Distributed Computing in Dynamic Networks

Impact of the dynamics on definitions and feasibility

Arnaud Casteigts

– University of Bordeaux

Distributed Computing

Collaboration of distinct entities to perform a common task.

No centralization available. Direct interaction.

(Think globally, act locally)

 \sim $-$

 $\mathbb{R}^d \times \mathbb{R}^d \times \mathbb{R}^d \times \mathbb{R}^d$

Broadcast Propagating a piece of information from one node to all others.

← ロ ▶ → イ 同

 $\mathbb{R}^n \times \mathbb{R}^n \xrightarrow{\mathbb{R}^n} \mathbb{R}^n \times \mathbb{R}^n \xrightarrow{\mathbb{R}^n} \mathbb{R}^n$

э

Broadcast Propagating a piece of information from one node to all others.

Election **Distinguishing exactly one node among all.**

← ロ ▶ → イ 同

 $\mathbb{R}^n \times \mathbb{R}^n \xrightarrow{\sim} \mathbb{R}^n \times \mathbb{R}^n \xrightarrow{\sim} \mathbb{R}^n$

Spanning tree Selecting a cycle-free set of edges that interconnects all nodes.

4 0 8

 \sim

التكار الحر

化重新润滑

≮ロト ⊀何 ト ⊀ ヨ ト ⊀ ヨ

Consensus, naming, routing, exploration, *...*

イロト イ押 トイヨ トイヨト

э

(a) Message passing

 \leftarrow

 \rightarrow

 $\mathbb{R}^n \times \mathbb{R}^n \xrightarrow{\mathbb{R}^n} \mathbb{R}^n \times \mathbb{R}^n \xrightarrow{\mathbb{R}^n} \mathbb{R}^n$

э

4 0 8 画 \mathbf{p}

14

 $\mathcal{A} \xrightarrow{\sim} \mathcal{A} \xrightarrow{\sim} \mathcal{A}$

4 0 8 \sim \approx $\mathbb{R}^n \times \mathbb{R}^n \xrightarrow{\sim} \mathbb{R}^n \times \mathbb{R}^n \xrightarrow{\sim} \mathbb{R}^n$

4 0 8

 \mathbf{p}

14 一つ $\mathcal{A} \xrightarrow{\sim} \mathcal{A} \xrightarrow{\sim} \mathcal{A}$

 \leftarrow

 $\mathcal{A} \ \equiv \ \mathcal{B} \ \ \mathcal{A} \ \equiv \ \mathcal{B}$

 \sim

Atomic interaction **(Population protocols** *(Angluin et al., 2004)*; Graph relabeling systems *(Litovsky et al., 1999)*)

$$
\text{Ex}: \begin{array}{cc} T & N \\ \longleftarrow & \longrightarrow & T \\ \end{array} \longrightarrow
$$

4 0 8

 $\langle \langle \langle \langle \langle \rangle \rangle \rangle \rangle$ and $\langle \rangle$ and $\langle \rangle$ and $\langle \rangle$ and $\langle \rangle$

Atomic interaction **Atomic interaction** (Population protocols *(Angluin et al., 2004)*; Graph relabeling systems *(Litovsky et al., 1999)*)

 \leftarrow

化重复化重复

 \sim

T

N N

N

Atomic interaction **Atomic interaction** (Population protocols *(Angluin et al., 2004)*; Graph relabeling systems *(Litovsky et al., 1999)*)

 \leftarrow

 $\mathbb{R}^n \times \mathbb{R}^n \xrightarrow{\sim} \mathbb{R}^n \times \mathbb{R}^n \xrightarrow{\sim} \mathbb{R}^n$

T

N

N N

N

Atomic interaction **Atomic interaction** (Population protocols *(Angluin et al., 2004)*; Graph relabeling systems *(Litovsky et al., 1999)*)

 \leftarrow

 $\mathbb{R}^n \times \mathbb{R}^n \xrightarrow{\sim} \mathbb{R}^n \times \mathbb{R}^n \xrightarrow{\sim} \mathbb{R}^n$

Atomic interaction **Atomic interaction** (Population protocols *(Angluin et al., 2004)*; Graph relabeling systems *(Litovsky et al., 1999)*) **ns**
(Population protocols *(Angluin et al., 2004)*;
bh relabeling systems *(Litovsky et al., 1999)*)
T

 \leftarrow

 $\mathbb{R}^n \times \mathbb{R}^n \xrightarrow{\sim} \mathbb{R}^n \times \mathbb{R}^n \xrightarrow{\sim} \mathbb{R}^n$

T N

N

Atomic interaction **Atomic interaction** (Population protocols *(Angluin et al., 2004)*; Graph relabeling systems *(Litovsky et al., 1999)*) **ns**
(Population protocols *(Angluin et al., 2004)*;
bh relabeling systems *(Litovsky et al., 1999)*)
T

 \leftarrow

 $\mathbb{R}^n \times \mathbb{R}^n \xrightarrow{\sim} \mathbb{R}^n \times \mathbb{R}^n \xrightarrow{\sim} \mathbb{R}^n$

Atomic interaction **Atomic interaction** (Population protocols *(Angluin et al., 2004)*; Graph relabeling systems *(Litovsky et al., 1999)*) **ns**
(Population protocols *(Angluin et al., 2004)*;
bh relabeling systems *(Litovsky et al., 1999)*)
T

 \leftarrow

 $\mathbb{R}^n \times \mathbb{R}^n \xrightarrow{\sim} \mathbb{R}^n \times \mathbb{R}^n \xrightarrow{\sim} \mathbb{R}^n$

Atomic interaction **Atomic interaction** (Population protocols *(Angluin et al., 2004)*; Graph relabeling systems *(Litovsky et al., 1999)*) **ns**
(Population protocols *(Angluin et al., 2004)*;
bh relabeling systems *(Litovsky et al., 1999)*)
T

 \leftarrow

化重复化重复

 \sim

Atomic interaction **Atomic interaction** (Population protocols *(Angluin et al., 2004)*; Graph relabeling systems *(Litovsky et al., 1999)*) **ns**
(Population protocols *(Angluin et al., 2004)*;
bh relabeling systems *(Litovsky et al., 1999)*)
T

 \leftarrow

化重复化重复

 \sim

Atomic interaction **Atomic interaction** (Population protocols *(Angluin et al., 2004)*; Graph relabeling systems *(Litovsky et al., 1999)*) **ns**
(Population protocols *(Angluin et al., 2004)*;
bh relabeling systems *(Litovsky et al., 1999)*)
T

 \leftarrow

化重复化重复

 \sim

Atomic interaction **Atomic interaction** (Population protocols *(Angluin et al., 2004)*; Graph relabeling systems *(Litovsky et al., 1999)*) **ns**
(Population protocols *(Angluin et al., 2004)*;
bh relabeling systems *(Litovsky et al., 1999)*)
T

 \leftarrow

化重复化重复

 \sim

Atomic interaction **Atomic interaction** (Population protocols *(Angluin et al., 2004)*; Graph relabeling systems *(Litovsky et al., 1999)*) **ns**
(Population protocols *(Angluin et al., 2004)*;
bh relabeling systems *(Litovsky et al., 1999)*)
T

 \leftarrow

化重复化重复

 \sim

Atomic interaction **(Population protocols** *(Angluin et al., 2004)* Graph relabeling systems *(Litovsky et al., 1999)*) $Ex: \begin{array}{ccc} T & N & \dots & T & T \end{array}$ **ns**
(Population protocols *(Angluin et al., 2004)*;
bh relabeling systems *(Litovsky et al., 1999)*)
T T T

T T

Note : Scheduling is not part of the algorithm !

T

 \rightarrow Can be adversarial, randomized, etc.

化重新润滑

Atomic interaction **(Population protocols** *(Angluin et al., 2004)* Graph relabeling systems *(Litovsky et al., 1999)*) $Ex: \begin{array}{c} T & N \\ \longleftarrow & T \end{array}$ **ns**
(Population protocols *(Angluin et al., 2004)*;
bh relabeling systems *(Litovsky et al., 1999)*)
T

Note : Scheduling is not part of the algorithm !

 \rightarrow Can be adversarial, randomized, etc.

Atomic interaction **(Population protocols** *(Angluin et al., 2004)* Graph relabeling systems *(Litovsky et al., 1999)*) **ns**
(Population protocols *(Angluin et al., 2004)*;
bh relabeling systems *(Litovsky et al., 1999)*)
T

T

T T

Note : Scheduling is not part of the algorithm !

T

 \rightarrow Can be adversarial, randomized, etc.

Dynamic Networks

メロトメ 御 トメ 君 トメ 君 ト

重

In fact, *highly* dynamic networks.

イロト イ何 トイヨ トイヨ ト

In fact, *highly* dynamic networks.

How changes are perceived ?

- Faults and Failures ?
- Nature of the system. Change is normal.
- Partitioned network

A Break

In fact, *highly* dynamic networks.

How changes are perceived ?

- Faults and Failures ?
- Nature of the system. Change is normal.
- Partitioned network

Example of scenario (say, exploration by mobile robots)

 \triangleright 4 \equiv \triangleright 4

In fact, *highly* dynamic networks.

How changes are perceived ?

- Faults and Failures ?
- Nature of the system. Change is normal.
- Partitioned network

Example of scenario (say, exploration by mobile robots)

In fact, *highly* dynamic networks.

How changes are perceived ?

- Faults and Failures ?
- Nature of the system. Change is normal.
- Partitioned network

Example of scenario

(say, exploration by mobile robots)

In fact, *highly* dynamic networks.

How changes are perceived ?

- Faults and Failures ?
- Nature of the system. Change is normal.
- Partitioned network

Example of scenario

(say, exploration by mobile robots)

In fact, *highly* dynamic networks.

How changes are perceived ?

- Faults and Failures ?
- Nature of the system. Change is normal.
- Partitioned network

Example of scenario

(say, exploration by mobile robots)

Dynamic networks ?

In fact, *highly* dynamic networks.

How changes are perceived ?

- Faults and Failures ?
- Nature of the system. Change is normal.
- Partitioned network

Example of scenario (say, exploration by mobile robots)

Dynamic networks ?

In fact, *highly* dynamic networks.

How changes are perceived ?

- Faults and Failures ?
- Nature of the system. Change is normal.
- Partitioned network

Example of scenario (say, exploration by mobile robots)

Also called *evolving graphs* or *time-varying graphs*.

4 0 8 \leftarrow \leftarrow $\mathbb{R}^n \times \mathbb{R}^n \xrightarrow{\sim} \mathbb{R}^n \times \mathbb{R}^n \xrightarrow{\sim} \mathbb{R}^n$

Also called *evolving graphs* or *time-varying graphs*.

Global point of view

Sequence of static graphs $G = G_0, G_1, \dots$ [+table of dates in T]

$$
\sum_{G_0} \left|\bigwedge_{G_1} \left| \bigwedge_{G_2} \right| \right| \leq \int_{G_3}
$$

 \sim \sim

 $\mathbb{R}^d \times \mathbb{R}^d \times \mathbb{R}^d \times \mathbb{R}^d$

Also called *evolving graphs* or *time-varying graphs*.

Global point of view

Sequence of static graphs $G = G_0, G_1, \dots$ [+table of dates in T]

$$
\begin{array}{c|c|c|c|c|c} \hline \begin{array}{c|c} & \ \\ \hline G_0 & \end{array} & \begin{array}{c} \ \\ \hline \end{array} & \begin{array}{c} \ \\ G_1 & \end{array} & \end{array} \begin{array}{c} \ \\ \hline \end{array} \begin{array}{c} \ \\ G_2 & \end{array} \begin{array}{c} \ \\ \hline \end{array} \begin{array}{c} \ \\ G_3 & \end{array} \end{array}
$$

Local point of view

 $\mathcal{G} = (V, E, \mathcal{T}, \rho),$

with ρ being a *presence function*

 $\rho: E \times \mathcal{T} \rightarrow \{0,1\}$

 $\left\{ \left\vert \left\langle \left\langle \left\langle \mathbf{q} \right\rangle \right\rangle \right\rangle \right\vert \times \left\langle \mathbf{q} \right\rangle \right\vert \right\}$

Also called *evolving graphs* or *time-varying graphs*.

Global point of view

Sequence of static graphs $G = G_0, G_1, \dots$ [+table of dates in T]

$$
\begin{array}{c|c|c|c|c|c} \hline \begin{array}{c|c} & \ \\ \hline G_0 & G_1 & G_2 & G_3 \end{array} & \begin{array}{c} \ \\ \hline \end{array} & G_2 & G_3 & G_4 \end{array}
$$

Local point of view

 $\mathcal{G} = (V, E, \mathcal{T}, \rho),$ with ρ being a *presence function* $\rho: E \times \mathcal{T} \rightarrow \{0,1\}$

a b c d e っ , 3) [0, 1) \mathbb{Z} [0, ¹) $\overset{\circ}{\diamond}$ [0 \heartsuit $(2, 4)$

イロト イ団 トイ ヨ トイ ヨ トー

 \rightarrow Both are theoretically equivalent if ρ is countable (e.g. not like this $+\|\cdot\|$)

Also called *evolving graphs* or *time-varying graphs*.

Global point of view

Sequence of static graphs $G = G_0, G_1, \dots$ [+table of dates in T]

$$
\begin{array}{c|c|c|c|c|c} \hline \begin{array}{c|c} & \ \\ \hline G_0 & G_1 \end{array} & \begin{array}{c|c} \end{array} & \begin{array}{c} \end{array} & \begin{array}{\end{array} & \begin{array}{c} \end{
$$

Local point of view

 $\mathcal{G} = (V, E, \mathcal{T}, \rho),$ with ρ being a *presence function* $\rho: E \times \mathcal{T} \rightarrow \{0, 1\}$

≮ロト ⊀何 ト ⊀ ヨ ト ⊀ ヨ ト …

 \rightarrow Both are theoretically equivalent if ρ is countable (e.g. not like this $+\|\cdot\|$)

 \rightarrow Further extensions possible (latency function, node-presence function, ...)

Also called *evolving graphs* or *time-varying graphs*.

Global point of view

Sequence of static graphs $G = G_0, G_1, \dots$ [+table of dates in T]

$$
\begin{array}{c|c|c|c|c|c} \hline \begin{array}{c|c} & \ \\ \hline G_0 & G_1 & G_2 & G_3 \end{array} & \begin{array}{c} \ \\ \hline \end{array} & G_2 & G_3 & G_4 \end{array}
$$

Local point of view

 $\mathcal{G} = (V, E, \mathcal{T}, \rho),$ with ρ being a *presence function* $\rho: E \times \mathcal{T} \rightarrow \{0, 1\}$

- \rightarrow Both are theoretically equivalent if ρ is countable (e.g. not like this $+\|\cdot\|$)
- \rightarrow Further extensions possible (latency function, node-presence function, ...)

For references, see *(Ferreira, 2004)* and *(C., Flocchini, Quattrociocchi, Santoro, 2012)*

 \leftarrow

重

ヨメ イヨメ

=⇒ Paths become temporal (*journey*)

Ex : ((*ac*, *t*₁), (*cd*, *t*₂), (*de*, *t*₃)) with $t_{i+1} \ge t_i$ and $\rho(e_i, t_i) = 1$

=⇒ Paths become temporal (*journey*) Ex : ((*ac*, *t*₁), (*cd*, *t*₂), (*de*, *t*₃)) with $t_{i+1} \ge t_i$ and $\rho(e_i, t_i) = 1$

Temporal connectivity. Not symmetrical ! (e.g. $a \rightarrow e$, but $e \rightarrow a$)

- =⇒ Paths become temporal (*journey*) Ex : ((*ac*, *t*₁), (*cd*, *t*₂), (*de*, *t*₃)) with $t_{i+1} \ge t_i$ and $\rho(e_i, t_i) = 1$
- *Temporal connectivity.* Not symmetrical ! (e.g. $a \rightarrow e$, but $e \rightarrow a$)
- **Strict** journeys *vs. non-strict* journeys. (Important for analysis.)

- =⇒ Paths become temporal (*journey*) Ex : ((*ac*, *t*₁), (*cd*, *t*₂), (*de*, *t*₃)) with $t_{i+1} \ge t_i$ and $\rho(e_i, t_i) = 1$
- *Temporal connectivity.* Not symmetrical ! (e.g. $a \rightarrow e$, but $e \rightarrow a$)
- **Strict** journeys *vs. non-strict* journeys. (Important for analysis.)

- =⇒ Paths become temporal (*journey*) Ex : ((*ac*, *t*₁), (*cd*, *t*₂), (*de*, *t*₃)) with $t_{i+1} \ge t_i$ and $\rho(e_i, t_i) = 1$
- *Temporal connectivity.* Not symmetrical ! (e.g. $a \rightarrow e$, but $e \rightarrow a$)
- **Strict** journeys *vs. non-strict* journeys. (Important for analysis.)

- =⇒ Paths become temporal (*journey*) Ex : ((*ac*, *t*₁), (*cd*, *t*₂), (*de*, *t*₃)) with $t_{i+1} > t_i$ and $\rho(e_i, t_i) = 1$
- *Temporal connectivity.* Not symmetrical ! (e.g. $a \rightarrow e$, but $e \rightarrow a$)
- =⇒ *Strict* journeys *vs. non-strict* journeys. (Important for analysis.)
- In the literature : *Schedule-conforming path (Berman, 1996)* ; *Time-respecting path (Kempe et al., 2008 ; Holme, 2005)* ; *Temporal path (Chaintreau et al., 2008)* ; *Journey (Bui-Xuan et al., 2003)*.

イロト イ押ト イヨト イヨト

- =⇒ Paths become temporal (*journey*) Ex : ((*ac*, *t*₁), (*cd*, *t*₂), (*de*, *t*₃)) with $t_{i+1} > t_i$ and $\rho(e_i, t_i) = 1$
- *Temporal connectivity*. Not symmetrical ! (e.g. $a \rightarrow e$, but $e \rightarrow a$)
- =⇒ *Strict* journeys *vs. non-strict* journeys. (Important for analysis.)

In the literature : *Schedule-conforming path (Berman, 1996)* ; *Time-respecting path (Kempe et al., 2008 ; Holme, 2005)* ; *Temporal path (Chaintreau et al., 2008)* ; *Journey (Bui-Xuan et al., 2003)*.

Many other concepts... (ask me !).

≮ロト ⊀何 ト ⊀ ヨ ト ⊀ ヨ ト …

Topological assumptions for distributed algorithms

Feasibility, Necessary and sufficient conditions, ...

 \sim \sim

The South Avenue

 Ω

Ex : Broadcast algorithm

4 0 8

التكار الحر

 $\mathbb{R}^n \times \mathbb{R}^n \xrightarrow{\sim} \mathbb{R}^n \times \mathbb{R}^n \xrightarrow{\sim} \mathbb{R}^n$

Ex : Broadcast algorithm

4 0 8

 \sim \sim

 $\mathbb{R}^n \times \mathbb{R}^n \xrightarrow{\sim} \mathbb{R}^n \times \mathbb{R}^n \xrightarrow{\sim} \mathbb{R}^n$

Ex : Broadcast algorithm

G_0 **G**_{G_1} G_2 G_3

Lucky version.

4 0 8

 $\mathcal{A} \ \equiv \ \mathcal{B} \ \ \mathcal{A} \ \equiv \ \mathcal{B}$

 \sim

Ex : Broadcast algorithm

Lucky version.

4 0 8

 $\mathcal{A} \ \equiv \ \mathcal{B} \ \ \mathcal{A} \ \equiv \ \mathcal{B}$

 \sim

Ex : Broadcast algorithm *G*₀ **G**_{*G*</sup>² **G**₂ **G**₂}

Lucky version.

4 0 8

 $\mathbb{R}^n \times \mathbb{R}^n \xrightarrow{\sim} \mathbb{R}^n \times \mathbb{R}^n \xrightarrow{\sim} \mathbb{R}^n$

Ex : Broadcast algorithm **G**_G_G_G^{G} G _{G₂ **G**₃}

Lucky version. Yeah !!

4 0 8

化重复化重复

 \sim

 298

Ex : Broadcast algorithm *G*⁰ *G*¹ *G*² *G*³

But things could have gone differently.

 \leftarrow

化重新润滑

Ex : Broadcast algorithm **G**₀ **G**_{_{G1} **G**₂ **G**₂}

But things could have gone differently.

 \leftarrow

 $\mathcal{A} \equiv \mathcal{B} \rightarrow \mathcal{A} \equiv \mathcal{B}$

Ex : Broadcast algorithm **G**₀ **G**_{*G*₂ **G**₂ **G**₂}

But things could have gone differently.

 \leftarrow

 $\mathcal{A} \equiv \mathcal{B} \rightarrow \mathcal{A} \equiv \mathcal{B}$

But things could have gone differently. Too late !

 \sim $-$

 $\mathcal{A} \xrightarrow{\sim} \mathcal{A} \xrightarrow{\sim} \mathcal{A}$

 298

Ex : Broadcast algorithm *G*⁰ *G*¹ *G*² *G*³

But things could have gone differently. Too late !

 \sim $-$

化重新润滑

 Ω

Ex : Broadcast algorithm *G*⁰ *G*¹ *G*² *G*³

But things could have gone differently. Too late !

 \sim $-$

化重新润滑

 Ω

Ex : Broadcast algorithm \circ **G**_G_G^{G} G _{G₂ **G**_{g}^{G} G _{G₃}}

But things could have gone differently. Too late ! Failure !

 \sim $-$

化重新润滑

Ex : Broadcast algorithm

$\begin{array}{|c|c|c|c|c|}\n\hline\n\bullet & \bullet & \bullet & \bullet \\
\hline\nG_1 & & G_2 & G_3\n\end{array}$

Or even worse..

4 0 8

化重复化重复

 \sim

Ex : Broadcast algorithm G_0 **G**_{G_1} G_2 G_3

Or even worse.. Too fast !

4 0 8

 $\mathbb{R}^n \times \mathbb{R}^n \xrightarrow{\sim} \mathbb{R}^n \times \mathbb{R}^n \xrightarrow{\sim} \mathbb{R}^n$

Ex : Broadcast algorithm *G*⁰ *G*¹ *G*² *G*³

Or even worse.. Too fast ! Too fast !

 \leftarrow

化重新润滑

Ex : Broadcast algorithm

Or even worse.. Too fast ! Too fast ! Failure !

 \sim $-$

化重新润滑

 Ω

Ex : Broadcast algorithm

Additional assumptions needed to guarantee something.

 \sim $-$

化重新润滑

Ex : Broadcast algorithm •

⇒ Additional assumptions needed to guarantee something.

Assumption : Every present edge is "selected" at least once (but we don't know in what order...)
Ex : Broadcast algorithm •

⇒ Additional assumptions needed to guarantee something.

Assumption : Every present edge is "selected" at least once (but we don't know in what order...)

 \rightarrow Now, is the success guaranteed ?

Ex : Broadcast algorithm •

 \implies Additional assumptions needed to guarantee something.

- \rightarrow Now, is the success guaranteed ?
- \rightarrow Is the success possible ?

Ex : Broadcast algorithm • G_0 **G**_{G_1} G_2 G_3 G_4

 \implies Additional assumptions needed to guarantee something.

- \rightarrow Now, is the success guaranteed ?
- \rightarrow Is the success possible ? Of course, but why ?

Ex : Broadcast algorithm •

 G_0 G_1 G_2 G_3

 \implies Additional assumptions needed to guarantee something.

- \rightarrow Now, is the success guaranteed ?
- \rightarrow Is the success possible ? Of course, but why ? Because (*src* \rightsquigarrow *)

Ex : Broadcast algorithm •

 G_0 G_1 G_2 G_3

 \implies Additional assumptions needed to guarantee something.

- \rightarrow Now, is the success guaranteed ? Why not ?
- \rightarrow Is the success possible ? Of course, but why ? Because (*src* \rightarrow *)

Ex : Broadcast algorithm •

 \implies Additional assumptions needed to guarantee something.

Assumption : Every present edge is "selected" at least once (but we don't know in what order...)

 \rightarrow Now, is the success guaranteed ? Why not ?

 \rightarrow Is the success possible ? Of course, but why ? Because (*src* \rightarrow *)

Because $\neg (src \overset{st}{\leadsto} *)$

 \triangleright \rightarrow \exists \rightarrow \rightarrow \exists \rightarrow

Ex : Broadcast algorithm $\begin{array}{c|c|c|c|c|c} \hline \bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\ \hline \bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\ \hline \end{array}$

 \implies Additional assumptions needed to guarantee something.

Assumption : Every present edge is "selected" at least once (but we don't know in what order...)

 \rightarrow Now, is the success guaranteed ? Why not ? Because $\neg (src \overset{st}{\leadsto} *)$ \rightarrow Is the success possible ? Of course, but why ? Because (*src* \rightarrow *)

Notions of *necessary condition* (e.g. *src* ∗) or *sufficient condition* (e.g. *src st* ∗) for a given algorithm. These conditions relate only to the topology.

Ex : Broadcast algorithm $\begin{array}{c|c|c|c|c|c} \hline \bullet & \bullet & \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet & \bullet & \bullet \end{array}$

 \implies Additional assumptions needed to guarantee something.

Assumption : Every present edge is "selected" at least once (but we don't know in what order...)

 \rightarrow Now, is the success guaranteed ? Why not ? Because $\neg (src \overset{st}{\leadsto} *)$ \rightarrow Is the success possible ? Of course, but why ? Because (*src* \rightarrow *)

Notions of *necessary condition* (e.g. *src* ∗) or *sufficient condition* (e.g. *src st* ∗) for a given algorithm. These conditions relate only to the topology.

More formally...

イロト イ押 トイヨ トイヨト

イロト イ押ト イヨト イヨト

 298

Ξ

イロト イ押ト イヨト イヨト

 298

Ξ

An execution is an alternated sequence of interactions and topological events :

X = I_k ◦ *Event*_{*k*−1} ◦ .. ◦ *Event*₂ ◦ I_2 ◦ *Event*₁ ◦ $I_1(G_0)$

化重新润滑

An execution is an alternated sequence of interactions and topological events :

 $X = \mathcal{I}_k \circ \text{Event}_{k-1} \circ ... \circ \text{Event}_{2} \circ \mathcal{I}_2 \circ \text{Event}_{1} \circ \mathcal{I}_1(G_0)$ *Non deterministic !*

化重新润滑

An execution is an alternated sequence of interactions and topological events :

 $X = \mathcal{I}_k \circ \text{Event}_{k-1} \circ ... \circ \text{Event}_{2} \circ \mathcal{I}_2 \circ \text{Event}_{1} \circ \mathcal{I}_1(G_0)$ *Non deterministic !*

 $\mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^n$

 $\rightarrow \mathcal{X}$: set of all possible executions (for a given algorithm and graph \mathcal{G}).

An execution is an alternated sequence of interactions and topological events :

 $X = \mathcal{I}_k \circ \text{Event}_{k-1} \circ ... \circ \text{Event}_{2} \circ \mathcal{I}_2 \circ \text{Event}_{1} \circ \mathcal{I}_1(G_0)$ *Non deterministic !*

 $\rightarrow \mathcal{X}$: set of all possible executions (for a given algorithm and graph \mathcal{G}).

What makes a graph property P_1 a necessary or sufficient condition for success on G ?

 \rightarrow Necessary condition : $\neg P(G) \implies \forall X \in \mathcal{X}$, failure(X).

イロト イ押 トイヨ トイヨ

An execution is an alternated sequence of interactions and topological events :

 $X = \mathcal{I}_k \circ \text{Event}_{k-1} \circ ... \circ \text{Event}_{2} \circ \mathcal{I}_2 \circ \text{Event}_{1} \circ \mathcal{I}_1(G_0)$ *Non deterministic !*

 $\rightarrow \mathcal{X}$: set of all possible executions (for a given algorithm and graph \mathcal{G}).

What makes a graph property P_1 a necessary or sufficient condition for success on G ? \rightarrow Necessary condition : $\neg P(G) \implies \forall X \in \mathcal{X}$, failure(X). \rightarrow Sufficient condition : $\mathcal{P}(\mathcal{G}) \implies \forall X \in \mathcal{X}$, success(X).

イロト イ押 トイヨ トイヨト

 \leftarrow

 299

э

イヨメ イヨメ

 \sim

Necessary condition

 $\rightarrow \mathcal{P}_N$: there exists a journey from the source to all other nodes (noted *src* \rightsquigarrow *).

4 0 8

イ何 ト イヨ ト イヨ トー

Necessary condition

 \rightarrow \mathcal{P}_M : there exists a journey from the source to all other nodes (noted *src* \rightsquigarrow *).

Sufficient condition

 \rightarrow $\mathcal{P}_\mathcal{S}$: there exists a <u>strict</u> journey from the source to all other nodes (noted *src* $\stackrel{\text{st}}{\leadsto}$ $*$).

 $\mathbf{A} = \mathbf{A} \oplus \mathbf{A} \oplus \mathbf{A} \oplus \mathbf{A} \oplus \mathbf{A}$

Necessary condition

 \rightarrow \mathcal{P}_M : there exists a journey from the source to all other nodes (noted *src* \rightsquigarrow *).

Sufficient condition

 \rightarrow $\mathcal{P}_\mathcal{S}$: there exists a <u>strict</u> journey from the source to all other nodes (noted *src* $\stackrel{\text{st}}{\leadsto}$ $*$).

Classes of dynamic graphs

 \rightarrow C₁ : P_N is satisfied by at least one node (noted 1 \rightsquigarrow *).

 $\mathcal{A} \cap \mathcal{B} \rightarrow \mathcal{A} \Rightarrow \mathcal{B} \rightarrow \mathcal{A} \Rightarrow \mathcal{B} \Rightarrow \mathcal{$

Necessary condition

 \rightarrow \mathcal{P}_M : there exists a journey from the source to all other nodes (noted *src* \rightsquigarrow *).

Sufficient condition

 \rightarrow $\mathcal{P}_\mathcal{S}$: there exists a <u>strict</u> journey from the source to all other nodes (noted *src* $\stackrel{\text{st}}{\leadsto}$ $*$).

Classes of dynamic graphs

 \rightarrow C₁ : P_N is satisfied by at least one node (noted 1 \rightsquigarrow *).

 \rightarrow \mathcal{C}_2 : \mathcal{P}_N is satisfied by all nodes (* \rightsquigarrow *).

 $\mathcal{A} \cap \mathcal{B} \rightarrow \mathcal{A} \subset \mathcal{B} \rightarrow \mathcal{A} \subset \mathcal{B} \rightarrow \mathcal{B}$

Necessary condition

 \rightarrow \mathcal{P}_M : there exists a journey from the source to all other nodes (noted *src* \rightsquigarrow *).

Sufficient condition

 \rightarrow $\mathcal{P}_\mathcal{S}$: there exists a <u>strict</u> journey from the source to all other nodes (noted *src* $\stackrel{\text{st}}{\leadsto}$ $*$).

Classes of dynamic graphs

 \rightarrow C₁ : P_N is satisfied by at least one node (noted 1 \rightsquigarrow *).

 \rightarrow C₂ : P_N is satisfied by all nodes (* \rightsquigarrow *).

 \rightarrow C_3 : $\mathcal{P}_{\mathcal{S}}$ is satisfied by at least one node (1 $\overset{st}{\leadsto}$ *).

ADAMENTER

Necessary condition

 \rightarrow \mathcal{P}_M : there exists a journey from the source to all other nodes (noted *src* \rightsquigarrow *).

Sufficient condition

 \rightarrow $\mathcal{P}_\mathcal{S}$: there exists a <u>strict</u> journey from the source to all other nodes (noted *src* $\stackrel{\text{st}}{\leadsto}$ $*$).

Classes of dynamic graphs

 \rightarrow C₁ : P_N is satisfied by at least one node (noted 1 \rightsquigarrow *).

- \rightarrow C_2 : $\mathcal{P}_{\mathcal{N}}$ is satisfied by all nodes (* \rightsquigarrow *).
- \rightarrow C_3 : $\mathcal{P}_{\mathcal{S}}$ is satisfied by at least one node (1 $\overset{st}{\leadsto}$ *).
- \rightarrow \mathcal{C}_4 : $\mathcal{P}_{\mathcal{S}}$ is satistied by all nodes ($\ast \stackrel{st}{\leadsto} \ast$).

押 トイラ トイラト

Necessary condition

 \rightarrow \mathcal{P}_M : there exists a journey from the source to all other nodes (noted *src* \rightsquigarrow *).

Sufficient condition

 \rightarrow $\mathcal{P}_\mathcal{S}$: there exists a <u>strict</u> journey from the source to all other nodes (noted *src* $\stackrel{\text{st}}{\leadsto}$ $*$).

Classes of dynamic graphs

 \rightarrow C_1 : $\mathcal{P}_{\mathcal{N}}$ is satisfied by at least one node (noted 1 \rightsquigarrow *).

- \rightarrow C_2 : $\mathcal{P}_{\mathcal{N}}$ is satisfied by all nodes (* \rightsquigarrow *).
- \rightarrow C_3 : $\mathcal{P}_{\mathcal{S}}$ is satisfied by at least one node (1 $\overset{st}{\leadsto}$ *).
- \rightarrow \mathcal{C}_4 : $\mathcal{P}_{\mathcal{S}}$ is satistied by all nodes ($\ast \stackrel{st}{\leadsto} \ast$).

ADA 4 B A 4 B

Necessary condition

 \rightarrow \mathcal{P}_M : there exists a journey from the source to all other nodes (noted *src* \rightsquigarrow *).

Sufficient condition

 \rightarrow $\mathcal{P}_\mathcal{S}$: there exists a <u>strict</u> journey from the source to all other nodes (noted *src* $\stackrel{\text{st}}{\leadsto}$ $*$).

Classes of dynamic graphs

 \rightarrow C₁ : P_N is satisfied by at least one node (noted 1 \rightsquigarrow *).

- \rightarrow C_2 : $\mathcal{P}_{\mathcal{N}}$ is satisfied by all nodes (* \rightsquigarrow *).
- \rightarrow C_3 : $\mathcal{P}_{\mathcal{S}}$ is satisfied by at least one node (1 $\overset{st}{\leadsto}$ *).
- \rightarrow \mathcal{C}_4 : $\mathcal{P}_{\mathcal{S}}$ is satistied by all nodes ($\ast \stackrel{st}{\leadsto} \ast$).

 \overline{m} \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow

Counting with a distinguished counter

Initial states : 1 for the counter, N for all other nodes.

• Algorithm :
$$
\begin{array}{ccc} & i & N \\ \bullet & \bullet & \end{array}
$$
 $\begin{array}{ccc} & i+1 & F \\ \bullet & \bullet & \end{array}$

 \rightarrow Hopefully, after some time, the counter is labelled *n*.

化重氮化重氮

 Ω

Counting with a distinguished counter Initial states : 1 for the counter, *N* for all other nodes. \bullet Algorithm : *i N i* + 1 *F*

 \rightarrow Hopefully, after some time, the counter is labelled *n*. But when ?

 $\mathcal{A} \ \equiv \ \mathcal{B} \ \ \mathcal{A} \ \equiv \ \mathcal{B}$

Counting with a distinguished counter

Initial states : 1 for the counter, N for all other nodes.

Algorithm : *i N i* + 1 *F*

 \rightarrow Hopefully, after some time, the counter is labelled *n*. But when ?

A > + = > + = >

Necessary or sufficient conditions

 \bullet \mathcal{P}_{N} : there exists an edge, at some time, between the counter and every other node.

Counting with a distinguished counter

Initial states : 1 for the counter, N for all other nodes.

Algorithm : *i N i* + 1 *F*

 \rightarrow Hopefully, after some time, the counter is labelled *n*. But when ?

Necessary or sufficient conditions

 \bullet \mathcal{P}_{N} : there exists an edge, at some time, between the counter and every other node.

$$
\bullet \ \mathcal{P}_{\mathcal{S}} = \mathcal{P}_{\mathcal{N}}.
$$

A > + = > + = >

Counting with a distinguished counter

O Initial states : 1 for the counter, N for all other nodes.

Algorithm : *i N i* + 1 *F*

 \rightarrow Hopefully, after some time, the counter is labelled *n*. But when ?

Necessary or sufficient conditions

 \bullet \mathcal{P}_{N} : there exists an edge, at some time, between the counter and every other node.

$$
\bullet \ \mathcal{P}_{\mathcal{S}} = \mathcal{P}_{\mathcal{N}}.
$$

Classes of dynamic graphs

 \rightarrow C_5 : at least one node verifies \mathcal{P} , (noted 1–∗).

(ロトス部)→(理)→(理)→

Counting with a distinguished counter

O Initial states : 1 for the counter, N for all other nodes.

Algorithm : *i N i* + 1 *F*

 \rightarrow Hopefully, after some time, the counter is labelled *n*. But when ?

Necessary or sufficient conditions

 \bullet \mathcal{P}_{N} : there exists an edge, at some time, between the counter and every other node.

$$
\bullet \ \mathcal{P}_{\mathcal{S}} = \mathcal{P}_{\mathcal{N}}.
$$

Classes of dynamic graphs

 \rightarrow C_5 : at least one node verifies \mathcal{P} , (noted 1–∗).

 \rightarrow C_6 : all the nodes verify \mathcal{P} , (noted $\ast-\ast$).

イロト イ押 トイヨ トイヨ

Uniform counting (every body is initially a counter)

● Initial states : 1 (all nodes).

 \sim \sim

 $\mathbb{R}^d \times \mathbb{R}^d \xrightarrow{\mathbb{R}^d} \mathbb{R}^d \times \mathbb{R}^d \xrightarrow{\mathbb{R}^d} \mathbb{R}^d$

 \rightarrow Hopefully, after some time, one node is labelled *n*.

 Ω

 $\mathbb{R}^n \times \mathbb{R}^n \xrightarrow{\mathbb{R}^n} \mathbb{R}^n \times \mathbb{R}^n \xrightarrow{\mathbb{R}^n} \mathbb{R}^n$

 Ω

 $\langle \langle \langle \langle \langle \rangle \rangle \rangle \rangle$ and $\langle \rangle$ and $\langle \rangle$ and $\langle \rangle$ and $\langle \rangle$

- \bullet Necessary condition $\mathcal{C}_{\mathcal{N}}$: at least one node can be reached by all (* \rightsquigarrow 1).
- \bullet Sufficient condition $\mathcal{C}_{\mathcal{S}}$: all pairs of nodes must share an edge at least once over time (∗–∗). *(Marchand de Kerchove, Guinand, 2012)*

Conditions and classes of graphs

 \bullet Necessary condition $\mathcal{C}_{\mathcal{N}}$: at least one node can be reached by all (* \rightsquigarrow 1).

 \rightarrow C₇: graphs having this property.

 \bullet Sufficient condition $\mathcal{C}_{\mathcal{S}}$: all pairs of nodes must share an edge at least once over time (∗–∗). *(Marchand de Kerchove, Guinand, 2012)*

 \rightarrow \mathcal{C}_6 (already seen before).
Tightness of a condition ? *(Marchand de Kerchove, Guinand, 2012)*

Necessary condition

Sufficient condition

4 0 8

 $\mathcal{A} \cap \overline{\mathcal{P}} \rightarrow \mathcal{A} \Rightarrow \mathcal{P} \rightarrow \mathcal{A} \Rightarrow$

 298

Ξ

Tightness of a condition ? *(Marchand de Kerchove, Guinand, 2012)*

4 0 8

 $\mathbb{R}^n \times \mathbb{R}^n \xrightarrow{\sim} \mathbb{R}^n \times \mathbb{R}^n \xrightarrow{\sim} \mathbb{R}^n$

 Ω

■ Satisfied \implies success is guaranteed $(\nexists X, \text{failure}(X))$

 $\langle \langle \langle \langle \langle \rangle \rangle \rangle \rangle$ and $\langle \rangle$ and $\langle \rangle$ and $\langle \rangle$ and $\langle \rangle$

ALCOHOL:

 \leftarrow

ヨメ イヨ

Remark : Topological conditions which are both necessary and sufficient may not exist !

 \leftarrow

ヨメ メラ

Remark : Topological conditions which are both necessary and sufficient may not exist !

Ex. uniform counting (last algorithm) :

- \rightarrow (* \rightarrow 1) is a tight necessary condition
- \rightarrow (\ast - \ast) is a tight sufficient condition

In between : outcome is uncertain... might succeed or fail.

化重新润滑

イロト イ押 トイヨ トイヨ トー

 299

重

 \leftarrow

 299

重

ヨッ B

 \sim

 \leftarrow

 299

重

ヨッ B

 \rightarrow \sim

 \leftarrow

 299

重

ヨメ イヨ

 \leftarrow

 \sim

化重新润滑

 299

重

 \rightarrow

 \leftarrow

 \sim

化重新润滑

 299

重

 \rightarrow

\rightarrow Comparison of algorithms on a formal basis

 \leftarrow

Biskin

Ξ

 \rightarrow Comparison of algorithms on a formal basis

 \sim \sim

Ξ

The Second

 \rightarrow Comparison of algorithms on a formal basis

 \sim \sim

- \rightarrow Comparison of algorithms on a formal basis
- \rightarrow Decision making (what algorithm to use ?)
	- \rightarrow e.g. using automated property checking on network traces).

- \rightarrow Comparison of algorithms on a formal basis
- \rightarrow Decision making (what algorithm to use?)
	- \rightarrow e.g. using automated property checking on network traces).
- \rightarrow Formal proofs ? (Coq)

- \rightarrow Comparison of algorithms on a formal basis
- \rightarrow Decision making (what algorithm to use?)
	- \rightarrow e.g. using automated property checking on network traces).
- \rightarrow Formal proofs ? (Coq)

Q : How far beyond toy examples ?

Extending the hierarchy

4 0 8 \sim \approx

 $\mathbb{R}^n \times \mathbb{R}^n \xrightarrow{\sim} \mathbb{R}^n \times \mathbb{R}^n$

 299

Ξ

Extending the hierarchy

4 0 8

 $\mathcal{A} \cap \overline{\mathcal{P}} \rightarrow \mathcal{A} \Rightarrow \mathcal{P} \rightarrow \mathcal{A} \Rightarrow$

Ξ \rightarrow

Extending the hierarchy

イロト イ押ト イヨト イヨト

 299

Extending the hierarchy

イロト イ押ト イヨト イヨト

 299

Extending the hierarchy

イロト イ押 トイヨ トイヨ

э \rightarrow

Extending the hierarchy

イロト イ押ト イヨト イヨト

Extending the hierarchy

 $\mathbf{A} \sqcup \mathbf{B} \rightarrow \mathbf{A} \boxtimes \mathbf{B} \rightarrow \mathbf{A} \boxtimes \mathbf{B}$

 299

Extending the hierarchy

 $\mathbf{A} \sqcup \mathbf{B} \rightarrow \mathbf{A} \boxtimes \mathbf{B} \rightarrow \mathbf{A} \boxtimes \mathbf{B}$

 299

Extending the hierarchy

 $\mathbf{A} \sqcup \mathbf{B} \rightarrow \mathbf{A} \boxtimes \mathbf{B} \rightarrow \mathbf{A} \boxtimes \mathbf{B}$

Ξ

Extending the hierarchy

Ex : Bounded broadcast in (*^{-*}

イロト イ押 トイヨ トイヨト

The graph is arbitrarily dynamic, as long as every *Gⁱ* remains connected :

$$
\text{MININ}(\text{MIN})
$$

Extending the hierarchy

Ex : Bounded broadcast in (*^{-*}

The graph is arbitrarily dynamic, as long as every *Gⁱ* remains connected :

 $\sum |W| \mathcal{N}|\mathcal{M}|$

Min cut of size 1 between informed and uninformed nodes : \rightarrow At least one new node informed in each step.

 $($ ロ) $($ 何) $($ ヨ) $($ ヨ $)$

Extending the hierarchy

イロト イ押 トイヨ トイヨト

 299

Extending the hierarchy

イロト イ押 トイヨ トイヨト

Extending the hierarchy

- (1) Complete graph of interaction *(Angluin, Aspnes, Diamadi, Fischer, Peralta, 2004)*
- (2) T-interval connectivity *(Kuhn, Lynch, Oshman, 2010)*
- (3) Constant connectivity *(O'Dell and Wattenhofer, 2005)*
- (4) Eventual instant connectivity *(Ramanathan, Basu, and Krishnan, 2007)*
- (5) Eventual instant routability *(Ramanathan, Basu, and Krishnan, 2007)*
- (6) T-interval connectivity *(Ilcinkas, Wade, 2013)*
- (7) Recurrent temporal connectivity *(Arantes, Greve, Sens, Simon, 2013) (Gomez-Cazaldo, Lafuente, Larrea, Raynal, 2013) `* (ロ) (_何) (ヨ) (ヨ

Real mobility contexts

イロト イ押 トイヨ トイヨ

 299

э \rightarrow

Real mobility contexts

4 0 8

 $\mathcal{A} \cap \overline{\mathcal{P}} \rightarrow \mathcal{A} \Rightarrow \mathcal{P} \rightarrow \mathcal{A} \Rightarrow$

Real mobility contexts

4 0 8

 $\mathcal{A} \cap \overline{\mathcal{P}} \rightarrow \mathcal{A} \Rightarrow \mathcal{P} \rightarrow \mathcal{A} \Rightarrow$

Real mobility contexts

4 0 8

 $\mathcal{A} \cap \overline{\mathcal{P}} \rightarrow \mathcal{A} \Rightarrow \mathcal{P} \rightarrow \mathcal{A} \Rightarrow$
Real mobility contexts

4 0 8

 $\mathcal{A} \cap \overline{\mathcal{P}} \rightarrow \mathcal{A} \Rightarrow \mathcal{P} \rightarrow \mathcal{A} \Rightarrow$

э

Real mobility contexts

4 0 8

 $\mathcal{A} \cap \overline{\mathcal{P}} \rightarrow \mathcal{A} \Rightarrow \mathcal{P} \rightarrow \mathcal{A} \Rightarrow$

э \rightarrow

Real mobility contexts

How to proceed ?

- \rightarrow Generate connection traces
	- \rightarrow Test properties

4日)

 \sim \sim

 $\mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^n$

Ξ

≮ロト ⊀何 ト ⊀ ヨ ト ⊀ ヨ

Real mobility contexts

How to proceed ?

- \rightarrow Generate connection traces
	- \rightarrow Test properties
		- Temporal Connectivity *(Whitbeck et al. 2012 ; Barjon et al., 2014)*
		- T-Interval Connectivity *(C. et al., 2014)*

References (external) :

- R I. Litovsky, Y. Métivier, and E. Sopena, Graph relabelling systems and distributed algorithms., *Handbook of graph grammars and computing by graph transformation, 1999.*
- F *F. Marchand de Kerchove and F. Guinand, Strengthening Topological Conditions for Relabeling Algorithms in Evolving Graphs, Technical report, Universite Le Havre, 2012. ´*
- R *B. Bui-Xuan, A. Ferreira, and A. Jarry, Computing shortest, fastest, and foremost journeys in dynamic networks, JFCS 14(2) : 267-285, 2003.*
- Ē *Y. Metivier, N. Saheb, A. Zemmari, ´ Analysis of a randomized rendezvous algorithm, Information and Computation 184(1) :109-128, 2003.*
- R *A. Ferreira, Building a Reference Combinatorial Model for manets, IEEE Network 18(5) : 24-29, 2004.*
- R *R. O'Dell and R. Wattenhofer, Information dissemination in highly dynamic graphs, DIALM-POMC, 2005.*
- F *F. Kuhn, N. Lynch, R. Oshman, Distributed computation in dynamic networks, STOC, 2010.*
- F *R. Ramanathan, P. Basu, and R. Krishnan, Towards a Formalism for Routing in Challenged Networks, CHANTS, 2007.*
- E *D. Angluin, J. Aspnes, Z. Diamadi, M. J. Fischer, R. Peralta, Computation in networks of passively mobile finite-state sensors, PODC, 2004.*
- R *J. Chalopin, Algorithmique Distribuee, Calculs Locaux et Homomorphismes de Graphes, ´ PhD Thesis, University of Bordeaux, 2006.*
- Ē *D. Ilcinkas and A. Wade, Exploration of the T-Interval-Connected Dynamic Graphs : the Case of the Ring, SIROCCO, 2013.*
- F *J. Whitbeck, M. Dias De Amorim, V. Conan, J.-L. Guillaume, Temporal Reachability Graphs, PhD Thesis, University of Bordeaux, 2006.*
- R *L. Arantes, F. Greve, P. Sens, V. Simon, Eventual Leader Election in Evolving Mobile Networks, OPODIS 2013*
- R *C. Gomez, A. Lafuente, M. Larrea, M. Raynal, Fault-Tolerant Leader Election in Mobile Dynamic Distributed Systems, PRDC 2013.*

References (self) :

- R A. Casteigts, P. Flocchini, W. Quattrociocchi, N. Santoro, Time-Varying Graphs and Dynamic Networks., *IJPEDS 27(5) : 387-408, 2012.*
- R *A. Casteigts, S. Chaumette, A. Ferreira, Characterizing Topological Assumptions of Distributed Algorithms in Dynamic Networks, SIROCCO, 2009.*
- 畐 *A. Casteigts, P. Flocchini, B. Mans, N. Santoro, Measuring Temporal Lags in Delay-Tolerant Networks, IEEE Transactions on Computer, 63(2) :397-410, 2014.*
- H *A. Casteigts, B. Mans, L. Mathieson, On the Feasibility of Maintenance Algorithms in Dynamic Graphs, CoRR abs/1107.2722, 2011.*
- Ē *A. Casteigts, P. Flocchini, B. Mans, N. Santoro, Shortest, Fastest, and Foremost Broadcast in Dynamic Networks, IFIP-TCS 2010*
- 目 *M. Barjon, A. Casteigts, S. Chaumette, C. Johnen, Y.M. Neggaz, Testing Temporal Connectivity in Sparse Dynamic Graphs, ALGOTEL 2014*
- R *A. Casteigts, R. Klasing, Y.M. Neggaz, J. Peters, Efficiently Testing T-Interval Connectivity in Dynamic Graphs, Ref to be added. 2014.*