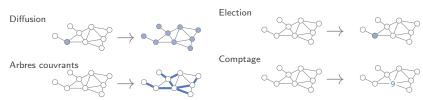
 $({\sf distributed\ algorithms})$


Algorithmique distribuée dans les réseaux

(Think globally, act locally)

Collaboration d'entités distinctes pour réaliser une tâche commune.

Pas de centralisation.


Algorithmique distribuée dans les réseaux

Collaboration d'entités distinctes pour réaliser une tâche commune.

Pas de centralisation.

Exemples de problèmes:

Autres problèmes: consensus, nommage, routage, exploration, ensembles indépendents, \dots

(non spécifiquement dynamiques)

Réseaux de capteurs

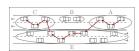
(agrégation hiérarchique, graphes aléatoires, seuils de connexité)

Réseaux de capteurs

(agrégation hiérarchique, graphes aléatoires, seuils de connexité)

- ightarrow Exemple d'algo récursif dans un arbre d'agrégation:
- 1) attendre la valeur captée par les enfants, 2) "agréger" les valeurs, 3) transmettre au parent

Réseaux de capteurs



(agrégation hiérarchique, graphes aléatoires, seuils de connexité)

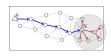
- ightarrow Exemple d'algo récursif dans un arbre d'agrégation:
- 1) attendre la valeur captée par les enfants, 2) "agréger" les valeurs, 3) transmettre au parent

Routage géographique

(information localisée, géorouting, géocasting)

(non spécifiquement dynamiques)

Réseaux de capteurs



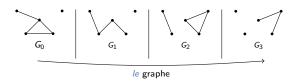
(agrégation hiérarchique, graphes aléatoires, seuils de connexité)

- ightarrow Exemple d'algo récursif dans un arbre d'agrégation:
- 1) attendre la valeur captée par les enfants, 2) "agréger" les valeurs, 3) transmettre au parent

Routage géographique

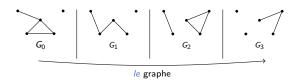
(information localisée, géorouting, géocasting)

→ Exemple d'algo de géorouting : transmettre au voisin le plus proche de la destination (répéter)

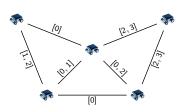

Représentation du réseau

Représentation du réseau

Un modèle simple : une suite de graphe $\mathcal{G}=\textit{G}_{0},\,\textit{G}_{1},...$

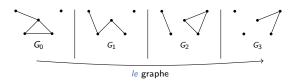


Représentation du réseau



Autre modèle: graphe muni d'une fonction de présence:

$$\begin{split} \mathcal{G} &= (V, E, \mathcal{T}, \rho) \\ &- \mathcal{T} \subseteq \mathbb{N}/\mathbb{R} \text{ (lifetime)} \\ &- \rho : E \times \mathcal{T} \to \{0, 1\} \text{ (fonction de présence)} \\ &[+ \text{ autres fonctions]} \end{split}$$


Différentes terminologies :

dynamic graphs, time-varying graphs, evolving graphs, temporal graphs, etc.

Représentation du réseau



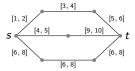
Autre modèle: graphe muni d'une fonction de présence:

$$\begin{split} \mathcal{G} &= (V, E, \mathcal{T}, \rho) \\ &- \mathcal{T} \subseteq \mathbb{N}/\mathbb{R} \text{ (lifetime)} \\ &- \rho : E \times \mathcal{T} \to \{0, 1\} \text{ (fonction de présence)} \\ &[+ \text{ autres fonctions]} \end{split}$$

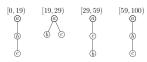
Différentes terminologies :

dynamic graphs, time-varying graphs, evolving graphs, temporal graphs, etc.

Trajets (chemins à travers le temps)

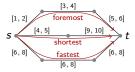

→ Connexité temporelle

Trajets (chemins à travers le temps)

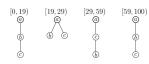


→ Connexité temporelle

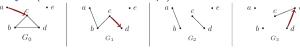
Distance temporelle et plus courts chemins

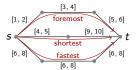


Trajets (chemins à travers le temps)

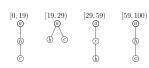


 \rightarrow Connexité temporelle


Distance temporelle et plus courts chemins



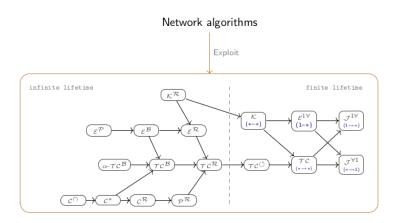
Trajets (chemins à travers le temps)



→ Connexité temporelle

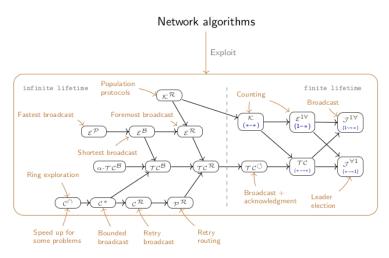
Distance temporelle et plus courts chemins

Re-définition de problèmes classiques (2 exemples)


Élection

(Classes de graphes dynamiques)

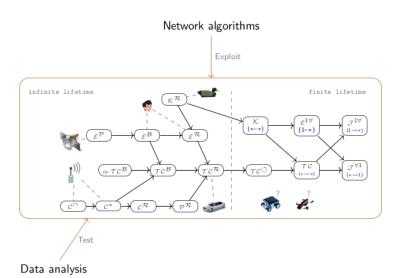
Ex: Les liens réapparaissent-ils ? Sont-ils périodiques ? Tout le monde peut-il joindre tout le monde indirectement ? Et directement ? Le réseau est-il toujours connexe ?


(Classes de graphes dynamiques)

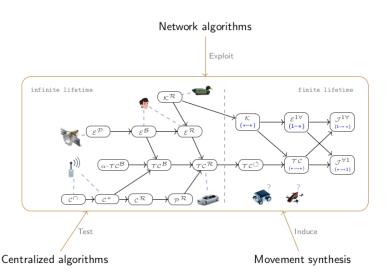
Ex: Les liens réapparaissent-ils ? Sont-ils périodiques ? Tout le monde peut-il joindre tout le monde indirectement ? Et directement ? Le réseau est-il toujours connexe ?

(Classes de graphes dynamiques)

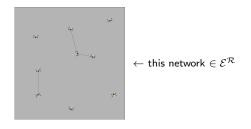
Ex: Les liens réapparaissent-ils ? Sont-ils périodiques ? Tout le monde peut-il joindre tout le monde indirectement ? Et directement ? Le réseau est-il toujours connexe ?



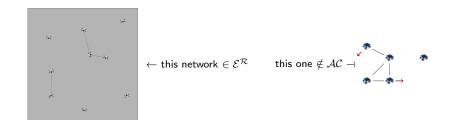
→ Impact sur les problèmes et les algorithmes ?


(Classes de graphes dynamiques)

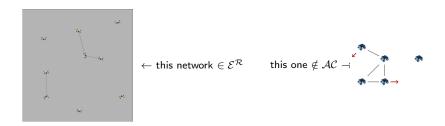
Ex: Les liens réapparaissent-ils ? Sont-ils périodiques ? Tout le monde peut-il joindre tout le monde indirectement ? Et directement ? Le réseau est-il toujours connexe ?


(Classes de graphes dynamiques)

Ex: Les liens réapparaissent-ils ? Sont-ils périodiques ? Tout le monde peut-il joindre tout le monde indirectement ? Et directement ? Le réseau est-il toujours connexe ?


Mouvements collectifs qui induisent des propriétés temporelles

Synthétiser des mouvements collectifs (a.k.a. modèles de mobilités) qui garantissent des propriétés sur le graphe dynamique induit.

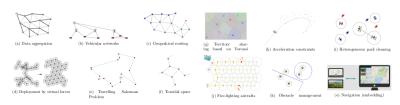

Mouvements collectifs qui induisent des propriétés temporelles

Synthétiser des mouvements collectifs (a.k.a. modèles de mobilités) qui garantissent des propriétés sur le graphe dynamique induit.

Mouvements collectifs qui induisent des propriétés temporelles

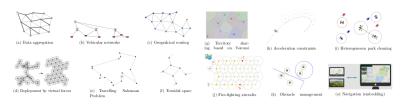
Synthétiser des mouvements collectifs (a.k.a. modèles de mobilités) qui garantissent des propriétés sur le graphe dynamique induit.

Objectif double:


- ▷ Le modèle de mobilité lui-même
- De Combiné à la réalisation d'une mission collective (p.ex. exploration)

Une cible intéressante: $\mathcal{TC}^{\mathcal{B}}$ (diamètre temporel borné) o détection de crash

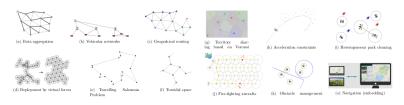
JBotSim

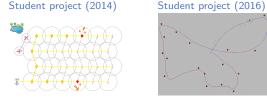

Prototyping library for designing algorithms in dynamic networks

Interactive, extensible, event-driven programming (java)

JBotSim

Prototyping library for designing algorithms in dynamic networks


Interactive, extensible, event-driven programming (java)


- + Réseaux véhiculaires (2018)
- + Exploration par des Fourmis (2019)

JBotSim

Prototyping library for designing algorithms in dynamic networks

Interactive, extensible, event-driven programming (java)

- + Réseaux véhiculaires (2018)
- + Exploration par des Fourmis (2019)

Projet cette année ?

- → Exploration collective avec obstacles et accélération ?
- → Autres idées ?