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Distributed Computing

Collaboration of distinct entities to perform a common task.

No centralization available. Direct interaction.

(Think globally, act locally)
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Examples of problems

Broadcast Propagating a piece of information from one node to all others.

→

Election Distinguishing exactly one node among all.

→
Spanning tree Selecting a cycle-free set of edges that interconnects all nodes.

→
Counting Determining how many participants there are.

→ 9

Consensus, naming, routing, exploration, ...
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Communication Models

msg

msg

(a) Message passing

write

write
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(b) Registers

write
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(c) Mailboxes

access access

(d) Shared memory

(e) Mobile agents
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Abstracting Communications

Atomic interaction (Population protocols (Angluin et al., 2004) ;

Graph relabeling systems (Litovsky et al., 1999))
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Note : Scheduling is not part of the algorithm !

→ Can be adversarial, randomized, etc.

Scope of the models Relations between them (Chalopin, 2006)

Arnaud Casteigts Distributed Computing in Dynamic Networks 5 / 20



Abstracting Communications

Atomic interaction (Population protocols (Angluin et al., 2004) ;

Graph relabeling systems (Litovsky et al., 1999))

Ex : T N T T

T

N N

N

N

N

T

N N

N

N

NT

T N

N

N

NT

T N

N

N

NT

T N

N

N

NT

T N

N

N

NT

T T

T

N

NT

T T

T

N

NT

T T

T

T

NT

T T

T

T

NT

T T

T

T

T

Note : Scheduling is not part of the algorithm !

→ Can be adversarial, randomized, etc.

Scope of the models Relations between them (Chalopin, 2006)

Arnaud Casteigts Distributed Computing in Dynamic Networks 5 / 20



Abstracting Communications

Atomic interaction (Population protocols (Angluin et al., 2004) ;

Graph relabeling systems (Litovsky et al., 1999))

Ex : T N T T

T

N N

N

N

N

T

N N

N

N

N

T

T N

N

N

NT

T N

N

N

NT

T N

N

N

NT

T N

N

N

NT

T T

T

N

NT

T T

T

N

NT

T T

T

T

NT

T T

T

T

NT

T T

T

T

T

Note : Scheduling is not part of the algorithm !

→ Can be adversarial, randomized, etc.

Scope of the models Relations between them (Chalopin, 2006)

Arnaud Casteigts Distributed Computing in Dynamic Networks 5 / 20



Abstracting Communications

Atomic interaction (Population protocols (Angluin et al., 2004) ;

Graph relabeling systems (Litovsky et al., 1999))

Ex : T N T T

T

N N

N

N

NT

N N

N

N

N

T

T N

N

N

N

T

T N

N

N

NT

T N

N

N

NT

T N

N

N

NT

T T

T

N

NT

T T

T

N

NT

T T

T

T

NT

T T

T

T

NT

T T

T

T

T

Note : Scheduling is not part of the algorithm !

→ Can be adversarial, randomized, etc.

Scope of the models Relations between them (Chalopin, 2006)

Arnaud Casteigts Distributed Computing in Dynamic Networks 5 / 20



Abstracting Communications

Atomic interaction (Population protocols (Angluin et al., 2004) ;

Graph relabeling systems (Litovsky et al., 1999))

Ex : T N T T

T

N N

N

N

NT

N N

N

N

NT

T N

N

N

N

T

T N

N

N

N

T

T N

N

N

NT

T N

N

N

NT

T T

T

N

NT

T T

T

N

NT

T T

T

T

NT

T T

T

T

NT

T T

T

T

T

Note : Scheduling is not part of the algorithm !

→ Can be adversarial, randomized, etc.

Scope of the models Relations between them (Chalopin, 2006)

Arnaud Casteigts Distributed Computing in Dynamic Networks 5 / 20



Abstracting Communications

Atomic interaction (Population protocols (Angluin et al., 2004) ;

Graph relabeling systems (Litovsky et al., 1999))

Ex : T N T T

T

N N

N

N

NT

N N

N

N

NT

T N

N

N

NT

T N

N

N

N

T

T N

N

N

N

T

T N

N

N

NT

T T

T

N

NT

T T

T

N

NT

T T

T

T

NT

T T

T

T

NT

T T

T

T

T

Note : Scheduling is not part of the algorithm !

→ Can be adversarial, randomized, etc.

Scope of the models Relations between them (Chalopin, 2006)

Arnaud Casteigts Distributed Computing in Dynamic Networks 5 / 20



Abstracting Communications

Atomic interaction (Population protocols (Angluin et al., 2004) ;

Graph relabeling systems (Litovsky et al., 1999))

Ex : T N T T

T

N N

N

N

NT

N N

N

N

NT

T N

N

N

NT

T N

N

N

NT

T N

N

N

N

T

T N

N

N

N

T

T T

T

N

NT

T T

T

N

NT

T T

T

T

NT

T T

T

T

NT

T T

T

T

T

Note : Scheduling is not part of the algorithm !

→ Can be adversarial, randomized, etc.

Scope of the models Relations between them (Chalopin, 2006)

Arnaud Casteigts Distributed Computing in Dynamic Networks 5 / 20



Abstracting Communications

Atomic interaction (Population protocols (Angluin et al., 2004) ;

Graph relabeling systems (Litovsky et al., 1999))

Ex : T N T T

T

N N

N

N

NT

N N

N

N

NT

T N

N

N

NT

T N

N

N

NT

T N

N

N

NT

T N

N

N

N

T

T T

T

N

N

T

T T

T

N

NT

T T

T

T

NT

T T

T

T

NT

T T

T

T

T

Note : Scheduling is not part of the algorithm !

→ Can be adversarial, randomized, etc.

Scope of the models Relations between them (Chalopin, 2006)

Arnaud Casteigts Distributed Computing in Dynamic Networks 5 / 20



Abstracting Communications

Atomic interaction (Population protocols (Angluin et al., 2004) ;

Graph relabeling systems (Litovsky et al., 1999))

Ex : T N T T

T

N N

N

N

NT

N N

N

N

NT

T N

N

N

NT

T N

N

N

NT

T N

N

N

NT

T N

N

N

NT

T T

T

N

N

T

T T

T

N

N

T

T T

T

T

NT

T T

T

T

NT

T T

T

T

T

Note : Scheduling is not part of the algorithm !

→ Can be adversarial, randomized, etc.

Scope of the models Relations between them (Chalopin, 2006)

Arnaud Casteigts Distributed Computing in Dynamic Networks 5 / 20



Abstracting Communications

Atomic interaction (Population protocols (Angluin et al., 2004) ;

Graph relabeling systems (Litovsky et al., 1999))

Ex : T N T T

T

N N

N

N

NT

N N

N

N

NT

T N

N

N

NT

T N

N

N

NT

T N

N

N

NT

T N

N

N

NT

T T

T

N

NT

T T

T

N

N

T

T T

T

T

N

T

T T

T

T

NT

T T

T

T

T

Note : Scheduling is not part of the algorithm !

→ Can be adversarial, randomized, etc.

Scope of the models Relations between them (Chalopin, 2006)

Arnaud Casteigts Distributed Computing in Dynamic Networks 5 / 20



Abstracting Communications

Atomic interaction (Population protocols (Angluin et al., 2004) ;

Graph relabeling systems (Litovsky et al., 1999))

Ex : T N T T

T

N N

N

N

NT

N N

N

N

NT

T N

N

N

NT

T N

N

N

NT

T N

N

N

NT

T N

N

N

NT

T T

T

N

NT

T T

T

N

NT

T T

T

T

N

T

T T

T

T

N

T

T T

T

T

T

Note : Scheduling is not part of the algorithm !

→ Can be adversarial, randomized, etc.

Scope of the models Relations between them (Chalopin, 2006)

Arnaud Casteigts Distributed Computing in Dynamic Networks 5 / 20



Abstracting Communications

Atomic interaction (Population protocols (Angluin et al., 2004) ;

Graph relabeling systems (Litovsky et al., 1999))

Ex : T N T T

T

N N

N

N

NT

N N

N

N

NT

T N

N

N

NT

T N

N

N

NT

T N

N

N

NT

T N

N

N

NT

T T

T

N

NT

T T

T

N

NT

T T

T

T

NT

T T

T

T

N

T

T T

T

T

T

Note : Scheduling is not part of the algorithm !

→ Can be adversarial, randomized, etc.

Scope of the models Relations between them (Chalopin, 2006)

Arnaud Casteigts Distributed Computing in Dynamic Networks 5 / 20



Abstracting Communications

Atomic interaction (Population protocols (Angluin et al., 2004) ;

Graph relabeling systems (Litovsky et al., 1999))

Ex : T N T T

T

N N

N

N

NT

N N

N

N

NT

T N

N

N

NT

T N

N

N

NT

T N

N

N

NT

T N

N

N

NT

T T

T

N

NT

T T

T

N

NT

T T

T

T

NT

T T

T

T

N

T

T T

T

T

T

Note : Scheduling is not part of the algorithm !

→ Can be adversarial, randomized, etc.

Scope of the models Relations between them (Chalopin, 2006)

Arnaud Casteigts Distributed Computing in Dynamic Networks 5 / 20



Abstracting Communications

Atomic interaction (Population protocols (Angluin et al., 2004) ;

Graph relabeling systems (Litovsky et al., 1999))

Ex : T N T T

T

N N

N

N

NT

N N

N

N

NT

T N

N

N

NT

T N

N

N

NT

T N

N

N

NT

T N

N

N

NT

T T

T

N

NT

T T

T

N

NT

T T

T

T

NT

T T

T

T

N

T

T T

T

T

T

Note : Scheduling is not part of the algorithm !

→ Can be adversarial, randomized, etc.

Scope of the models Relations between them (Chalopin, 2006)

Arnaud Casteigts Distributed Computing in Dynamic Networks 5 / 20



Abstracting Communications

Atomic interaction (Population protocols (Angluin et al., 2004) ;

Graph relabeling systems (Litovsky et al., 1999))

Ex : T N T T

T

N N

N

N

NT

N N

N

N

NT

T N

N

N

NT

T N

N

N

NT

T N

N

N

NT

T N

N

N

NT

T T

T

N

NT

T T

T

N

NT

T T

T

T

NT

T T

T

T

N

T

T T

T

T

T

Note : Scheduling is not part of the algorithm !

→ Can be adversarial, randomized, etc.

Scope of the models Relations between them (Chalopin, 2006)

Arnaud Casteigts Distributed Computing in Dynamic Networks 5 / 20



Dynamic Networks
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Dynamic networks ?

In fact, highly dynamic networks.

Ex :

How changes are perceived ?

- Faults and Failures ?

- Nature of the system. Change is normal.

- Partitioned network

Example of scenario
(say, exploration by mobile robots)
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Dynamic Graphs

Also called evolving graphs or time-varying graphs.

Global point of view
Sequence of static graphs G = G0,G1, ... [+table of dates in T]

G0 G1 G2 G3

Local point of view

G = (V ,E , T , ρ),
with ρ being a presence function

ρ : E × T → {0, 1}

a

b

c

d

e

[1
,

3
)

[0, 1)

[2
,

4)

[0, 1)

[0,
2)

[0, 3)

[2, 4)

→ Both are theoretically equivalent if ρ is countable (e.g. not like this )

→ Further extensions possible (latency function, node-presence function, ...)

For references, see (Ferreira, 2004) and (C., Flocchini, Quattrociocchi, Santoro, 2012)
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Basic graph concepts

a

b

c

d

e

G0

a

b

c

d

e

G1

a

b

c

d

e

G2

a

b

c

d

e

G3

=⇒ Paths become temporal (journey)

Ex : ((ac, t1), (cd , t2), (de, t3)) with ti+1 ≥ ti and ρ(ei , ti) = 1

=⇒ Temporal connectivity. Not symmetrical ! (e.g. a e, but e 6 a)

=⇒ Strict journeys vs. non-strict journeys. (Important for analysis.)

In the literature : Schedule-conforming path (Berman, 1996) ; Time-respecting
path (Kempe et al., 2008 ; Holme, 2005) ; Temporal path (Chain-
treau et al., 2008) ; Journey (Bui-Xuan et al., 2003).

Many other concepts... (ask me !).
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Topological assumptions for distributed algorithms

Feasibility, Necessary and sufficient conditions, ...
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Informal example

Ex : Broadcast algorithm

G0 G1 G2 G3
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Interaction over dynamic graphs

Interactions over a Dynamic Graph G = {G0,G1, ...,Gk}

time
︷ ︸︸ ︷

Interactions I1

G0

Event 1

︷ ︸︸ ︷
Interactions I2

G1

Event 2 Event k − 1

︷ ︸︸ ︷
Interactions Ik

Gk

. . .

. . .

An execution is an alternated sequence of interactions and topological events :

X = Ik ◦ Eventk−1 ◦ .. ◦ Event2 ◦ I2 ◦ Event1 ◦ I1(G0) Non deterministic !

→ X : set of all possible executions (for a given algorithm and graph G).

What makes a graph property P a necessary or sufficient condition for success on G ?

→ Necessary condition : ¬P(G) =⇒ ∀X ∈ X , failure(X).

→ Sufficient condition : P(G) =⇒ ∀X ∈ X , success(X).
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back to the broadcast example

Necessary condition

→ PN : there exists a journey from the source to all other nodes (noted src  ∗).

Sufficient condition

→ PS : there exists a strict journey from the source to all other nodes (noted src st
 ∗).

Classes of dynamic graphs

→ C1 : PN is satisfied by at least one node (noted 1 ∗).
→ C2 : PN is satisfied by all nodes (∗ ∗).

→ C3 : PS is satisfied by at least one node (1 st
 ∗).

→ C4 : PS is satistied by all nodes (∗ st
 ∗).
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,
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Counting algorithm (non-uniform)

Counting with a distinguished counter

Initial states : 1 for the counter, N for all other nodes.

Algorithm :
i N i + 1 F

→ Hopefully, after some time, the counter is labelled n.

But when ?

Necessary or sufficient conditions

PN : there exists an edge, at some time, between the counter and every other
node.

PS = PN .

Classes of dynamic graphs

→ C5 : at least one node verifies P, (noted 1–∗).
→ C6 : all the nodes verify P, (noted ∗–∗).
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PN : there exists an edge, at some time, between the counter and every other
node.

PS = PN .

Classes of dynamic graphs

→ C5 : at least one node verifies P, (noted 1–∗).
→ C6 : all the nodes verify P, (noted ∗–∗).
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Counting algorithm (uniform)

Uniform counting (every body is initially a counter)
Initial states : 1 (all nodes).

Algorithm :
i 6= 0 j 6= 0 i + j 0

→ Hopefully, after some time, one node is labelled n. But when ?

Conditions and classes of graphs

Necessary condition CN : at least one node can be reached by all (∗ 1).

→ C7 : graphs having this property.

Sufficient condition CS : all pairs of nodes must share an edge at least once over
time (∗–∗). (Marchand de Kerchove, Guinand, 2012)

→ C6 (already seen before).
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Tightness of a condition ? (Marchand de Kerchove, Guinand, 2012)

Tight

Necessary condition

Not satisfied =⇒ failure is guaranteed (@X , success(X))

Satisfied =⇒ success is possible (∃X , success(X)).

Tight

Sufficient condition

Satisfied =⇒ success is guaranteed (@X , failure(X))

Not satisfied =⇒ failure is possible (∃X , failure(X))

Remark : Topological conditions which are both necessary and sufficient may not exist !

Ex. uniform counting (last algorithm) :

→ (∗ 1) is a tight necessary condition

→ (∗–∗) is a tight sufficient condition

In between : outcome is uncertain... might succeed or fail.
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Classifying dynamic networks

C6 C4

C5

C2

C3

C7

C1

∗ − ∗ ∗ st
 ∗

1− ∗ 1 st
 ∗

∗ ∗ ∗ 1

1 ∗

∀ =⇒ ∃ ∀ =⇒ ∃

∀ =⇒ ∃

∀ =⇒ ∃

− =⇒ Jstrict

− =⇒ Jstrict

Jstrict =⇒ J

Jstrict =⇒ J

− =⇒ J
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Classifying dynamic networks

C6 C4

C5

C2

C3

C7

C1

∗ − ∗ ∗ st
 ∗

1− ∗ 1 st
 ∗

∗ ∗ ∗ 1

1 ∗

PN (countingv1) PN (countingv2)

PS(countingv1)

PS(countingv2)

→ Comparison of algorithms on a formal basis

→ Decision making (what algorithm to use ?)
→ e.g. using automated property checking on network traces).

→ Formal proofs ? (Coq)

Q : How far beyond toy examples ?
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Classifying further (C., Flocchini, Quattrociocchi, Santoro, 2012)

Extending the hierarchy

1 ∗
∗ ∗

1 st
 ∗

∗ st
 ∗

1–∗
∗–∗

∗ 1∗ ∗
∗R ∗

R–

B–P–

Foremost broadcast

Shortest broadcastFastest broadcast
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Ex : Bounded broadcast in (∗ ∗––∗) (O’Dell and Wattenhofer, 2005)

The graph is arbitrarily dynamic, as long as every Gi remains connected :
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Ex : Bounded broadcast in (∗ ∗––∗) (O’Dell and Wattenhofer, 2005)

The graph is arbitrarily dynamic, as long as every Gi remains connected :

Min cut of size 1 between informed and uninformed nodes :
→ At least one new node informed in each step.

Arnaud Casteigts Distributed Computing in Dynamic Networks 24 / 20



Classifying further (C., Flocchini, Quattrociocchi, Santoro, 2012)

Extending the hierarchy

1 ∗
∗ ∗

1 st
 ∗

∗ st
 ∗

1–∗
∗–∗

∗ 1∗ ∗
∗R ∗

R–

B–P–

∗R–∗

R– –∗R– –∗∗ ∗– –∗T-∗ ∗– –∗

Foremost broadcast

Shortest broadcastFastest broadcast

Population
protocols

“Static”
routing

“Static”
broadcast

Bounded
broadcast

Speed up for
some problems
(by a factor T )

Ring exploration

Leader
election

Arnaud Casteigts Distributed Computing in Dynamic Networks 24 / 20



Classifying further (C., Flocchini, Quattrociocchi, Santoro, 2012)

Extending the hierarchy

1 ∗
∗ ∗

1 st
 ∗

∗ st
 ∗

1–∗
∗–∗

∗ 1∗ ∗
∗R ∗

R–

B–P–

∗R–∗

R– –∗R– –∗∗ ∗– –∗T-∗ ∗– –∗

Foremost broadcast

Shortest broadcastFastest broadcast

Population
protocols

“Static”
routing

“Static”
broadcast

Bounded
broadcast

Speed up for
some problems
(by a factor T )

Ring exploration

Leader
election

Arnaud Casteigts Distributed Computing in Dynamic Networks 24 / 20



Classifying further (C., Flocchini, Quattrociocchi, Santoro, 2012)

Extending the hierarchy

1 ∗
∗ ∗

1 st
 ∗

∗ st
 ∗

1–∗
∗–∗

∗ 1∗ ∗
∗R ∗

R–

B–P–

∗R–∗

R– –∗R– –∗∗ ∗– –∗T-∗ ∗– –∗

Foremost broadcast

Shortest broadcastFastest broadcast

Population
protocols (1)

“Static” (5)
routing

“Static” (4)
broadcast

Bounded (3)
broadcast

Speed up for (2)
some problems
(by a factor T )

Ring exploration (6)

Leader (7)
election

(1) Complete graph of interaction (Angluin, Aspnes, Diamadi, Fischer, Peralta, 2004)
(2) T-interval connectivity (Kuhn, Lynch, Oshman, 2010)
(3) Constant connectivity (O’Dell and Wattenhofer, 2005)
(4) Eventual instant connectivity (Ramanathan, Basu, and Krishnan, 2007)
(5) Eventual instant routability (Ramanathan, Basu, and Krishnan, 2007)
(6) T-interval connectivity (Ilcinkas, Wade, 2013)
(7) Recurrent temporal connectivity (Arantes, Greve, Sens, Simon, 2013)

(Gòmez-Cazaldo, Lafuente, Larrea, Raynal, 2013)
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Classifying further (C., Flocchini, Quattrociocchi, Santoro, 2012)

Real mobility contexts

1 ∗
∗ ∗

1 st
 ∗

∗ st
 ∗

1–∗
∗–∗

∗ 1∗ ∗
∗R ∗

R–

B–P–

∗R–∗

R– –∗R– –∗∗ ∗– –∗T-∗ ∗– –∗

?

? ?

How to proceed ?

→ Generate connection traces

→ Test properties

- Temporal Connectivity (Whitbeck et al. 2012 ; Barjon et al., 2014)

- T-Interval Connectivity (C. et al., 2014)
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