Data analysis - What data and what to look for?

Input: Real-world data from mobile networks (e.g. CRAWDAD datasets)

Question: Can we detect basic temporal features?

<□ ▶ < @ ▶ < E ▶ < E ▶ E の Q ↔ 1/5

Data analysis - What data and what to look for?

Input: Real-world data from mobile networks (e.g. CRAWDAD datasets)

Question: Can we detect basic temporal features?

<□ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ E のQ @ 1/5

Examples of properties (seen previously):

- 1. $\mathcal{J}^{1\forall}$: At least one node can reach all the others through a journey (1 \rightsquigarrow *),
- 2. TC: All nodes can reach each other through journeys (* \rightsquigarrow *),
- 3. $\mathcal{E}^{1orall}$: At least one node shares at some point an edge with every other (1 *),
- 4. \mathcal{K} : All pairs of nodes share at some point an edge (* *),
- 5. $\mathcal{J}^{\forall 1}$: At least one node can be reached by all others through a journey (* \rightsquigarrow 1),
- 6. $\mathcal{J}^{1\forall>}$: At least one node can reach all the others through a strict journey $(1 \stackrel{st}{\rightsquigarrow} *)$,
- 7. $TC^>$: All nodes can reach each other through strict journeys (* $\stackrel{st}{\rightsquigarrow}$ *).

Data analysis - Defining intermediate objects

Input: $G = \{G_1, ..., G_k\}$, with $G_i = (V, E_i)$.

Data analysis - Defining intermediate objects

Input:
$$G = \{G_1, ..., G_k\}$$
, with $G_i = (V, E_i)$.

(1) The footprint

The *footprint* of G is the (static) graph G = (V, E) such that $E = \bigcup_i E_i$. Here, we can assume that V_i does not vary.

For example: this temporal graph...

... has footprint

Data analysis - Defining intermediate objects

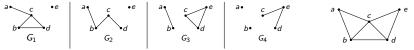
Input:
$$G = \{G_1, ..., G_k\}$$
, with $G_i = (V, E_i)$.

(1) The footprint

The *footprint* of G is the (static) graph G = (V, E) such that $E = \bigcup_i E_i$. Here, we can assume that V_i does not vary.

For example: this temporal graph...

... has footprint

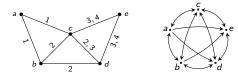


(2) The transitive closure of journeys

The *transitive closure* of the journeys is the <u>directed</u> graph $\vec{G} = (V, \vec{E})$ such that $(u, v) \in \vec{E}$ if and only if there is a journey from u to v in G. We distinguish between *strict* and *non-strict* transitive closures, depending on the type of journeys allowed.

For example, this temporal graph...

...has strict transitive closure



◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ ● ○ Q · 2/5

Data analysis - Using the intermediate objects

Now, we have the following equivalences:

- $\mathcal{J}^{1\forall} \iff$ The transitive closure contains an out-dominating set of size 1.
- $\mathcal{J}^{\forall 1} \iff$ The transitive closure contains an in-dominating set of size 1.
- $\mathcal{J}^{1\forall>} \iff$ The strict transitive closure contains an out-dominating set of size 1.
- $TC \iff$ The transitive closure is a complete graph.
- $TC^> \iff$ The strict transitive closure is a complete graph.
- ▶ $\mathcal{E}^{1\forall}$ \iff The footprint contains a dominating set of size 1 (*a.k.a.* universal vertex).

<□▶ < □▶ < 三▶ < 三▶ = ● のへで 3/5

 $\blacktriangleright \ \mathcal{K} \iff \text{The footprint is a complete graph.}$

Data analysis - Using the intermediate objects

Now, we have the following equivalences:

- $\mathcal{J}^{1\forall} \iff$ The transitive closure contains an out-dominating set of size 1.
- $\mathcal{J}^{\forall 1} \iff$ The transitive closure contains an in-dominating set of size 1.
- $\mathcal{J}^{1\forall>} \iff$ The strict transitive closure contains an out-dominating set of size 1.
- $TC \iff$ The transitive closure is a complete graph.
- $TC^> \iff$ The strict transitive closure is a complete graph.
- ▶ $\mathcal{E}^{1\forall}$ \iff The footprint contains a dominating set of size 1 (*a.k.a.* universal vertex).
- $\blacktriangleright \ \mathcal{K} \iff \text{The footprint is a complete graph.}$
- \rightarrow Queries can be answered trivially once the intermediate objects are computed!

<□ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 の Q @ 3/5

Exercises: how to compute these objects?

Solutions to the exercises

In all algorithms, the input G is given as a sequence $\{G_1, ..., G_k\}$, with $G_i = (V, E_i)$.

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 の < ℃ 4/5

Algorithm 1 Computing the footprint

1: $E \leftarrow \emptyset$ // edges of the footprint 2: for all $G_i \in \mathcal{G}$ do 3: for all $e \in E_i$ do 4: $E \leftarrow E \cup e$ 5: return (V, E) // the footprint graph

Exercises: how to compute these objects?

Solutions to the exercises

In all algorithms, the input G is given as a sequence $\{G_1, ..., G_k\}$, with $G_i = (V, E_i)$.

Algorithm 3 Computing the footprint

1: $E \leftarrow \emptyset$ // edges of the footprint 2: for all $G_i \in \mathcal{G}$ do 3: for all $e \in E_i$ do 4: $E \leftarrow E \cup e$ 5: return (V, E) // the footprint graph

Algorithm 4 Computing the strict transitive closure

1: $T \leftarrow (V, \emptyset) //$ initial transitive closure

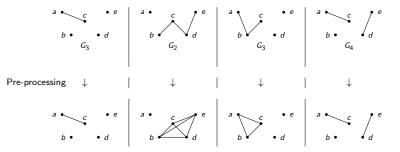
2: for all $G_i \in \mathcal{G}$ do 3: $T_{new} \leftarrow copy(T)$ 4: for all $(u, v) \in E_i$ // manipulated as a directed graph do 5: for all w such that $(w, u) \in E(T)$ do 6: $E(T_{new}) \leftarrow E(T_{new}) \cup (w, v)$ 7: $E(T_{new}) \leftarrow E(T_{new}) \cup (u, v)$

8: return T

Solutions to exercises (2)

Algorithm 3 Computing the transitive closure for non-strict journeys

- \rightarrow 2 steps:
 - 1. Pre-process each graph of the sequence by saturating the connected components



2. Then runs the previous algorithm for *strict* transitive closure on this new sequence. \rightarrow There is an arc in the result if and only if there is a (possibly non-strict) journey in \mathcal{G} .