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Data analysis – What data and what to look for?

Input: Real-world data from mobile networks (e.g. CRAWDAD datasets)

Question: Can we detect basic temporal features?

Examples of properties (seen previously):

1. J 1∀: At least one node can reach all the others through a journey (1 ∗),

2. T C: All nodes can reach each other through journeys (∗ ∗),

3. E1∀: At least one node shares at some point an edge with every other (1− ∗),

4. K: All pairs of nodes share at some point an edge (∗ − ∗),

5. J ∀1: At least one node can be reached by all others through a journey (∗ 1),

6. J 1∀>: At least one node can reach all the others through a strict journey (1
st
 ∗),

7. T C>: All nodes can reach each other through strict journeys (∗ st
 ∗).
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Data analysis – Defining intermediate objects

Input: G = {G1, ...,Gk}, with Gi = (V ,Ei ).

(1) The footprint
The footprint of G is the (static) graph G = (V , E) such that E = ∪iEi . Here, we can assume
that Vi does not vary.

For example: this temporal graph... ... has footprint
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(2) The transitive closure of journeys

The transitive closure of the journeys is the directed graph
→
G = (V ,

→
E ) such that (u, v) ∈

→
E if

and only if there is a journey from u to v in G. We distinguish between strict and non-strict
transitive closures, depending on the type of journeys allowed.

For example, this temporal graph... ...has strict transitive closure
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Data analysis – Using the intermediate objects

Now, we have the following equivalences:

I J 1∀ ⇐⇒ The transitive closure contains an out-dominating set of size 1.

I J ∀1 ⇐⇒ The transitive closure contains an in-dominating set of size 1.

I J 1∀> ⇐⇒ The strict transitive closure contains an out-dominating set of size 1.

I T C ⇐⇒ The transitive closure is a complete graph.

I T C> ⇐⇒ The strict transitive closure is a complete graph.

I E1∀ ⇐⇒ The footprint contains a dominating set of size 1 (a.k.a. universal vertex).

I K ⇐⇒ The footprint is a complete graph.

→ Queries can be answered trivially once the intermediate objects are computed!
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Exercises: how to compute these objects?

Solutions to the exercises

In all algorithms, the input G is given as a sequence {G1, ...,Gk}, with Gi = (V ,Ei ).

Algorithm 1 Computing the footprint

1: E ← ∅ // edges of the footprint
2: for all Gi ∈ G do
3: for all e ∈ Ei do
4: E ← E ∪ e
5: return (V , E) // the footprint graph

Algorithm 2 Computing the strict transitive closure

1: T ← (V , ∅) // initial transitive closure
2: for all Gi ∈ G do
3: Tnew ← copy(T )
4: for all (u, v) ∈ Ei // manipulated as a directed graph do
5: for all w such that (w , u) ∈ E(T ) do
6: E(Tnew )← E(Tnew ) ∪ (w , v)
7: E(Tnew )← E(Tnew ) ∪ (u, v)
8: return T
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Solutions to exercises (2)

Algorithm 3 Computing the transitive closure for non-strict journeys

→ 2 steps:

1. Pre-process each graph of the sequence by saturating the connected components
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2. Then runs the previous algorithm for strict transitive closure on this new sequence.

→ There is an arc in the result if and only if there is a (possibly non-strict) journey in G.


