Data analysis — What data and what to look for?

Input: Real-world data from mobile networks (e.g. CRAWDAD datasets)

3 L B _» j)’b
Question: Can we detect basic temporal features? ’ I *



Data analysis — What data and what to look for?

Input: Real-world data from mobile networks (e.g. CRAWDAD datasets)
’

PRE & :,Jj}o
Question: Can we detect basic temporal features? & :j\ iP ’
.

Examples of properties (seen previously):
1. J: At least one node can reach all the others through a journey (1 ~» x),

. TC: All nodes can reach each other through journeys (x ~ %),

2
3. E'Y: At least one node shares at some point an edge with every other (1 — x),
4. K: All pairs of nodes share at some point an edge (x — *),

5

. T At least one node can be reached by all others through a journey (x ~~ 1),
6. J'>: At least one node can reach all the others through a strict journey (1 N *),

7. TC>: All nodes can reach each other through strict journeys (* & *).



Data analysis — Defining intermediate objects
Input: G = {Gy, ..., Gk}, with G; = (V, E}).



Data analysis — Defining intermediate objects
Input: G = {Gy, ..., Gk}, with G; = (V, E}).

(1) The footprint

The footprint of G is the (static) graph G = (V/, E) such that E = U;E;. Here, we can assume

that V; does not vary.

For example: this temporal graph... ... has footprint

a c ee a c .e a c e as c e a e
b d b d b d be d
Gy b d

G Gy G3



Data analysis — Defining intermediate objects
Input: G = {Gy, ..., Gk}, with G; = (V, E}).

(1) The footprint

The footprint of G is the (static) graph G = (V/, E) such that E = U;E;. Here, we can assume
that V; does not vary.

For example: this temporal graph... ... has footprint
a c .e a c .e a c e as c e a e
b d b d b d be d
G Gy Gs Ga b dJ

(2) The transitive closure of journeys

— — —
The transitive closure of the journeys is the directed graph G = (V, E) such that (u,v) € E if
and only if there is a journey from u to v in G. We distinguish between strict and non-strict
transitive closures, depending on the type of journeys allowed.

For example, this temporal graph... ...has strict transitive closure




Data analysis — Using the intermediate objects

Now, we have the following equivalences:

JW <= The transitive closure contains an out-dominating set of size 1.

J"! = The transitive closure contains an in-dominating set of size 1.

J> <= The strict transitive closure contains an out-dominating set of size 1.
TC <= The transitive closure is a complete graph.

TC> <= The strict transitive closure is a complete graph.

EVY = The footprint contains a dominating set of size 1 (a.k.a. universal vertex).

vVVvyVYyVvYyVvVvyyvyy

KC <=> The footprint is a complete graph.



Data analysis — Using the intermediate objects

Now, we have the following equivalences:

JW <= The transitive closure contains an out-dominating set of size 1.

J"! = The transitive closure contains an in-dominating set of size 1.

J> <= The strict transitive closure contains an out-dominating set of size 1.
TC <= The transitive closure is a complete graph.

TC> <= The strict transitive closure is a complete graph.

EVY = The footprint contains a dominating set of size 1 (a.k.a. universal vertex).

vVVvyVYyVvYyVvVvyyvyy

KC <=> The footprint is a complete graph.

— Queries can be answered trivially once the intermediate objects are computed!



Exercises: how to compute these objects?

Solutions to the exercises

In all algorithms, the input G is given as a sequence {Gi, ..., G}, with G; = (V, E;).

Algorithm 1 Computing the footprint

1: E < 0 // edges of the footprint

2: for all G; € G do

3: for all e € E; do

4: E+ EUe

5: return (V, E) // the footprint graph




Exercises: how to compute these objects?

Solutions to the exercises

In all algorithms, the input G is given as a sequence {Gi, ..., G}, with G; = (V, E;).

Algorithm 3 Computing the footprint

1: E < 0 // edges of the footprint

2: forall G; € G do

3: for all e € E; do

4: E+ EUe

5: return (V, E) // the footprint graph

Algorithm 4 Computing the strict transitive closure

1. T < (V,0) // initial transitive closure

2: for all G; € G do

3: Thew < copy(T)

4 for all (u, v) € E; // manipulated as a directed graph do
5 for all w such that (w, u) € E(T) do

6: E(Toew) = E(Thew) U (w, v)

7 E(Thew) < E(Thew) U (u, v)

8: return T




Solutions to exercises (2)

Algorithm 3 Computing the transitive closure for non-strict journeys

— 2 steps:
1. Pre-process each graph of the sequence by saturating the connected components

Pre-processing 1

2. Then runs the previous algorithm for strict transitive closure on this new sequence.

— There is an arc in the result if and only if there is a (possibly non-strict) journey in G.



