Distributed Computing in Dynamic Networks — Impact of the dynamics on definitions and feasibility

Arnaud Casteigts

University of Bordeaux

Distributed Computing

Collaboration of distinct entities to perform a common task.

No centralization available. Direct interaction.

(Think globally, act locally)

Broadcast

Propagating a piece of information from one node to all others.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Election

Distinguishing exactly one node among all.

Consensus, naming, routing, exploration, ...

伺い イヨン イヨン

(a) Message passing

Atomic interaction

(Population protocols (*Angluin et al., 2004*); Graph relabeling systems (*Litovsky et al., 1999*))

$$\mathsf{Ex}: \overset{T}{\longrightarrow} \overset{N}{\longrightarrow} \overset{T}{\longrightarrow} \overset{T}{\longrightarrow}$$

A (10) A (10)

(Population protocols (Angluin et al., 2004); Graph relabeling systems (Litovsky et al., 1999))

Atomic interaction

Ν

N

Ň

Atomic interaction

(Population protocols (Angluin et al., 2004); Graph relabeling systems (Litovsky et al., 1999))

Ν

N

N

Atomic interaction

(Population protocols (Angluin et al., 2004); Graph relabeling systems (Litovsky et al., 1999))

Ν

N

т

(Population protocols (Angluin et al., 2004); Graph relabeling systems (Litovsky et al., 1999))

Ν

N

Atomic interaction

Atomic interaction

(Population protocols (Angluin et al., 2004); Graph relabeling systems (Litovsky et al., 1999))

Ν

N

т

Atomic interaction

(Population protocols (*Angluin et al., 2004*); Graph relabeling systems (*Litovsky et al., 1999*))

Ν

N

т

Atomic interaction

(Population protocols (*Angluin et al., 2004*); Graph relabeling systems (*Litovsky et al., 1999*))

Ν

т

Ν

Atomic interaction

(Population protocols (*Angluin et al., 2004*); Graph relabeling systems (*Litovsky et al., 1999*))

Ν

т

Ν

Atomic interaction

(Population protocols (*Angluin et al., 2004*); Graph relabeling systems (*Litovsky et al., 1999*))

Atomic interaction

(Population protocols (*Angluin et al., 2004*); Graph relabeling systems (*Litovsky et al., 1999*))

Atomic interaction

(Population protocols (*Angluin et al., 2004*); Graph relabeling systems (*Litovsky et al., 1999*))

Atomic interaction (Population protocols (Angluin et al., 2004); Graph relabeling systems (Litovsky et al., 1999)) Ex : $\stackrel{T}{\longrightarrow} \stackrel{N}{\longrightarrow} \stackrel{T}{\longrightarrow} \stackrel{T}{\longrightarrow} \stackrel{T}{\longrightarrow}$

Note : Scheduling is not part of the algorithm !

 \rightarrow Can be adversarial, randomized, etc.

Atomic interaction (Population protocols (Angluin et al., 2004); Graph relabeling systems (Litovsky et al., 1999)) Ex : $\stackrel{T}{\longrightarrow} \longrightarrow \stackrel{T}{\longrightarrow} \stackrel{T}{\longrightarrow} \stackrel{T}{\longrightarrow}$

Note : Scheduling is not part of the algorithm !

 \rightarrow Can be adversarial, randomized, etc.

Atomic interaction (Population protocols (Angluin et al., 2004); Graph relabeling systems (Litovsky et al., 1999)) Ex : $\stackrel{T}{\longrightarrow} \stackrel{T}{\longrightarrow} \stackrel{T}{\longrightarrow} \stackrel{T}{\longrightarrow}$

Note : Scheduling is not part of the algorithm !

 \rightarrow Can be adversarial, randomized, etc.

イロト イポト イヨト イヨト

2

In fact, *highly* dynamic networks.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

In fact, highly dynamic networks.

How changes are perceived?

- Faults and Failures ?
- Nature of the system. Change is normal.
- Partitioned network

In fact, highly dynamic networks.

How changes are perceived ?

- Faults and Failures ?
- Nature of the system. Change is normal.
- Partitioned network

In fact, highly dynamic networks.

How changes are perceived ?

- Faults and Failures ?
- Nature of the system. Change is normal.
- Partitioned network

In fact, highly dynamic networks.

How changes are perceived ?

- Faults and Failures ?
- Nature of the system. Change is normal.
- Partitioned network

In fact, highly dynamic networks.

How changes are perceived ?

- Faults and Failures ?
- Nature of the system. Change is normal.
- Partitioned network

In fact, highly dynamic networks.

How changes are perceived ?

- Faults and Failures ?
- Nature of the system. Change is normal.
- Partitioned network

Dynamic networks?

In fact, highly dynamic networks.

How changes are perceived ?

- Faults and Failures ?
- Nature of the system. Change is normal.
- Partitioned network

Example of scenario (say, exploration by mobile robots)

Dynamic networks?

In fact, highly dynamic networks.

How changes are perceived?

- Faults and Failures ?
- Nature of the system. Change is normal.
- Partitioned network

Example of scenario (say, exploration by mobile robots)

Also called evolving graphs or time-varying graphs.

伺 ト イヨ ト イヨ ト

Also called evolving graphs or time-varying graphs.

Global point of view

Sequence of static graphs $\mathcal{G} = G_0, G_1, ...$ [+table of dates in \mathbb{T}]

Also called evolving graphs or time-varying graphs.

Global point of view

Sequence of static graphs $\mathcal{G} = G_0, G_1, ...$ [+table of dates in \mathbb{T}]

Local point of view

 $\mathcal{G} = (V, E, \mathcal{T}, \rho),$ with ρ being a *presence function* $\rho : E \times \mathcal{T} \rightarrow \{0, 1\}$

Also called evolving graphs or time-varying graphs.

Global point of view

Sequence of static graphs $\mathcal{G} = G_0, G_1, ...$ [+table of dates in T]

Local point of view

 $\mathcal{G} = (V, E, \mathcal{T}, \rho),$ with ρ being a *presence function* $\rho : E \times \mathcal{T} \rightarrow \{0, 1\}$ a 10, 1) c (2, 4) e b (0, 1) d

 \rightarrow Both are theoretically equivalent if ρ is countable (e.g. not like this $-++++\rightarrow$)

Also called evolving graphs or time-varying graphs.

Global point of view

Sequence of static graphs $\mathcal{G} = G_0, G_1, ...$ [+table of dates in T]

Local point of view

 $\begin{aligned} \mathcal{G} &= (V, E, \mathcal{T}, \rho), \\ \text{with } \rho \text{ being a presence function} \\ \rho &: E \times \mathcal{T} \to \{0, 1\} \end{aligned}$

 \rightarrow Both are theoretically equivalent if ρ is countable (e.g. not like this $-++++\rightarrow$)

 \rightarrow Further extensions possible (latency function, node-presence function, ...)

Also called evolving graphs or time-varying graphs.

Global point of view

Sequence of static graphs $\mathcal{G} = G_0, G_1, ...$ [+table of dates in T]

Local point of view

 $\begin{aligned} \mathcal{G} &= (V, E, \mathcal{T}, \rho), \\ \text{with } \rho \text{ being a presence function} \\ \rho &: E \times \mathcal{T} \to \{0, 1\} \end{aligned}$

a (0, 1) c (2, A) e , 0, 1) c (2, A) e b (0, 1) d

- 4 回 ト 4 回 ト

 \rightarrow Both are theoretically equivalent if ρ is countable (e.g. not like this \rightarrow

 \rightarrow Further extensions possible (latency function, node-presence function, ...)

For references, see (Ferreira, 2004) and (C., Flocchini, Quattrociocchi, Santoro, 2012)

2

∃ ► < ∃ ►</p>

 \implies Paths become temporal (*journey*)

Ex : $((ac, t_1), (cd, t_2), (de, t_3))$ with $t_{i+1} \ge t_i$ and $\rho(e_i, t_i) = 1$

⇒ Paths become temporal (*journey*) Ex : ((*ac*, t_1), (*cd*, t_2), (*de*, t_3)) with $t_{i+1} \ge t_i$ and $\rho(e_i, t_i) = 1$

 \implies Temporal connectivity. Not symmetrical ! (e.g. $a \rightsquigarrow e$, but $e \not \rightarrow a$)

- ⇒ Paths become temporal (*journey*) Ex : ((*ac*, t_1), (*cd*, t_2), (*de*, t_3)) with $t_{i+1} \ge t_i$ and $\rho(e_i, t_i) = 1$
- \implies Temporal connectivity. Not symmetrical ! (e.g. $a \rightsquigarrow e$, but $e \not \rightsquigarrow a$)
- ⇒ *Strict* journeys *vs. non-strict* journeys. (Important for analysis.)

- ⇒ Paths become temporal (*journey*) Ex : ((*ac*, t_1), (*cd*, t_2), (*de*, t_3)) with $t_{i+1} \ge t_i$ and $\rho(e_i, t_i) = 1$
- \implies Temporal connectivity. Not symmetrical ! (e.g. $a \rightsquigarrow e$, but $e \not \prec a$)
- ⇒ *Strict* journeys *vs. non-strict* journeys. (Important for analysis.)

- ⇒ Paths become temporal (*journey*) Ex : ((*ac*, t_1), (*cd*, t_2), (*de*, t_3)) with $t_{i+1} \ge t_i$ and $\rho(e_i, t_i) = 1$
- \implies Temporal connectivity. Not symmetrical ! (e.g. $a \rightsquigarrow e$, but $e \not \rightsquigarrow a$)
- ⇒ *Strict* journeys *vs. non-strict* journeys. (Important for analysis.)

- ⇒ Paths become temporal (*journey*) Ex : ((*ac*, t_1), (*cd*, t_2), (*de*, t_3)) with $t_{i+1} \ge t_i$ and $\rho(e_i, t_i) = 1$
- \implies Temporal connectivity. Not symmetrical ! (e.g. $a \rightsquigarrow e$, but $e \not \rightsquigarrow a$)
- ⇒ *Strict* journeys *vs. non-strict* journeys. (Important for analysis.)
- In the literature : Schedule-conforming path (Berman, 1996); Time-respecting path (Kempe et al., 2008; Holme, 2005); Temporal path (Chaintreau et al., 2008); Journey (Bui-Xuan et al., 2003).

- ⇒ Paths become temporal (*journey*) Ex : ((*ac*, t_1), (*cd*, t_2), (*de*, t_3)) with $t_{i+1} \ge t_i$ and $\rho(e_i, t_i) = 1$
- \implies Temporal connectivity. Not symmetrical ! (e.g. $a \rightsquigarrow e$, but $e \not \rightsquigarrow a$)
- ⇒ *Strict* journeys *vs. non-strict* journeys. (Important for analysis.)

In the literature : Schedule-conforming path (Berman, 1996); Time-respecting path (Kempe et al., 2008; Holme, 2005); Temporal path (Chaintreau et al., 2008); Journey (Bui-Xuan et al., 2003).

Many other concepts... (ask me !).

Topological assumptions for distributed algorithms

Feasibility, Necessary and sufficient conditions, ...

Ex : Broadcast algorithm $\bullet \longrightarrow \bullet \longrightarrow \bullet$

Ex : Broadcast algorithm $\bullet \longrightarrow \bullet \longrightarrow \bullet$

15/20

• • • • • • • •

Ex : Broadcast algorithm $\bullet \longrightarrow \bullet \longrightarrow \bullet$

Lucky version.

Ex : Broadcast algorithm $\bullet \frown \circ \to \bullet \frown \bullet$

Lucky version.

Lucky version.

Lucky version. Yeah !!

But things could have gone differently.

Ex : Broadcast algorithm $\bullet \multimap \to \bullet \multimap$ G_0 G_1 G_2 G_3

But things could have gone differently.

But things could have gone differently.

But things could have gone differently. Too late !

Ex : Broadcast algorithm $\bullet \multimap \to \bullet \bullet$

But things could have gone differently. Too late !

Ex : Broadcast algorithm $\bullet \multimap \to \bullet \bullet$

But things could have gone differently. Too late !

But things could have gone differently. Too late ! Failure !

Ex : Broadcast algorithm $\bullet \longrightarrow \bullet \longrightarrow \bullet$

Or even worse ..

Ex : Broadcast algorithm $\bullet \frown \circ \to \bullet \frown \bullet$

Or even worse.. Too fast !

Ex : Broadcast algorithm $\bullet \longrightarrow \bullet \longrightarrow \bullet$

Or even worse.. Too fast ! Too fast !

Ex : Broadcast algorithm $\bullet \longrightarrow \bullet \to \bullet$

Or even worse.. Too fast ! Too fast ! Failure !

Ex : Broadcast algorithm $\bullet \multimap \to \bullet \bullet \bullet$

 \implies Additional assumptions needed to guarantee something.

Ex : Broadcast algorithm $\bullet \frown \circ \rightarrow \bullet \frown \bullet$

 \implies Additional assumptions needed to guarantee something.

Assumption : Every present edge is "selected" at least once (but we don't know in what order...)

 \implies Additional assumptions needed to guarantee something.

Assumption : Every present edge is "selected" at least once (but we don't know in what order...)

 \rightarrow Now, is the success guaranteed ?

 \implies Additional assumptions needed to guarantee something.

Assumption : Every present edge is "selected" at least once (but we don't know in what order...)

- \rightarrow Now, is the success guaranteed ?
- \rightarrow Is the success possible ?

 \implies Additional assumptions needed to guarantee something.

Assumption : Every present edge is "selected" at least once (but we don't know in what order...)

- \rightarrow Now, is the success <code>guaranteed</code> ?
- \rightarrow Is the success <code>possible</code> ? Of course, but why ?

 \implies Additional assumptions needed to guarantee something.

Assumption : Every present edge is "selected" at least once (but we don't know in what order...)

- \rightarrow Now, is the success <code>guaranteed</code> ?
- \rightarrow Is the success <code>possible</code> ? Of course, but why ?

Because (src → *)

 \implies Additional assumptions needed to guarantee something.

Assumption : Every present edge is "selected" at least once (but we don't know in what order...)

- \rightarrow Now, is the success guaranteed ? Why not ?
- \rightarrow Is the success <code>possible</code> ? Of course, but why ?

Because (src → *)

 \implies Additional assumptions needed to guarantee something.

Assumption : Every present edge is "selected" at least once (but we don't know in what order...)

 \rightarrow Now, is the success <u>guaranteed</u>? Why not?

 \rightarrow Is the success possible? Of course, but why?

Because \neg (*src* $\stackrel{st}{\rightsquigarrow} *$) Because (*src* $\rightsquigarrow *$)

 \implies Additional assumptions needed to guarantee something.

Assumption : Every present edge is "selected" at least once (but we don't know in what order...)

Notions of *necessary condition* (e.g. $src \rightsquigarrow *$) or *sufficient condition* (e.g. $src \stackrel{st}{\rightsquigarrow} *$) for a given algorithm. These conditions relate only to the topology.

Ex : Broadcast algorithm $\bullet \circ \to \bullet \bullet$

 \implies Additional assumptions needed to guarantee something.

Assumption : Every present edge is "selected" at least once (but we don't know in what order...)

→ Now, is the success guaranteed? Why not? Because $\neg(src \stackrel{st}{\rightsquigarrow} *)$ → Is the success possible? Of course, but why? Because $(src \rightsquigarrow *)$

Notions of *necessary condition* (e.g. $src \rightsquigarrow *$) or *sufficient condition* (e.g. $src \stackrel{st}{\rightsquigarrow} *$) for a given algorithm. These conditions relate only to the topology.

More formally ...

An execution is an alternated sequence of interactions and topological events :

 $X = \mathcal{I}_k \circ Event_{k-1} \circ .. \circ Event_2 \circ \mathcal{I}_2 \circ Event_1 \circ \mathcal{I}_1(G_0)$

An execution is an alternated sequence of interactions and topological events :

 $X = \mathcal{I}_k \circ Event_{k-1} \circ .. \circ Event_2 \circ \mathcal{I}_2 \circ Event_1 \circ \mathcal{I}_1(G_0)$

Non deterministic !

An execution is an alternated sequence of interactions and topological events :

 $X = \mathcal{I}_k \circ Event_{k-1} \circ .. \circ Event_2 \circ \mathcal{I}_2 \circ Event_1 \circ \mathcal{I}_1(G_0)$

Non deterministic !

 $\rightarrow \mathcal{X}$: set of all possible executions (for a given algorithm and graph \mathcal{G}).

An execution is an alternated sequence of interactions and topological events :

 $X = \mathcal{I}_k \circ Event_{k-1} \circ .. \circ Event_2 \circ \mathcal{I}_2 \circ Event_1 \circ \mathcal{I}_1(G_0)$ Non deterministic !

 $ightarrow \mathcal{X}$: set of all possible executions (for a given algorithm and graph \mathcal{G}).

What makes a graph property \mathcal{P} a necessary or sufficient condition for success on \mathcal{G} ?

 \rightarrow <u>Necessary condition</u> : $\neg \mathcal{P}(\mathcal{G}) \implies \forall X \in \mathcal{X}$, failure(X).

An execution is an alternated sequence of interactions and topological events :

 $X = \mathcal{I}_k \circ Event_{k-1} \circ .. \circ Event_2 \circ \mathcal{I}_2 \circ Event_1 \circ \mathcal{I}_1(G_0)$ Non deterministic !

 $\rightarrow \mathcal{X}$: set of all possible executions (for a given algorithm and graph $\mathcal{G}).$

What makes a graph property \mathcal{P} a necessary or sufficient condition for success on \mathcal{G} ?

- \rightarrow <u>Necessary condition</u> : $\neg \mathcal{P}(\mathcal{G}) \implies \forall X \in \mathcal{X}$, failure(X).
- \rightarrow Sufficient condition : $\mathcal{P}(\mathcal{G}) \implies \forall X \in \mathcal{X}$, success(X).

イロン イロン イヨン イヨン

Necessary condition

 $\rightarrow \mathcal{P}_{\mathcal{N}}$: there exists a journey from the source to all other nodes (noted $\textit{src} \rightsquigarrow *$).

Necessary condition

 $\rightarrow \mathcal{P}_{\mathcal{N}}$: there exists a journey from the source to all other nodes (noted $\textit{src} \rightsquigarrow *$).

Sufficient condition

 $\rightarrow \mathcal{P}_{\mathcal{S}}$: there exists a strict journey from the source to all other nodes (noted src $\stackrel{st}{\rightsquigarrow}$ *).

A D A D A D A

Necessary condition

 $\rightarrow \mathcal{P}_{\mathcal{N}}$: there exists a journey from the source to all other nodes (noted $\textit{src} \rightsquigarrow *$).

Sufficient condition

 $\rightarrow \mathcal{P}_{\mathcal{S}}$: there exists a <u>strict</u> journey from the source to all other nodes (noted *src* $\stackrel{st}{\rightsquigarrow}$ *).

Classes of dynamic graphs

 $\rightarrow \mathcal{C}_1: \mathcal{P}_\mathcal{N}$ is satisfied by at least one node (noted 1 \rightsquigarrow *).

イロン イロン イヨン イヨン

Necessary condition

 $\rightarrow \mathcal{P}_{\mathcal{N}}$: there exists a journey from the source to all other nodes (noted $\textit{src} \rightsquigarrow *$).

Sufficient condition

 $\rightarrow \mathcal{P}_{\mathcal{S}}$: there exists a strict journey from the source to all other nodes (noted src $\stackrel{st}{\rightsquigarrow}$ *).

Classes of dynamic graphs

 $\rightarrow \mathcal{C}_1: \mathcal{P}_\mathcal{N}$ is satisfied by at least one node (noted 1 \rightsquigarrow *).

 $\rightarrow \mathcal{C}_2 : \mathcal{P}_{\mathcal{N}}$ is satisfied by all nodes (* \rightsquigarrow *).

伺い イヨト イヨト

Necessary condition

 $\rightarrow \mathcal{P}_{\mathcal{N}}$: there exists a journey from the source to all other nodes (noted $\textit{src} \rightsquigarrow *$).

Sufficient condition

 $\rightarrow \mathcal{P}_{\mathcal{S}}$: there exists a strict journey from the source to all other nodes (noted src $\stackrel{st}{\rightsquigarrow}$ *).

Classes of dynamic graphs

 $\rightarrow \mathcal{C}_1: \mathcal{P}_\mathcal{N}$ is satisfied by at least one node (noted 1 \rightsquigarrow *).

 $\rightarrow \mathcal{C}_2$: $\mathcal{P}_\mathcal{N}$ is satisfied by all nodes (* \rightsquigarrow *).

 $\rightarrow \mathcal{C}_3 : \mathcal{P}_S$ is satisfied by at least one node (1 $\stackrel{st}{\rightsquigarrow} *$).

向下 イヨト イヨト

Necessary condition

 $\rightarrow \mathcal{P}_{\mathcal{N}}$: there exists a journey from the source to all other nodes (noted $\textit{src} \rightsquigarrow *$).

Sufficient condition

 $\rightarrow \mathcal{P}_{\mathcal{S}}$: there exists a strict journey from the source to all other nodes (noted src $\stackrel{st}{\rightsquigarrow}$ *).

Classes of dynamic graphs

 $\rightarrow \mathcal{C}_1: \mathcal{P}_\mathcal{N}$ is satisfied by at least one node (noted 1 \rightsquigarrow *).

- $\rightarrow \mathcal{C}_2$: $\mathcal{P}_\mathcal{N}$ is satisfied by all nodes (* \rightsquigarrow *).
- $\rightarrow \mathcal{C}_3 : \mathcal{P}_S$ is satisfied by at least one node (1 $\stackrel{st}{\rightsquigarrow} *$).
- $\rightarrow C_4 : \mathcal{P}_S$ is satisfied by all nodes (* $\stackrel{st}{\rightsquigarrow}$ *).

向下 イヨト イヨト

Necessary condition

 $\rightarrow \mathcal{P}_{\mathcal{N}}$: there exists a journey from the source to all other nodes (noted $\textit{src} \rightsquigarrow *$).

Sufficient condition

 $\rightarrow \mathcal{P}_{\mathcal{S}}$: there exists a <u>strict</u> journey from the source to all other nodes (noted *src* $\stackrel{st}{\rightsquigarrow}$ *).

Classes of dynamic graphs

 $\rightarrow \mathcal{C}_1: \mathcal{P}_\mathcal{N}$ is satisfied by at least one node (noted 1 \rightsquigarrow *).

- $\rightarrow \mathcal{C}_2: \mathcal{P}_\mathcal{N}$ is satisfied by all nodes (* \rightsquigarrow *).
- $ightarrow \mathcal{C}_3 : \mathcal{P}_{\mathcal{S}}$ is satisfied by at least one node (1 $\stackrel{st}{\leadsto} *$).
- $\rightarrow C_4 : \mathcal{P}_S$ is satisfied by all nodes (* $\stackrel{st}{\rightsquigarrow}$ *).

Necessary condition

 $\rightarrow \mathcal{P}_{\mathcal{N}}$: there exists a journey from the source to all other nodes (noted $\textit{src} \rightsquigarrow *$).

Sufficient condition

 $\rightarrow \mathcal{P}_{\mathcal{S}}$: there exists a <u>strict</u> journey from the source to all other nodes (noted *src* $\stackrel{st}{\rightsquigarrow}$ *).

Classes of dynamic graphs

 $\rightarrow \mathcal{C}_1: \mathcal{P}_\mathcal{N}$ is satisfied by at least one node (noted 1 \rightsquigarrow *).

- $\rightarrow \mathcal{C}_2: \mathcal{P}_\mathcal{N}$ is satisfied by all nodes (* \rightsquigarrow *).
- $ightarrow \mathcal{C}_3 : \mathcal{P}_{\mathcal{S}}$ is satisfied by at least one node (1 $\stackrel{st}{\leadsto} *$).
- $\rightarrow C_4 : \mathcal{P}_S$ is satisfied by all nodes (* $\stackrel{st}{\rightsquigarrow}$ *).

Counting with a distinguished counter

• Initial states : 1 for the counter, *N* for all other nodes.

 \rightarrow Hopefully, after some time, the counter is labelled *n*.

Counting with a distinguished counter • Initial states : 1 for the counter, N for all other nodes. • Algorithm : • N • i + 1 F

 \rightarrow Hopefully, after some time, the counter is labelled *n*.

伺 ト イヨ ト イヨ ト

Counting with a distinguished counter

• Initial states : 1 for the counter, *N* for all other nodes.

• Algorithm : $\stackrel{i}{\bullet} \stackrel{N}{\longrightarrow} \stackrel{i+1}{\bullet} \stackrel{F}{\bullet}$

 \rightarrow Hopefully, after some time, the counter is labelled *n*.

Necessary or sufficient conditions

 P_N : there exists an edge, at some time, between the counter and every other node.

Counting with a distinguished counter

• Initial states : 1 for the counter, *N* for all other nodes.

• Algorithm : $\stackrel{i}{\bullet} \stackrel{N}{\longrightarrow} \stackrel{i+1}{\bullet} \stackrel{F}{\bullet}$

 \rightarrow Hopefully, after some time, the counter is labelled *n*.

Necessary or sufficient conditions

- P_N : there exists an edge, at some time, between the counter and every other node.
- $\mathcal{P}_{\mathcal{S}} = \mathcal{P}_{\mathcal{N}}.$

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Counting with a distinguished counter

• Initial states : 1 for the counter, *N* for all other nodes.

• Algorithm : $\stackrel{i}{\bullet}$ $\stackrel{N}{\longrightarrow}$ $\stackrel{i+1}{\bullet}$

 \rightarrow Hopefully, after some time, the counter is labelled *n*.

Necessary or sufficient conditions

- P_N : there exists an edge, at some time, between the counter and every other node.
- $\mathcal{P}_{\mathcal{S}} = \mathcal{P}_{\mathcal{N}}.$

Classes of dynamic graphs

 $\rightarrow C_5$: at least one node verifies \mathcal{P} , (noted 1-*).

ヘロン 人間 とくほ とくほ とう

Counting with a distinguished counter

• Initial states : 1 for the counter, *N* for all other nodes.

• Algorithm : • • • • • • • • •

 \rightarrow Hopefully, after some time, the counter is labelled *n*.

Necessary or sufficient conditions

- P_N : there exists an edge, at some time, between the counter and every other node.
- $\mathcal{P}_{\mathcal{S}} = \mathcal{P}_{\mathcal{N}}.$

Classes of dynamic graphs

 $\rightarrow C_5$: at least one node verifies \mathcal{P} , (noted 1-*).

 $\rightarrow C_6$: all the nodes verify \mathcal{P} , (noted *-*).

< 口 > < 同 > < 回 > < 回 > .

Uniform counting (every body is initially a counter)

Initial states : 1 (all nodes).

 \rightarrow Hopefully, after some time, one node is labelled *n*.

A (10) A (10)

Arnaud Casteigts Distributed Computing in Dynamic Networks

• Necessary condition C_N : at least one node can be reached by all (* \rightsquigarrow 1).

Conditions and classes of graphs

- Necessary condition C_N : at least one node can be reached by all (* → 1).
- Sufficient condition C_S : all pairs of nodes must share an edge at least once over time (*-*). (Marchand de Kerchove, Guinand, 2012)

 \rightarrow Hopefully, after some time, one node is labelled *n*.

But when ?

Conditions and classes of graphs

• Necessary condition C_N : at least one node can be reached by all (* \rightsquigarrow 1).

 $\rightarrow~\mathcal{C}_7$: graphs having this property.

 Sufficient condition C_S : all pairs of nodes must share an edge at least once over time (*-*). (Marchand de Kerchove, Guinand, 2012)

 $\rightarrow~\mathcal{C}_6$ (already seen before).

Tightness of a condition?

(Marchand de Kerchove, Guinand, 2012)

Necessary condition

Sufficient condition

Tightness of a condition?

(Marchand de Kerchove, Guinand, 2012)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

20/20

٩	Satisfied	\implies	success	is	guaranteed
---	-----------	------------	---------	----	------------

 $(\nexists X, failure(X))$

• Not satisfied \implies failure is guaranteed	$(\nexists X, success(X))$
• Satisfied \implies success is possible	$(\exists X, success(X)).$

Tight	Cufficient	aanditian
rigni	Suncient	condition

- Satisfied success is guaranteed
- Not satisfied \implies failure is possible

 $(\nexists X, failure(X))$

 $(\exists X, failure(X))$

• Not satisfied \implies failure is guaranteed	$(\nexists X, success(X))$
• Satisfied \implies success is possible	$(\exists X, success(X)).$

Tight Sufficient condition	
• Satisfied \implies success is guaranteed	$(\nexists X, failure(X))$
• Not satisfied \implies failure is possible	$(\exists X, failure(X))$

Remark : Topological conditions which are both necessary and sufficient may not exist !

 Not satisfied ⇒ failure is guaranteed 	$(\nexists X, success(X))$
• Satisfied \implies success is possible	$(\exists X, success(X)).$

Tight Sufficient condition	
• Satisfied \implies success is guaranteed	$(\nexists X, failure(X))$
• Not satisfied \implies failure is possible	$(\exists X, failure(X))$

Remark : Topological conditions which are both necessary and sufficient may not exist !

Ex. uniform counting (last algorithm) :

- \rightarrow (* \rightarrow 1) is a tight necessary condition
- \rightarrow (*-*) is a tight sufficient condition

In between : outcome is uncertain... might succeed or fail.

21/20

2

21/20

21/20

21/20

2

A B > A B >

2

• • • • • • • •

\rightarrow Comparison of algorithms on a formal basis

 \rightarrow Comparison of algorithms on a formal basis

 \rightarrow Comparison of algorithms on a formal basis

- \rightarrow Comparison of algorithms on a formal basis
- \rightarrow Decision making (what algorithm to use ?)
 - \rightarrow e.g. using automated property checking on network traces).

- ightarrow Comparison of algorithms on a formal basis
- \rightarrow Decision making (what algorithm to use ?)
 - ightarrow e.g. using automated property checking on network traces).
- → Formal proofs ? (Coq)

- ightarrow Comparison of algorithms on a formal basis
- ightarrow Decision making (what algorithm to use ?)
 - ightarrow e.g. using automated property checking on network traces).
- → Formal proofs ? (Coq)

Q : How far beyond toy examples ?

(C., Flocchini, Quattrociocchi, Santoro, 2012)

Extending the hierarchy

(C., Flocchini, Quattrociocchi, Santoro, 2012)

Extending the hierarchy

(C., Flocchini, Quattrociocchi, Santoro, 2012)

Extending the hierarchy

(C., Flocchini, Quattrociocchi, Santoro, 2012)

Extending the hierarchy

(C., Flocchini, Quattrociocchi, Santoro, 2012)

Extending the hierarchy

(C., Flocchini, Quattrociocchi, Santoro, 2012)

Extending the hierarchy

(C., Flocchini, Quattrociocchi, Santoro, 2012)

Extending the hierarchy

24/20

(C., Flocchini, Quattrociocchi, Santoro, 2012)

Extending the hierarchy

(C., Flocchini, Quattrociocchi, Santoro, 2012)

Extending the hierarchy

(C., Flocchini, Quattrociocchi, Santoro, 2012)

Extending the hierarchy

Ex : Bounded broadcast in $(*-^{*}-*)$

(O'Dell and Wattenhofer, 2005)

The graph is arbitrarily dynamic, as long as every G_i remains connected :

$$\boxtimes | \mathbb{W} | \mathbb{W} | \mathbb{W} | \mathbb{W}$$

(C., Flocchini, Quattrociocchi, Santoro, 2012)

Extending the hierarchy

Ex : Bounded broadcast in $(*-^{*}-*)$

(O'Dell and Wattenhofer, 2005)

The graph is arbitrarily dynamic, as long as every G_i remains connected :

$$\gg$$
 \mid \bowtie \mid \bowtie \mid \gg

Min cut of size 1 between informed and uninformed nodes : \rightarrow At least one new node informed in each step.

イロン 不通 と イヨン イヨン

(C., Flocchini, Quattrociocchi, Santoro, 2012)

Extending the hierarchy

イロト イポト イヨト イヨト

(C., Flocchini, Quattrociocchi, Santoro, 2012)

Extending the hierarchy

(C., Flocchini, Quattrociocchi, Santoro, 2012)

Extending the hierarchy

- (1) Complete graph of interaction (Angluin, Aspnes, Diamadi, Fischer, Peralta, 2004)
- (2) T-interval connectivity (Kuhn, Lynch, Oshman, 2010)
- (3) Constant connectivity (O'Dell and Wattenhofer, 2005)
- (4) Eventual instant connectivity (Ramanathan, Basu, and Krishnan, 2007)
- (5) Eventual instant routability (Ramanathan, Basu, and Krishnan, 2007)
- (6) T-interval connectivity (Ilcinkas, Wade, 2013)
- (7) Recurrent temporal connectivity (Arantes, Greve, Sens, Simon, 2013) (Gòmez-Cazaldo, Lafuente, Larrea, Raynal, 2013)

(C., Flocchini, Quattrociocchi, Santoro, 2012)

Real mobility contexts

(C., Flocchini, Quattrociocchi, Santoro, 2012)

Real mobility contexts

(C., Flocchini, Quattrociocchi, Santoro, 2012)

Real mobility contexts

(C., Flocchini, Quattrociocchi, Santoro, 2012)

Real mobility contexts

(C., Flocchini, Quattrociocchi, Santoro, 2012)

Real mobility contexts

(C., Flocchini, Quattrociocchi, Santoro, 2012)

Real mobility contexts

(C., Flocchini, Quattrociocchi, Santoro, 2012)

Real mobility contexts

How to proceed?

- \rightarrow Generate connection traces
 - \rightarrow Test properties

(C., Flocchini, Quattrociocchi, Santoro, 2012)

Real mobility contexts

How to proceed?

- \rightarrow Generate connection traces
 - \rightarrow Test properties
 - Temporal Connectivity (Whitbeck et al. 2012; Barjon et al., 2014)
 - T-Interval Connectivity (C. et al., 2014)

References (external) :

- I. Litovsky, Y. Métivier, and E. Sopena, Graph relabelling systems and distributed algorithms., Handbook of graph grammars and computing by graph transformation, 1999.
- F. Marchand de Kerchove and F. Guinand, Strengthening Topological Conditions for Relabeling Algorithms in Evolving Graphs, Technical report, Université Le Havre, 2012.
- B. Bui-Xuan, A. Ferreira, and A. Jarry, Computing shortest, fastest, and foremost journeys in dynamic networks, JFCS 14(2): 267-285, 2003.
- Y. Métivier, N. Saheb, A. Zemmari, Analysis of a randomized rendezvous algorithm, Information and Computation 184(1):109-128, 2003.
- A. Ferreira, Building a Reference Combinatorial Model for manets, IEEE Network 18(5) : 24-29, 2004.
- R. O'Dell and R. Wattenhofer, Information dissemination in highly dynamic graphs, DIALM-POMC, 2005.
- F. Kuhn, N. Lynch, R. Oshman, Distributed computation in dynamic networks, STOC, 2010.
- R. Ramanathan, P. Basu, and R. Krishnan, Towards a Formalism for Routing in Challenged Networks, CHANTS, 2007.
- D. Angluin, J. Aspnes, Z. Diamadi, M. J. Fischer, R. Peralta, Computation in networks of passively mobile finite-state sensors, PODC, 2004.
- J. Chalopin, Algorithmique Distribuée, Calculs Locaux et Homomorphismes de Graphes, PhD Thesis, University of Bordeaux, 2006.
- D. Ilcinkas and A. Wade, Exploration of the T-Interval-Connected Dynamic Graphs : the Case of the Ring, SIROCCO, 2013.
- J. Whitbeck, M. Dias De Amorim, V. Conan, J.-L. Guillaume, Temporal Reachability Graphs, PhD Thesis, University of Bordeaux, 2006.
- L. Arantes, F. Greve, P. Sens, V. Simon, Eventual Leader Election in Evolving Mobile Networks, OPODIS 2013
- G. Gomez, A. Lafuente, M. Larrea, M. Raynal, Fault-Tolerant Leader Election in Mobile Dynamic Distributed Systems, PRDC 2013.

References (self) :

- A. Casteigts, P. Flocchini, W. Quattrociocchi, N. Santoro, Time-Varying Graphs and Dynamic Networks., IJPEDS 27(5): 387-408, 2012.
- A. Casteigts, S. Chaumette, A. Ferreira, Characterizing Topological Assumptions of Distributed Algorithms in Dynamic Networks, SIROCCO, 2009.
- A. Casteigts, P. Flocchini, B. Mans, N. Santoro, Measuring Temporal Lags in Delay-Tolerant Networks, IEEE Transactions on Computer, 63(2):397-410, 2014.
- A. Casteigts, B. Mans, L. Mathieson, On the Feasibility of Maintenance Algorithms in Dynamic Graphs, CoRR abs/1107.2722, 2011.
- A. Casteigts, P. Flocchini, B. Mans, N. Santoro, Shortest, Fastest, and Foremost Broadcast in Dynamic Networks, IFIP-TCS 2010
- M. Barjon, A. Casteigts, S. Chaumette, C. Johnen, Y.M. Neggaz, Testing Temporal Connectivity in Sparse Dynamic Graphs, ALGOTEL 2014
- A. Casteigts, R. Klasing, Y.M. Neggaz, J. Peters, Efficiently Testing T-Interval Connectivity in Dynamic Graphs, Ref to be added. 2014.