
Distributed Computing in Dynamic Networks
–

Impact of the dynamics on definitions and feasibility

Arnaud Casteigts
–

University of Bordeaux

Arnaud Casteigts Distributed Computing in Dynamic Networks 1 / 20

Distributed Computing

Collaboration of distinct entities to perform a common task.

No centralization available. Direct interaction.

(Think globally, act locally)

Arnaud Casteigts Distributed Computing in Dynamic Networks 2 / 20

Examples of problems

Broadcast Propagating a piece of information from one node to all others.

→

Election Distinguishing exactly one node among all.

→
Spanning tree Selecting a cycle-free set of edges that interconnects all nodes.

→
Counting Determining how many participants there are.

→ 9

Consensus, naming, routing, exploration, ...

Arnaud Casteigts Distributed Computing in Dynamic Networks 3 / 20

Examples of problems

Broadcast Propagating a piece of information from one node to all others.

→
Election Distinguishing exactly one node among all.

→

Spanning tree Selecting a cycle-free set of edges that interconnects all nodes.

→
Counting Determining how many participants there are.

→ 9

Consensus, naming, routing, exploration, ...

Arnaud Casteigts Distributed Computing in Dynamic Networks 3 / 20

Examples of problems

Broadcast Propagating a piece of information from one node to all others.

→
Election Distinguishing exactly one node among all.

→
Spanning tree Selecting a cycle-free set of edges that interconnects all nodes.

→

Counting Determining how many participants there are.

→ 9

Consensus, naming, routing, exploration, ...

Arnaud Casteigts Distributed Computing in Dynamic Networks 3 / 20

Examples of problems

Broadcast Propagating a piece of information from one node to all others.

→
Election Distinguishing exactly one node among all.

→
Spanning tree Selecting a cycle-free set of edges that interconnects all nodes.

→
Counting Determining how many participants there are.

→ 9

Consensus, naming, routing, exploration, ...

Arnaud Casteigts Distributed Computing in Dynamic Networks 3 / 20

Examples of problems

Broadcast Propagating a piece of information from one node to all others.

→
Election Distinguishing exactly one node among all.

→
Spanning tree Selecting a cycle-free set of edges that interconnects all nodes.

→
Counting Determining how many participants there are.

→ 9

Consensus, naming, routing, exploration, ...

Arnaud Casteigts Distributed Computing in Dynamic Networks 3 / 20

Communication Models

msg

msg

(a) Message passing

write

write

read

read

(b) Registers

write

write

(c) Mailboxes

access access

(d) Shared memory

(e) Mobile agents

Arnaud Casteigts Distributed Computing in Dynamic Networks 4 / 20

Communication Models

msg

msg

(a) Message passing

write

write

read

read

(b) Registers

write

write

(c) Mailboxes

access access

(d) Shared memory

(e) Mobile agents

Arnaud Casteigts Distributed Computing in Dynamic Networks 4 / 20

Communication Models

msg

msg

(a) Message passing

write

write

read

read

(b) Registers

write

write

(c) Mailboxes

access access

(d) Shared memory

(e) Mobile agents

Arnaud Casteigts Distributed Computing in Dynamic Networks 4 / 20

Communication Models

msg

msg

(a) Message passing

write

write

read

read

(b) Registers

write

write

(c) Mailboxes

access access

(d) Shared memory

(e) Mobile agents

Arnaud Casteigts Distributed Computing in Dynamic Networks 4 / 20

Communication Models

msg

msg

(a) Message passing

write

write

read

read

(b) Registers

write

write

(c) Mailboxes

access access

(d) Shared memory

(e) Mobile agents

Arnaud Casteigts Distributed Computing in Dynamic Networks 4 / 20

Communication Models

msg

msg

(a) Message passing

write

write

read

read

(b) Registers

write

write

(c) Mailboxes

access access

(d) Shared memory

(e) Mobile agents

Arnaud Casteigts Distributed Computing in Dynamic Networks 4 / 20

Abstracting Communications

Atomic interaction (Population protocols (Angluin et al., 2004) ;

Graph relabeling systems (Litovsky et al., 1999))

Ex : T N T T

T

N N

N

N

NT

N N

N

N

NT

T N

N

N

NT

T N

N

N

NT

T N

N

N

NT

T N

N

N

NT

T T

T

N

NT

T T

T

N

NT

T T

T

T

NT

T T

T

T

NT

T T

T

T

T

Note : Scheduling is not part of the algorithm !

→ Can be adversarial, randomized, etc.

Scope of the models Relations between them (Chalopin, 2006)

Arnaud Casteigts Distributed Computing in Dynamic Networks 5 / 20

Abstracting Communications

Atomic interaction (Population protocols (Angluin et al., 2004) ;

Graph relabeling systems (Litovsky et al., 1999))

Ex : T N T T

T

N N

N

N

N

T

N N

N

N

NT

T N

N

N

NT

T N

N

N

NT

T N

N

N

NT

T N

N

N

NT

T T

T

N

NT

T T

T

N

NT

T T

T

T

NT

T T

T

T

NT

T T

T

T

T

Note : Scheduling is not part of the algorithm !

→ Can be adversarial, randomized, etc.

Scope of the models Relations between them (Chalopin, 2006)

Arnaud Casteigts Distributed Computing in Dynamic Networks 5 / 20

Abstracting Communications

Atomic interaction (Population protocols (Angluin et al., 2004) ;

Graph relabeling systems (Litovsky et al., 1999))

Ex : T N T T

T

N N

N

N

N

T

N N

N

N

N

T

T N

N

N

NT

T N

N

N

NT

T N

N

N

NT

T N

N

N

NT

T T

T

N

NT

T T

T

N

NT

T T

T

T

NT

T T

T

T

NT

T T

T

T

T

Note : Scheduling is not part of the algorithm !

→ Can be adversarial, randomized, etc.

Scope of the models Relations between them (Chalopin, 2006)

Arnaud Casteigts Distributed Computing in Dynamic Networks 5 / 20

Abstracting Communications

Atomic interaction (Population protocols (Angluin et al., 2004) ;

Graph relabeling systems (Litovsky et al., 1999))

Ex : T N T T

T

N N

N

N

NT

N N

N

N

N

T

T N

N

N

N

T

T N

N

N

NT

T N

N

N

NT

T N

N

N

NT

T T

T

N

NT

T T

T

N

NT

T T

T

T

NT

T T

T

T

NT

T T

T

T

T

Note : Scheduling is not part of the algorithm !

→ Can be adversarial, randomized, etc.

Scope of the models Relations between them (Chalopin, 2006)

Arnaud Casteigts Distributed Computing in Dynamic Networks 5 / 20

Abstracting Communications

Atomic interaction (Population protocols (Angluin et al., 2004) ;

Graph relabeling systems (Litovsky et al., 1999))

Ex : T N T T

T

N N

N

N

NT

N N

N

N

NT

T N

N

N

N

T

T N

N

N

N

T

T N

N

N

NT

T N

N

N

NT

T T

T

N

NT

T T

T

N

NT

T T

T

T

NT

T T

T

T

NT

T T

T

T

T

Note : Scheduling is not part of the algorithm !

→ Can be adversarial, randomized, etc.

Scope of the models Relations between them (Chalopin, 2006)

Arnaud Casteigts Distributed Computing in Dynamic Networks 5 / 20

Abstracting Communications

Atomic interaction (Population protocols (Angluin et al., 2004) ;

Graph relabeling systems (Litovsky et al., 1999))

Ex : T N T T

T

N N

N

N

NT

N N

N

N

NT

T N

N

N

NT

T N

N

N

N

T

T N

N

N

N

T

T N

N

N

NT

T T

T

N

NT

T T

T

N

NT

T T

T

T

NT

T T

T

T

NT

T T

T

T

T

Note : Scheduling is not part of the algorithm !

→ Can be adversarial, randomized, etc.

Scope of the models Relations between them (Chalopin, 2006)

Arnaud Casteigts Distributed Computing in Dynamic Networks 5 / 20

Abstracting Communications

Atomic interaction (Population protocols (Angluin et al., 2004) ;

Graph relabeling systems (Litovsky et al., 1999))

Ex : T N T T

T

N N

N

N

NT

N N

N

N

NT

T N

N

N

NT

T N

N

N

NT

T N

N

N

N

T

T N

N

N

N

T

T T

T

N

NT

T T

T

N

NT

T T

T

T

NT

T T

T

T

NT

T T

T

T

T

Note : Scheduling is not part of the algorithm !

→ Can be adversarial, randomized, etc.

Scope of the models Relations between them (Chalopin, 2006)

Arnaud Casteigts Distributed Computing in Dynamic Networks 5 / 20

Abstracting Communications

Atomic interaction (Population protocols (Angluin et al., 2004) ;

Graph relabeling systems (Litovsky et al., 1999))

Ex : T N T T

T

N N

N

N

NT

N N

N

N

NT

T N

N

N

NT

T N

N

N

NT

T N

N

N

NT

T N

N

N

N

T

T T

T

N

N

T

T T

T

N

NT

T T

T

T

NT

T T

T

T

NT

T T

T

T

T

Note : Scheduling is not part of the algorithm !

→ Can be adversarial, randomized, etc.

Scope of the models Relations between them (Chalopin, 2006)

Arnaud Casteigts Distributed Computing in Dynamic Networks 5 / 20

Abstracting Communications

Atomic interaction (Population protocols (Angluin et al., 2004) ;

Graph relabeling systems (Litovsky et al., 1999))

Ex : T N T T

T

N N

N

N

NT

N N

N

N

NT

T N

N

N

NT

T N

N

N

NT

T N

N

N

NT

T N

N

N

NT

T T

T

N

N

T

T T

T

N

N

T

T T

T

T

NT

T T

T

T

NT

T T

T

T

T

Note : Scheduling is not part of the algorithm !

→ Can be adversarial, randomized, etc.

Scope of the models Relations between them (Chalopin, 2006)

Arnaud Casteigts Distributed Computing in Dynamic Networks 5 / 20

Abstracting Communications

Atomic interaction (Population protocols (Angluin et al., 2004) ;

Graph relabeling systems (Litovsky et al., 1999))

Ex : T N T T

T

N N

N

N

NT

N N

N

N

NT

T N

N

N

NT

T N

N

N

NT

T N

N

N

NT

T N

N

N

NT

T T

T

N

NT

T T

T

N

N

T

T T

T

T

N

T

T T

T

T

NT

T T

T

T

T

Note : Scheduling is not part of the algorithm !

→ Can be adversarial, randomized, etc.

Scope of the models Relations between them (Chalopin, 2006)

Arnaud Casteigts Distributed Computing in Dynamic Networks 5 / 20

Abstracting Communications

Atomic interaction (Population protocols (Angluin et al., 2004) ;

Graph relabeling systems (Litovsky et al., 1999))

Ex : T N T T

T

N N

N

N

NT

N N

N

N

NT

T N

N

N

NT

T N

N

N

NT

T N

N

N

NT

T N

N

N

NT

T T

T

N

NT

T T

T

N

NT

T T

T

T

N

T

T T

T

T

N

T

T T

T

T

T

Note : Scheduling is not part of the algorithm !

→ Can be adversarial, randomized, etc.

Scope of the models Relations between them (Chalopin, 2006)

Arnaud Casteigts Distributed Computing in Dynamic Networks 5 / 20

Abstracting Communications

Atomic interaction (Population protocols (Angluin et al., 2004) ;

Graph relabeling systems (Litovsky et al., 1999))

Ex : T N T T

T

N N

N

N

NT

N N

N

N

NT

T N

N

N

NT

T N

N

N

NT

T N

N

N

NT

T N

N

N

NT

T T

T

N

NT

T T

T

N

NT

T T

T

T

NT

T T

T

T

N

T

T T

T

T

T

Note : Scheduling is not part of the algorithm !

→ Can be adversarial, randomized, etc.

Scope of the models Relations between them (Chalopin, 2006)

Arnaud Casteigts Distributed Computing in Dynamic Networks 5 / 20

Abstracting Communications

Atomic interaction (Population protocols (Angluin et al., 2004) ;

Graph relabeling systems (Litovsky et al., 1999))

Ex : T N T T

T

N N

N

N

NT

N N

N

N

NT

T N

N

N

NT

T N

N

N

NT

T N

N

N

NT

T N

N

N

NT

T T

T

N

NT

T T

T

N

NT

T T

T

T

NT

T T

T

T

N

T

T T

T

T

T

Note : Scheduling is not part of the algorithm !

→ Can be adversarial, randomized, etc.

Scope of the models Relations between them (Chalopin, 2006)

Arnaud Casteigts Distributed Computing in Dynamic Networks 5 / 20

Abstracting Communications

Atomic interaction (Population protocols (Angluin et al., 2004) ;

Graph relabeling systems (Litovsky et al., 1999))

Ex : T N T T

T

N N

N

N

NT

N N

N

N

NT

T N

N

N

NT

T N

N

N

NT

T N

N

N

NT

T N

N

N

NT

T T

T

N

NT

T T

T

N

NT

T T

T

T

NT

T T

T

T

N

T

T T

T

T

T

Note : Scheduling is not part of the algorithm !

→ Can be adversarial, randomized, etc.

Scope of the models Relations between them (Chalopin, 2006)

Arnaud Casteigts Distributed Computing in Dynamic Networks 5 / 20

Abstracting Communications

Atomic interaction (Population protocols (Angluin et al., 2004) ;

Graph relabeling systems (Litovsky et al., 1999))

Ex : T N T T

T

N N

N

N

NT

N N

N

N

NT

T N

N

N

NT

T N

N

N

NT

T N

N

N

NT

T N

N

N

NT

T T

T

N

NT

T T

T

N

NT

T T

T

T

NT

T T

T

T

N

T

T T

T

T

T

Note : Scheduling is not part of the algorithm !

→ Can be adversarial, randomized, etc.

Scope of the models Relations between them (Chalopin, 2006)

Arnaud Casteigts Distributed Computing in Dynamic Networks 5 / 20

Dynamic Networks

Arnaud Casteigts Distributed Computing in Dynamic Networks 6 / 20

Dynamic networks ?

In fact, highly dynamic networks.

Ex :

How changes are perceived ?

- Faults and Failures ?

- Nature of the system. Change is normal.

- Partitioned network

Example of scenario
(say, exploration by mobile robots)

Arnaud Casteigts Distributed Computing in Dynamic Networks 7 / 20

Dynamic networks ?

In fact, highly dynamic networks.

Ex :

How changes are perceived ?

- Faults and Failures ?

- Nature of the system. Change is normal.

- Partitioned network

Example of scenario
(say, exploration by mobile robots)

Arnaud Casteigts Distributed Computing in Dynamic Networks 7 / 20

Dynamic networks ?

In fact, highly dynamic networks.

Ex :

How changes are perceived ?

- Faults and Failures ?

- Nature of the system. Change is normal.

- Partitioned network

Example of scenario
(say, exploration by mobile robots)

Arnaud Casteigts Distributed Computing in Dynamic Networks 7 / 20

Dynamic networks ?

In fact, highly dynamic networks.

Ex :

How changes are perceived ?

- Faults and Failures ?

- Nature of the system. Change is normal.

- Partitioned network

Example of scenario
(say, exploration by mobile robots)

Arnaud Casteigts Distributed Computing in Dynamic Networks 7 / 20

Dynamic networks ?

In fact, highly dynamic networks.

Ex :

How changes are perceived ?

- Faults and Failures ?

- Nature of the system. Change is normal.

- Partitioned network

Example of scenario
(say, exploration by mobile robots)

Arnaud Casteigts Distributed Computing in Dynamic Networks 7 / 20

Dynamic networks ?

In fact, highly dynamic networks.

Ex :

How changes are perceived ?

- Faults and Failures ?

- Nature of the system. Change is normal.

- Partitioned network

Example of scenario
(say, exploration by mobile robots)

Arnaud Casteigts Distributed Computing in Dynamic Networks 7 / 20

Dynamic networks ?

In fact, highly dynamic networks.

Ex :

How changes are perceived ?

- Faults and Failures ?

- Nature of the system. Change is normal.

- Partitioned network

Example of scenario
(say, exploration by mobile robots)

Arnaud Casteigts Distributed Computing in Dynamic Networks 7 / 20

Dynamic networks ?

In fact, highly dynamic networks.

Ex :

How changes are perceived ?

- Faults and Failures ?

- Nature of the system. Change is normal.

- Partitioned network

Example of scenario
(say, exploration by mobile robots)

Arnaud Casteigts Distributed Computing in Dynamic Networks 7 / 20

Dynamic networks ?

In fact, highly dynamic networks.

Ex :

How changes are perceived ?

- Faults and Failures ?

- Nature of the system. Change is normal.

- Partitioned network

Example of scenario
(say, exploration by mobile robots)

Arnaud Casteigts Distributed Computing in Dynamic Networks 7 / 20

Dynamic Graphs

Also called evolving graphs or time-varying graphs.

Global point of view
Sequence of static graphs G = G0,G1, ... [+table of dates in T]

G0 G1 G2 G3

Local point of view

G = (V ,E , T , ρ),
with ρ being a presence function

ρ : E × T → {0, 1}

a

b

c

d

e

[1
,

3
)

[0, 1)

[2
,

4)

[0, 1)

[0,
2)

[0, 3)

[2, 4)

→ Both are theoretically equivalent if ρ is countable (e.g. not like this)

→ Further extensions possible (latency function, node-presence function, ...)

For references, see (Ferreira, 2004) and (C., Flocchini, Quattrociocchi, Santoro, 2012)

Arnaud Casteigts Distributed Computing in Dynamic Networks 8 / 20

Dynamic Graphs

Also called evolving graphs or time-varying graphs.

Global point of view
Sequence of static graphs G = G0,G1, ... [+table of dates in T]

G0 G1 G2 G3

Local point of view

G = (V ,E , T , ρ),
with ρ being a presence function

ρ : E × T → {0, 1}

a

b

c

d

e

[1
,

3
)

[0, 1)

[2
,

4)

[0, 1)

[0,
2)

[0, 3)

[2, 4)

→ Both are theoretically equivalent if ρ is countable (e.g. not like this)

→ Further extensions possible (latency function, node-presence function, ...)

For references, see (Ferreira, 2004) and (C., Flocchini, Quattrociocchi, Santoro, 2012)

Arnaud Casteigts Distributed Computing in Dynamic Networks 8 / 20

Dynamic Graphs

Also called evolving graphs or time-varying graphs.

Global point of view
Sequence of static graphs G = G0,G1, ... [+table of dates in T]

G0 G1 G2 G3

Local point of view

G = (V ,E , T , ρ),
with ρ being a presence function

ρ : E × T → {0, 1}

a

b

c

d

e

[1
,

3
)

[0, 1)

[2
,

4)

[0, 1)

[0,
2)

[0, 3)

[2, 4)

→ Both are theoretically equivalent if ρ is countable (e.g. not like this)

→ Further extensions possible (latency function, node-presence function, ...)

For references, see (Ferreira, 2004) and (C., Flocchini, Quattrociocchi, Santoro, 2012)

Arnaud Casteigts Distributed Computing in Dynamic Networks 8 / 20

Dynamic Graphs

Also called evolving graphs or time-varying graphs.

Global point of view
Sequence of static graphs G = G0,G1, ... [+table of dates in T]

G0 G1 G2 G3

Local point of view

G = (V ,E , T , ρ),
with ρ being a presence function

ρ : E × T → {0, 1}

a

b

c

d

e

[1
,

3
)

[0, 1)

[2
,

4)

[0, 1)

[0,
2)

[0, 3)

[2, 4)

→ Both are theoretically equivalent if ρ is countable (e.g. not like this)

→ Further extensions possible (latency function, node-presence function, ...)

For references, see (Ferreira, 2004) and (C., Flocchini, Quattrociocchi, Santoro, 2012)

Arnaud Casteigts Distributed Computing in Dynamic Networks 8 / 20

Dynamic Graphs

Also called evolving graphs or time-varying graphs.

Global point of view
Sequence of static graphs G = G0,G1, ... [+table of dates in T]

G0 G1 G2 G3

Local point of view

G = (V ,E , T , ρ),
with ρ being a presence function

ρ : E × T → {0, 1}

a

b

c

d

e

[1
,

3
)

[0, 1)

[2
,

4)

[0, 1)

[0,
2)

[0, 3)

[2, 4)

→ Both are theoretically equivalent if ρ is countable (e.g. not like this)

→ Further extensions possible (latency function, node-presence function, ...)

For references, see (Ferreira, 2004) and (C., Flocchini, Quattrociocchi, Santoro, 2012)

Arnaud Casteigts Distributed Computing in Dynamic Networks 8 / 20

Dynamic Graphs

Also called evolving graphs or time-varying graphs.

Global point of view
Sequence of static graphs G = G0,G1, ... [+table of dates in T]

G0 G1 G2 G3

Local point of view

G = (V ,E , T , ρ),
with ρ being a presence function

ρ : E × T → {0, 1}

a

b

c

d

e

[1
,

3
)

[0, 1)

[2
,

4)

[0, 1)

[0,
2)

[0, 3)

[2, 4)

→ Both are theoretically equivalent if ρ is countable (e.g. not like this)

→ Further extensions possible (latency function, node-presence function, ...)

For references, see (Ferreira, 2004) and (C., Flocchini, Quattrociocchi, Santoro, 2012)

Arnaud Casteigts Distributed Computing in Dynamic Networks 8 / 20

Basic graph concepts

a

b

c

d

e

G0

a

b

c

d

e

G1

a

b

c

d

e

G2

a

b

c

d

e

G3

=⇒ Paths become temporal (journey)

Ex : ((ac, t1), (cd , t2), (de, t3)) with ti+1 ≥ ti and ρ(ei , ti) = 1

=⇒ Temporal connectivity. Not symmetrical ! (e.g. a e, but e 6 a)

=⇒ Strict journeys vs. non-strict journeys. (Important for analysis.)

In the literature : Schedule-conforming path (Berman, 1996) ; Time-respecting
path (Kempe et al., 2008 ; Holme, 2005) ; Temporal path (Chain-
treau et al., 2008) ; Journey (Bui-Xuan et al., 2003).

Many other concepts... (ask me !).

Arnaud Casteigts Distributed Computing in Dynamic Networks 9 / 20

Basic graph concepts

a

b

c

d

e

G0

a

b

c

d

e

G1

a

b

c

d

e

G2

a

b

c

d

e

G3

=⇒ Paths become temporal (journey)

Ex : ((ac, t1), (cd , t2), (de, t3)) with ti+1 ≥ ti and ρ(ei , ti) = 1

=⇒ Temporal connectivity. Not symmetrical ! (e.g. a e, but e 6 a)

=⇒ Strict journeys vs. non-strict journeys. (Important for analysis.)

In the literature : Schedule-conforming path (Berman, 1996) ; Time-respecting
path (Kempe et al., 2008 ; Holme, 2005) ; Temporal path (Chain-
treau et al., 2008) ; Journey (Bui-Xuan et al., 2003).

Many other concepts... (ask me !).

Arnaud Casteigts Distributed Computing in Dynamic Networks 9 / 20

Basic graph concepts

a

b

c

d

e

G0

a

b

c

d

e

G1

a

b

c

d

e

G2

a

b

c

d

e

G3

=⇒ Paths become temporal (journey)

Ex : ((ac, t1), (cd , t2), (de, t3)) with ti+1 ≥ ti and ρ(ei , ti) = 1

=⇒ Temporal connectivity. Not symmetrical ! (e.g. a e, but e 6 a)

=⇒ Strict journeys vs. non-strict journeys. (Important for analysis.)

In the literature : Schedule-conforming path (Berman, 1996) ; Time-respecting
path (Kempe et al., 2008 ; Holme, 2005) ; Temporal path (Chain-
treau et al., 2008) ; Journey (Bui-Xuan et al., 2003).

Many other concepts... (ask me !).

Arnaud Casteigts Distributed Computing in Dynamic Networks 9 / 20

Basic graph concepts

a

b

c

d

e

G0

a

b

c

d

e

G1

a

b

c

d

e

G2

a

b

c

d

e

G3

=⇒ Paths become temporal (journey)

Ex : ((ac, t1), (cd , t2), (de, t3)) with ti+1 ≥ ti and ρ(ei , ti) = 1

=⇒ Temporal connectivity. Not symmetrical ! (e.g. a e, but e 6 a)

=⇒ Strict journeys vs. non-strict journeys. (Important for analysis.)

In the literature : Schedule-conforming path (Berman, 1996) ; Time-respecting
path (Kempe et al., 2008 ; Holme, 2005) ; Temporal path (Chain-
treau et al., 2008) ; Journey (Bui-Xuan et al., 2003).

Many other concepts... (ask me !).

Arnaud Casteigts Distributed Computing in Dynamic Networks 9 / 20

Basic graph concepts

a

b

c

d

e

G0

a

b

c

d

e

G1

a

b

c

d

e

G2

a

b

c

d

e

G3

=⇒ Paths become temporal (journey)

Ex : ((ac, t1), (cd , t2), (de, t3)) with ti+1 ≥ ti and ρ(ei , ti) = 1

=⇒ Temporal connectivity. Not symmetrical ! (e.g. a e, but e 6 a)

=⇒ Strict journeys vs. non-strict journeys. (Important for analysis.)

In the literature : Schedule-conforming path (Berman, 1996) ; Time-respecting
path (Kempe et al., 2008 ; Holme, 2005) ; Temporal path (Chain-
treau et al., 2008) ; Journey (Bui-Xuan et al., 2003).

Many other concepts... (ask me !).

Arnaud Casteigts Distributed Computing in Dynamic Networks 9 / 20

Basic graph concepts

a

b

c

d

e

G0

a

b

c

d

e

G1

a

b

c

d

e

G2

a

b

c

d

e

G3

=⇒ Paths become temporal (journey)

Ex : ((ac, t1), (cd , t2), (de, t3)) with ti+1 ≥ ti and ρ(ei , ti) = 1

=⇒ Temporal connectivity. Not symmetrical ! (e.g. a e, but e 6 a)

=⇒ Strict journeys vs. non-strict journeys. (Important for analysis.)

In the literature : Schedule-conforming path (Berman, 1996) ; Time-respecting
path (Kempe et al., 2008 ; Holme, 2005) ; Temporal path (Chain-
treau et al., 2008) ; Journey (Bui-Xuan et al., 2003).

Many other concepts... (ask me !).

Arnaud Casteigts Distributed Computing in Dynamic Networks 9 / 20

Basic graph concepts

a

b

c

d

e

G0

a

b

c

d

e

G1

a

b

c

d

e

G2

a

b

c

d

e

G3

=⇒ Paths become temporal (journey)

Ex : ((ac, t1), (cd , t2), (de, t3)) with ti+1 ≥ ti and ρ(ei , ti) = 1

=⇒ Temporal connectivity. Not symmetrical ! (e.g. a e, but e 6 a)

=⇒ Strict journeys vs. non-strict journeys. (Important for analysis.)

In the literature : Schedule-conforming path (Berman, 1996) ; Time-respecting
path (Kempe et al., 2008 ; Holme, 2005) ; Temporal path (Chain-
treau et al., 2008) ; Journey (Bui-Xuan et al., 2003).

Many other concepts... (ask me !).

Arnaud Casteigts Distributed Computing in Dynamic Networks 9 / 20

Basic graph concepts

a

b

c

d

e

G0

a

b

c

d

e

G1

a

b

c

d

e

G2

a

b

c

d

e

G3

=⇒ Paths become temporal (journey)

Ex : ((ac, t1), (cd , t2), (de, t3)) with ti+1 ≥ ti and ρ(ei , ti) = 1

=⇒ Temporal connectivity. Not symmetrical ! (e.g. a e, but e 6 a)

=⇒ Strict journeys vs. non-strict journeys. (Important for analysis.)

In the literature : Schedule-conforming path (Berman, 1996) ; Time-respecting
path (Kempe et al., 2008 ; Holme, 2005) ; Temporal path (Chain-
treau et al., 2008) ; Journey (Bui-Xuan et al., 2003).

Many other concepts... (ask me !).

Arnaud Casteigts Distributed Computing in Dynamic Networks 9 / 20

Topological assumptions for distributed algorithms

Feasibility, Necessary and sufficient conditions, ...

Arnaud Casteigts Distributed Computing in Dynamic Networks 14 / 20

Informal example

Ex : Broadcast algorithm

G0 G1 G2 G3

Arnaud Casteigts Distributed Computing in Dynamic Networks 15 / 20

Informal example

Ex : Broadcast algorithm

G0 G1 G2 G3

Arnaud Casteigts Distributed Computing in Dynamic Networks 15 / 20

Informal example

Ex : Broadcast algorithm

G0 G1 G2 G3

Lucky version.

Arnaud Casteigts Distributed Computing in Dynamic Networks 15 / 20

Informal example

Ex : Broadcast algorithm

G0 G1 G2 G3

Lucky version.

Arnaud Casteigts Distributed Computing in Dynamic Networks 15 / 20

Informal example

Ex : Broadcast algorithm

G0 G1 G2 G3

Lucky version.

Arnaud Casteigts Distributed Computing in Dynamic Networks 15 / 20

Informal example

Ex : Broadcast algorithm

G0 G1 G2 G3

Lucky version. Yeah ! !

Arnaud Casteigts Distributed Computing in Dynamic Networks 15 / 20

Informal example

Ex : Broadcast algorithm

G0 G1 G2 G3

But things could have gone differently.

Arnaud Casteigts Distributed Computing in Dynamic Networks 15 / 20

Informal example

Ex : Broadcast algorithm

G0 G1 G2 G3

But things could have gone differently.

Arnaud Casteigts Distributed Computing in Dynamic Networks 15 / 20

Informal example

Ex : Broadcast algorithm

G0 G1 G2 G3

But things could have gone differently.

Arnaud Casteigts Distributed Computing in Dynamic Networks 15 / 20

Informal example

Ex : Broadcast algorithm

G0 G1 G2 G3

But things could have gone differently. Too late !

Arnaud Casteigts Distributed Computing in Dynamic Networks 15 / 20

Informal example

Ex : Broadcast algorithm

G0 G1 G2 G3

But things could have gone differently. Too late !

Arnaud Casteigts Distributed Computing in Dynamic Networks 15 / 20

Informal example

Ex : Broadcast algorithm

G0 G1 G2 G3

But things could have gone differently. Too late !

Arnaud Casteigts Distributed Computing in Dynamic Networks 15 / 20

Informal example

Ex : Broadcast algorithm

G0 G1 G2 G3

But things could have gone differently. Too late ! Failure !

Arnaud Casteigts Distributed Computing in Dynamic Networks 15 / 20

Informal example

Ex : Broadcast algorithm

G0 G1 G2 G3

Or even worse..

Arnaud Casteigts Distributed Computing in Dynamic Networks 15 / 20

Informal example

Ex : Broadcast algorithm

G0 G1 G2 G3

Or even worse.. Too fast !

Arnaud Casteigts Distributed Computing in Dynamic Networks 15 / 20

Informal example

Ex : Broadcast algorithm

G0 G1 G2 G3

Or even worse.. Too fast ! Too fast !

Arnaud Casteigts Distributed Computing in Dynamic Networks 15 / 20

Informal example

Ex : Broadcast algorithm

G0 G1 G2 G3

Or even worse.. Too fast ! Too fast ! Failure !

Arnaud Casteigts Distributed Computing in Dynamic Networks 15 / 20

Informal example

Ex : Broadcast algorithm

G0 G1 G2 G3

=⇒ Additional assumptions needed to guarantee something.

Arnaud Casteigts Distributed Computing in Dynamic Networks 15 / 20

Informal example

Ex : Broadcast algorithm

G0 G1 G2 G3

=⇒ Additional assumptions needed to guarantee something.

Assumption : Every present edge is “selected” at least once (but we don’t know in what order...)

Arnaud Casteigts Distributed Computing in Dynamic Networks 15 / 20

Informal example

Ex : Broadcast algorithm

G0 G1 G2 G3

=⇒ Additional assumptions needed to guarantee something.

Assumption : Every present edge is “selected” at least once (but we don’t know in what order...)

→ Now, is the success guaranteed ?

Arnaud Casteigts Distributed Computing in Dynamic Networks 15 / 20

Informal example

Ex : Broadcast algorithm

G0 G1 G2 G3

=⇒ Additional assumptions needed to guarantee something.

Assumption : Every present edge is “selected” at least once (but we don’t know in what order...)

→ Now, is the success guaranteed ?

→ Is the success possible ?

Arnaud Casteigts Distributed Computing in Dynamic Networks 15 / 20

Informal example

Ex : Broadcast algorithm

G0 G1 G2 G3

=⇒ Additional assumptions needed to guarantee something.

Assumption : Every present edge is “selected” at least once (but we don’t know in what order...)

→ Now, is the success guaranteed ?

→ Is the success possible ? Of course, but why ?

Arnaud Casteigts Distributed Computing in Dynamic Networks 15 / 20

Informal example

Ex : Broadcast algorithm

G0 G1 G2 G3

=⇒ Additional assumptions needed to guarantee something.

Assumption : Every present edge is “selected” at least once (but we don’t know in what order...)

→ Now, is the success guaranteed ?

→ Is the success possible ? Of course, but why ? Because (src ∗)

Arnaud Casteigts Distributed Computing in Dynamic Networks 15 / 20

Informal example

Ex : Broadcast algorithm

G0 G1 G2 G3

=⇒ Additional assumptions needed to guarantee something.

Assumption : Every present edge is “selected” at least once (but we don’t know in what order...)

→ Now, is the success guaranteed ? Why not ?

→ Is the success possible ? Of course, but why ? Because (src ∗)

Arnaud Casteigts Distributed Computing in Dynamic Networks 15 / 20

Informal example

Ex : Broadcast algorithm

G0 G1 G2 G3

=⇒ Additional assumptions needed to guarantee something.

Assumption : Every present edge is “selected” at least once (but we don’t know in what order...)

→ Now, is the success guaranteed ? Why not ? Because ¬(src st
 ∗)

→ Is the success possible ? Of course, but why ? Because (src ∗)

Arnaud Casteigts Distributed Computing in Dynamic Networks 15 / 20

Informal example

Ex : Broadcast algorithm

G0 G1 G2 G3

=⇒ Additional assumptions needed to guarantee something.

Assumption : Every present edge is “selected” at least once (but we don’t know in what order...)

→ Now, is the success guaranteed ? Why not ? Because ¬(src st
 ∗)

→ Is the success possible ? Of course, but why ? Because (src ∗)

Notions of necessary condition (e.g. src ∗) or sufficient condition (e.g. src st
 ∗) for a given

algorithm. These conditions relate only to the topology.

Arnaud Casteigts Distributed Computing in Dynamic Networks 15 / 20

Informal example

Ex : Broadcast algorithm

G0 G1 G2 G3

=⇒ Additional assumptions needed to guarantee something.

Assumption : Every present edge is “selected” at least once (but we don’t know in what order...)

→ Now, is the success guaranteed ? Why not ? Because ¬(src st
 ∗)

→ Is the success possible ? Of course, but why ? Because (src ∗)

Notions of necessary condition (e.g. src ∗) or sufficient condition (e.g. src st
 ∗) for a given

algorithm. These conditions relate only to the topology.

More formally...

Arnaud Casteigts Distributed Computing in Dynamic Networks 15 / 20

Interaction over dynamic graphs

Interactions over a Dynamic Graph G = {G0,G1, ...,Gk}

time
︷ ︸︸ ︷

Interactions I1

G0

Event 1

︷ ︸︸ ︷
Interactions I2

G1

Event 2 Event k − 1

︷ ︸︸ ︷
Interactions Ik

Gk

. . .

. . .

An execution is an alternated sequence of interactions and topological events :

X = Ik ◦ Eventk−1 ◦ .. ◦ Event2 ◦ I2 ◦ Event1 ◦ I1(G0) Non deterministic !

→ X : set of all possible executions (for a given algorithm and graph G).

What makes a graph property P a necessary or sufficient condition for success on G ?

→ Necessary condition : ¬P(G) =⇒ ∀X ∈ X , failure(X).

→ Sufficient condition : P(G) =⇒ ∀X ∈ X , success(X).

Arnaud Casteigts Distributed Computing in Dynamic Networks 16 / 20

Interaction over dynamic graphs

Interactions over a Dynamic Graph G = {G0,G1, ...,Gk}

time
︷ ︸︸ ︷

Interactions I1

G0

Event 1

︷ ︸︸ ︷
Interactions I2

G1

Event 2 Event k − 1

︷ ︸︸ ︷
Interactions Ik

Gk

. . .

. . .

An execution is an alternated sequence of interactions and topological events :

X = Ik ◦ Eventk−1 ◦ .. ◦ Event2 ◦ I2 ◦ Event1 ◦ I1(G0) Non deterministic !

→ X : set of all possible executions (for a given algorithm and graph G).

What makes a graph property P a necessary or sufficient condition for success on G ?

→ Necessary condition : ¬P(G) =⇒ ∀X ∈ X , failure(X).

→ Sufficient condition : P(G) =⇒ ∀X ∈ X , success(X).

Arnaud Casteigts Distributed Computing in Dynamic Networks 16 / 20

Interaction over dynamic graphs

Interactions over a Dynamic Graph G = {G0,G1, ...,Gk}

time
︷ ︸︸ ︷

Interactions I1

G0

Event 1

︷ ︸︸ ︷
Interactions I2

G1

Event 2 Event k − 1

︷ ︸︸ ︷
Interactions Ik

Gk

. . .

. . .

An execution is an alternated sequence of interactions and topological events :

X = Ik ◦ Eventk−1 ◦ .. ◦ Event2 ◦ I2 ◦ Event1 ◦ I1(G0)

Non deterministic !

→ X : set of all possible executions (for a given algorithm and graph G).

What makes a graph property P a necessary or sufficient condition for success on G ?

→ Necessary condition : ¬P(G) =⇒ ∀X ∈ X , failure(X).

→ Sufficient condition : P(G) =⇒ ∀X ∈ X , success(X).

Arnaud Casteigts Distributed Computing in Dynamic Networks 16 / 20

Interaction over dynamic graphs

Interactions over a Dynamic Graph G = {G0,G1, ...,Gk}

time
︷ ︸︸ ︷

Interactions I1

G0

Event 1

︷ ︸︸ ︷
Interactions I2

G1

Event 2 Event k − 1

︷ ︸︸ ︷
Interactions Ik

Gk

. . .

. . .

An execution is an alternated sequence of interactions and topological events :

X = Ik ◦ Eventk−1 ◦ .. ◦ Event2 ◦ I2 ◦ Event1 ◦ I1(G0) Non deterministic !

→ X : set of all possible executions (for a given algorithm and graph G).

What makes a graph property P a necessary or sufficient condition for success on G ?

→ Necessary condition : ¬P(G) =⇒ ∀X ∈ X , failure(X).

→ Sufficient condition : P(G) =⇒ ∀X ∈ X , success(X).

Arnaud Casteigts Distributed Computing in Dynamic Networks 16 / 20

Interaction over dynamic graphs

Interactions over a Dynamic Graph G = {G0,G1, ...,Gk}

time
︷ ︸︸ ︷

Interactions I1

G0

Event 1

︷ ︸︸ ︷
Interactions I2

G1

Event 2 Event k − 1

︷ ︸︸ ︷
Interactions Ik

Gk

. . .

. . .

An execution is an alternated sequence of interactions and topological events :

X = Ik ◦ Eventk−1 ◦ .. ◦ Event2 ◦ I2 ◦ Event1 ◦ I1(G0) Non deterministic !

→ X : set of all possible executions (for a given algorithm and graph G).

What makes a graph property P a necessary or sufficient condition for success on G ?

→ Necessary condition : ¬P(G) =⇒ ∀X ∈ X , failure(X).

→ Sufficient condition : P(G) =⇒ ∀X ∈ X , success(X).

Arnaud Casteigts Distributed Computing in Dynamic Networks 16 / 20

Interaction over dynamic graphs

Interactions over a Dynamic Graph G = {G0,G1, ...,Gk}

time
︷ ︸︸ ︷

Interactions I1

G0

Event 1

︷ ︸︸ ︷
Interactions I2

G1

Event 2 Event k − 1

︷ ︸︸ ︷
Interactions Ik

Gk

. . .

. . .

An execution is an alternated sequence of interactions and topological events :

X = Ik ◦ Eventk−1 ◦ .. ◦ Event2 ◦ I2 ◦ Event1 ◦ I1(G0) Non deterministic !

→ X : set of all possible executions (for a given algorithm and graph G).

What makes a graph property P a necessary or sufficient condition for success on G ?

→ Necessary condition : ¬P(G) =⇒ ∀X ∈ X , failure(X).

→ Sufficient condition : P(G) =⇒ ∀X ∈ X , success(X).

Arnaud Casteigts Distributed Computing in Dynamic Networks 16 / 20

Interaction over dynamic graphs

Interactions over a Dynamic Graph G = {G0,G1, ...,Gk}

time
︷ ︸︸ ︷

Interactions I1

G0

Event 1

︷ ︸︸ ︷
Interactions I2

G1

Event 2 Event k − 1

︷ ︸︸ ︷
Interactions Ik

Gk

. . .

. . .

An execution is an alternated sequence of interactions and topological events :

X = Ik ◦ Eventk−1 ◦ .. ◦ Event2 ◦ I2 ◦ Event1 ◦ I1(G0) Non deterministic !

→ X : set of all possible executions (for a given algorithm and graph G).

What makes a graph property P a necessary or sufficient condition for success on G ?

→ Necessary condition : ¬P(G) =⇒ ∀X ∈ X , failure(X).

→ Sufficient condition : P(G) =⇒ ∀X ∈ X , success(X).

Arnaud Casteigts Distributed Computing in Dynamic Networks 16 / 20

back to the broadcast example

Necessary condition

→ PN : there exists a journey from the source to all other nodes (noted src ∗).

Sufficient condition

→ PS : there exists a strict journey from the source to all other nodes (noted src st
 ∗).

Classes of dynamic graphs

→ C1 : PN is satisfied by at least one node (noted 1 ∗).
→ C2 : PN is satisfied by all nodes (∗ ∗).

→ C3 : PS is satisfied by at least one node (1 st
 ∗).

→ C4 : PS is satistied by all nodes (∗ st
 ∗).

Arnaud Casteigts Distributed Computing in Dynamic Networks 17 / 20

back to the broadcast example

Necessary condition

→ PN : there exists a journey from the source to all other nodes (noted src ∗).

Sufficient condition

→ PS : there exists a strict journey from the source to all other nodes (noted src st
 ∗).

Classes of dynamic graphs

→ C1 : PN is satisfied by at least one node (noted 1 ∗).
→ C2 : PN is satisfied by all nodes (∗ ∗).

→ C3 : PS is satisfied by at least one node (1 st
 ∗).

→ C4 : PS is satistied by all nodes (∗ st
 ∗).

Arnaud Casteigts Distributed Computing in Dynamic Networks 17 / 20

back to the broadcast example

Necessary condition

→ PN : there exists a journey from the source to all other nodes (noted src ∗).

Sufficient condition

→ PS : there exists a strict journey from the source to all other nodes (noted src st
 ∗).

Classes of dynamic graphs

→ C1 : PN is satisfied by at least one node (noted 1 ∗).
→ C2 : PN is satisfied by all nodes (∗ ∗).

→ C3 : PS is satisfied by at least one node (1 st
 ∗).

→ C4 : PS is satistied by all nodes (∗ st
 ∗).

Arnaud Casteigts Distributed Computing in Dynamic Networks 17 / 20

back to the broadcast example

Necessary condition

→ PN : there exists a journey from the source to all other nodes (noted src ∗).

Sufficient condition

→ PS : there exists a strict journey from the source to all other nodes (noted src st
 ∗).

Classes of dynamic graphs

→ C1 : PN is satisfied by at least one node (noted 1 ∗).

→ C2 : PN is satisfied by all nodes (∗ ∗).

→ C3 : PS is satisfied by at least one node (1 st
 ∗).

→ C4 : PS is satistied by all nodes (∗ st
 ∗).

Arnaud Casteigts Distributed Computing in Dynamic Networks 17 / 20

back to the broadcast example

Necessary condition

→ PN : there exists a journey from the source to all other nodes (noted src ∗).

Sufficient condition

→ PS : there exists a strict journey from the source to all other nodes (noted src st
 ∗).

Classes of dynamic graphs

→ C1 : PN is satisfied by at least one node (noted 1 ∗).
→ C2 : PN is satisfied by all nodes (∗ ∗).

→ C3 : PS is satisfied by at least one node (1 st
 ∗).

→ C4 : PS is satistied by all nodes (∗ st
 ∗).

Arnaud Casteigts Distributed Computing in Dynamic Networks 17 / 20

back to the broadcast example

Necessary condition

→ PN : there exists a journey from the source to all other nodes (noted src ∗).

Sufficient condition

→ PS : there exists a strict journey from the source to all other nodes (noted src st
 ∗).

Classes of dynamic graphs

→ C1 : PN is satisfied by at least one node (noted 1 ∗).
→ C2 : PN is satisfied by all nodes (∗ ∗).

→ C3 : PS is satisfied by at least one node (1 st
 ∗).

→ C4 : PS is satistied by all nodes (∗ st
 ∗).

Arnaud Casteigts Distributed Computing in Dynamic Networks 17 / 20

back to the broadcast example

Necessary condition

→ PN : there exists a journey from the source to all other nodes (noted src ∗).

Sufficient condition

→ PS : there exists a strict journey from the source to all other nodes (noted src st
 ∗).

Classes of dynamic graphs

→ C1 : PN is satisfied by at least one node (noted 1 ∗).
→ C2 : PN is satisfied by all nodes (∗ ∗).

→ C3 : PS is satisfied by at least one node (1 st
 ∗).

→ C4 : PS is satistied by all nodes (∗ st
 ∗).

Arnaud Casteigts Distributed Computing in Dynamic Networks 17 / 20

back to the broadcast example

Necessary condition

→ PN : there exists a journey from the source to all other nodes (noted src ∗).

Sufficient condition

→ PS : there exists a strict journey from the source to all other nodes (noted src st
 ∗).

Classes of dynamic graphs

→ C1 : PN is satisfied by at least one node (noted 1 ∗).
→ C2 : PN is satisfied by all nodes (∗ ∗).

→ C3 : PS is satisfied by at least one node (1 st
 ∗).

→ C4 : PS is satistied by all nodes (∗ st
 ∗).

a

b

c

d

e

0
,

1 1,
2

3

0,
1,

2,
3 0, 2, 3

∈ C2 ∩ C3

Arnaud Casteigts Distributed Computing in Dynamic Networks 17 / 20

back to the broadcast example

Necessary condition

→ PN : there exists a journey from the source to all other nodes (noted src ∗).

Sufficient condition

→ PS : there exists a strict journey from the source to all other nodes (noted src st
 ∗).

Classes of dynamic graphs

→ C1 : PN is satisfied by at least one node (noted 1 ∗).
→ C2 : PN is satisfied by all nodes (∗ ∗).

→ C3 : PS is satisfied by at least one node (1 st
 ∗).

→ C4 : PS is satistied by all nodes (∗ st
 ∗).

a

b

c

d

e

0
,

1 1,
2

3

0,
1,

2,
3 0, 2, 3

∈ C2 ∩ C3

Arnaud Casteigts Distributed Computing in Dynamic Networks 17 / 20

Counting algorithm (non-uniform)

Counting with a distinguished counter

Initial states : 1 for the counter, N for all other nodes.

Algorithm :
i N i + 1 F

→ Hopefully, after some time, the counter is labelled n.

But when ?

Necessary or sufficient conditions

PN : there exists an edge, at some time, between the counter and every other
node.

PS = PN .

Classes of dynamic graphs

→ C5 : at least one node verifies P, (noted 1–∗).
→ C6 : all the nodes verify P, (noted ∗–∗).

Arnaud Casteigts Distributed Computing in Dynamic Networks 18 / 20

Counting algorithm (non-uniform)

Counting with a distinguished counter

Initial states : 1 for the counter, N for all other nodes.

Algorithm :
i N i + 1 F

→ Hopefully, after some time, the counter is labelled n. But when ?

Necessary or sufficient conditions

PN : there exists an edge, at some time, between the counter and every other
node.

PS = PN .

Classes of dynamic graphs

→ C5 : at least one node verifies P, (noted 1–∗).
→ C6 : all the nodes verify P, (noted ∗–∗).

Arnaud Casteigts Distributed Computing in Dynamic Networks 18 / 20

Counting algorithm (non-uniform)

Counting with a distinguished counter

Initial states : 1 for the counter, N for all other nodes.

Algorithm :
i N i + 1 F

→ Hopefully, after some time, the counter is labelled n. But when ?

Necessary or sufficient conditions

PN : there exists an edge, at some time, between the counter and every other
node.

PS = PN .

Classes of dynamic graphs

→ C5 : at least one node verifies P, (noted 1–∗).
→ C6 : all the nodes verify P, (noted ∗–∗).

Arnaud Casteigts Distributed Computing in Dynamic Networks 18 / 20

Counting algorithm (non-uniform)

Counting with a distinguished counter

Initial states : 1 for the counter, N for all other nodes.

Algorithm :
i N i + 1 F

→ Hopefully, after some time, the counter is labelled n. But when ?

Necessary or sufficient conditions

PN : there exists an edge, at some time, between the counter and every other
node.

PS = PN .

Classes of dynamic graphs

→ C5 : at least one node verifies P, (noted 1–∗).
→ C6 : all the nodes verify P, (noted ∗–∗).

Arnaud Casteigts Distributed Computing in Dynamic Networks 18 / 20

Counting algorithm (non-uniform)

Counting with a distinguished counter

Initial states : 1 for the counter, N for all other nodes.

Algorithm :
i N i + 1 F

→ Hopefully, after some time, the counter is labelled n. But when ?

Necessary or sufficient conditions

PN : there exists an edge, at some time, between the counter and every other
node.

PS = PN .

Classes of dynamic graphs

→ C5 : at least one node verifies P, (noted 1–∗).

→ C6 : all the nodes verify P, (noted ∗–∗).

Arnaud Casteigts Distributed Computing in Dynamic Networks 18 / 20

Counting algorithm (non-uniform)

Counting with a distinguished counter

Initial states : 1 for the counter, N for all other nodes.

Algorithm :
i N i + 1 F

→ Hopefully, after some time, the counter is labelled n. But when ?

Necessary or sufficient conditions

PN : there exists an edge, at some time, between the counter and every other
node.

PS = PN .

Classes of dynamic graphs

→ C5 : at least one node verifies P, (noted 1–∗).
→ C6 : all the nodes verify P, (noted ∗–∗).

Arnaud Casteigts Distributed Computing in Dynamic Networks 18 / 20

Counting algorithm (uniform)

Uniform counting (every body is initially a counter)
Initial states : 1 (all nodes).

Algorithm :
i 6= 0 j 6= 0 i + j 0

→ Hopefully, after some time, one node is labelled n. But when ?

Conditions and classes of graphs

Necessary condition CN : at least one node can be reached by all (∗ 1).

→ C7 : graphs having this property.

Sufficient condition CS : all pairs of nodes must share an edge at least once over
time (∗–∗). (Marchand de Kerchove, Guinand, 2012)

→ C6 (already seen before).

Arnaud Casteigts Distributed Computing in Dynamic Networks 19 / 20

Counting algorithm (uniform)

Uniform counting (every body is initially a counter)
Initial states : 1 (all nodes).

Algorithm :
i 6= 0 j 6= 0 i + j 0

→ Hopefully, after some time, one node is labelled n.

But when ?

Conditions and classes of graphs

Necessary condition CN : at least one node can be reached by all (∗ 1).

→ C7 : graphs having this property.

Sufficient condition CS : all pairs of nodes must share an edge at least once over
time (∗–∗). (Marchand de Kerchove, Guinand, 2012)

→ C6 (already seen before).

Arnaud Casteigts Distributed Computing in Dynamic Networks 19 / 20

Counting algorithm (uniform)

Uniform counting (every body is initially a counter)
Initial states : 1 (all nodes).

Algorithm :
i 6= 0 j 6= 0 i + j 0

→ Hopefully, after some time, one node is labelled n. But when ?

Conditions and classes of graphs

Necessary condition CN : at least one node can be reached by all (∗ 1).

→ C7 : graphs having this property.

Sufficient condition CS : all pairs of nodes must share an edge at least once over
time (∗–∗). (Marchand de Kerchove, Guinand, 2012)

→ C6 (already seen before).

Arnaud Casteigts Distributed Computing in Dynamic Networks 19 / 20

Counting algorithm (uniform)

Uniform counting (every body is initially a counter)
Initial states : 1 (all nodes).

Algorithm :
i 6= 0 j 6= 0 i + j 0

→ Hopefully, after some time, one node is labelled n. But when ?

Conditions and classes of graphs

Necessary condition CN : at least one node can be reached by all (∗ 1).

→ C7 : graphs having this property.

Sufficient condition CS : all pairs of nodes must share an edge at least once over
time (∗–∗). (Marchand de Kerchove, Guinand, 2012)

→ C6 (already seen before).

Arnaud Casteigts Distributed Computing in Dynamic Networks 19 / 20

Counting algorithm (uniform)

Uniform counting (every body is initially a counter)
Initial states : 1 (all nodes).

Algorithm :
i 6= 0 j 6= 0 i + j 0

→ Hopefully, after some time, one node is labelled n. But when ?

Conditions and classes of graphs

Necessary condition CN : at least one node can be reached by all (∗ 1).

→ C7 : graphs having this property.

Sufficient condition CS : all pairs of nodes must share an edge at least once over
time (∗–∗). (Marchand de Kerchove, Guinand, 2012)

→ C6 (already seen before).

Arnaud Casteigts Distributed Computing in Dynamic Networks 19 / 20

Counting algorithm (uniform)

Uniform counting (every body is initially a counter)
Initial states : 1 (all nodes).

Algorithm :
i 6= 0 j 6= 0 i + j 0

→ Hopefully, after some time, one node is labelled n. But when ?

Conditions and classes of graphs

Necessary condition CN : at least one node can be reached by all (∗ 1).

→ C7 : graphs having this property.

Sufficient condition CS : all pairs of nodes must share an edge at least once over
time (∗–∗). (Marchand de Kerchove, Guinand, 2012)

→ C6 (already seen before).

Arnaud Casteigts Distributed Computing in Dynamic Networks 19 / 20

Tightness of a condition ? (Marchand de Kerchove, Guinand, 2012)

Tight

Necessary condition

Not satisfied =⇒ failure is guaranteed (@X , success(X))

Satisfied =⇒ success is possible (∃X , success(X)).

Tight

Sufficient condition

Satisfied =⇒ success is guaranteed (@X , failure(X))

Not satisfied =⇒ failure is possible (∃X , failure(X))

Remark : Topological conditions which are both necessary and sufficient may not exist !

Ex. uniform counting (last algorithm) :

→ (∗ 1) is a tight necessary condition

→ (∗–∗) is a tight sufficient condition

In between : outcome is uncertain... might succeed or fail.

Arnaud Casteigts Distributed Computing in Dynamic Networks 20 / 20

Tightness of a condition ? (Marchand de Kerchove, Guinand, 2012)

Tight

Necessary condition

Not satisfied =⇒ failure is guaranteed (@X , success(X))

Satisfied =⇒ success is possible (∃X , success(X)).

Tight

Sufficient condition

Satisfied =⇒ success is guaranteed (@X , failure(X))

Not satisfied =⇒ failure is possible (∃X , failure(X))

Remark : Topological conditions which are both necessary and sufficient may not exist !

Ex. uniform counting (last algorithm) :

→ (∗ 1) is a tight necessary condition

→ (∗–∗) is a tight sufficient condition

In between : outcome is uncertain... might succeed or fail.

Arnaud Casteigts Distributed Computing in Dynamic Networks 20 / 20

Tightness of a condition ? (Marchand de Kerchove, Guinand, 2012)

Tight Necessary condition

Not satisfied =⇒ failure is guaranteed (@X , success(X))

Satisfied =⇒ success is possible (∃X , success(X)).

Tight

Sufficient condition

Satisfied =⇒ success is guaranteed (@X , failure(X))

Not satisfied =⇒ failure is possible (∃X , failure(X))

Remark : Topological conditions which are both necessary and sufficient may not exist !

Ex. uniform counting (last algorithm) :

→ (∗ 1) is a tight necessary condition

→ (∗–∗) is a tight sufficient condition

In between : outcome is uncertain... might succeed or fail.

Arnaud Casteigts Distributed Computing in Dynamic Networks 20 / 20

Tightness of a condition ? (Marchand de Kerchove, Guinand, 2012)

Tight Necessary condition

Not satisfied =⇒ failure is guaranteed (@X , success(X))

Satisfied =⇒ success is possible (∃X , success(X)).

Tight Sufficient condition

Satisfied =⇒ success is guaranteed (@X , failure(X))

Not satisfied =⇒ failure is possible (∃X , failure(X))

Remark : Topological conditions which are both necessary and sufficient may not exist !

Ex. uniform counting (last algorithm) :

→ (∗ 1) is a tight necessary condition

→ (∗–∗) is a tight sufficient condition

In between : outcome is uncertain... might succeed or fail.

Arnaud Casteigts Distributed Computing in Dynamic Networks 20 / 20

Tightness of a condition ? (Marchand de Kerchove, Guinand, 2012)

Tight Necessary condition

Not satisfied =⇒ failure is guaranteed (@X , success(X))

Satisfied =⇒ success is possible (∃X , success(X)).

Tight Sufficient condition

Satisfied =⇒ success is guaranteed (@X , failure(X))

Not satisfied =⇒ failure is possible (∃X , failure(X))

Remark : Topological conditions which are both necessary and sufficient may not exist !

Ex. uniform counting (last algorithm) :

→ (∗ 1) is a tight necessary condition

→ (∗–∗) is a tight sufficient condition

In between : outcome is uncertain... might succeed or fail.

Arnaud Casteigts Distributed Computing in Dynamic Networks 20 / 20

Tightness of a condition ? (Marchand de Kerchove, Guinand, 2012)

Tight Necessary condition

Not satisfied =⇒ failure is guaranteed (@X , success(X))

Satisfied =⇒ success is possible (∃X , success(X)).

Tight Sufficient condition

Satisfied =⇒ success is guaranteed (@X , failure(X))

Not satisfied =⇒ failure is possible (∃X , failure(X))

Remark : Topological conditions which are both necessary and sufficient may not exist !

Ex. uniform counting (last algorithm) :

→ (∗ 1) is a tight necessary condition

→ (∗–∗) is a tight sufficient condition

In between : outcome is uncertain... might succeed or fail.

Arnaud Casteigts Distributed Computing in Dynamic Networks 20 / 20

Classifying dynamic networks

C6 C4

C5

C2

C3

C7

C1

∗ − ∗ ∗ st
 ∗

1− ∗ 1 st
 ∗

∗ ∗ ∗ 1

1 ∗

∀ =⇒ ∃ ∀ =⇒ ∃

∀ =⇒ ∃

∀ =⇒ ∃

− =⇒ Jstrict

− =⇒ Jstrict

Jstrict =⇒ J

Jstrict =⇒ J

− =⇒ J

Arnaud Casteigts Distributed Computing in Dynamic Networks 21 / 20

Classifying dynamic networks

C6 C4

C5

C2

C3

C7

C1

∗ − ∗ ∗ st
 ∗

1− ∗ 1 st
 ∗

∗ ∗ ∗ 1

1 ∗

∀ =⇒ ∃ ∀ =⇒ ∃

∀ =⇒ ∃

∀ =⇒ ∃

− =⇒ Jstrict

− =⇒ Jstrict

Jstrict =⇒ J

Jstrict =⇒ J

− =⇒ J

Arnaud Casteigts Distributed Computing in Dynamic Networks 21 / 20

Classifying dynamic networks

C6 C4

C5

C2

C3

C7

C1

∗ − ∗ ∗ st
 ∗

1− ∗ 1 st
 ∗

∗ ∗ ∗ 1

1 ∗

∀ =⇒ ∃ ∀ =⇒ ∃

∀ =⇒ ∃

∀ =⇒ ∃

− =⇒ Jstrict

− =⇒ Jstrict

Jstrict =⇒ J

Jstrict =⇒ J

− =⇒ J

Arnaud Casteigts Distributed Computing in Dynamic Networks 21 / 20

Classifying dynamic networks

C6 C4

C5

C2

C3

C7

C1

∗ − ∗ ∗ st
 ∗

1− ∗ 1 st
 ∗

∗ ∗ ∗ 1

1 ∗

∀ =⇒ ∃ ∀ =⇒ ∃

∀ =⇒ ∃

∀ =⇒ ∃

− =⇒ Jstrict

− =⇒ Jstrict

Jstrict =⇒ J

Jstrict =⇒ J

− =⇒ J

Arnaud Casteigts Distributed Computing in Dynamic Networks 21 / 20

Classifying dynamic networks

C6 C4

C5

C2

C3

C7

C1

∗ − ∗ ∗ st
 ∗

1− ∗ 1 st
 ∗

∗ ∗ ∗ 1

1 ∗

∀ =⇒ ∃ ∀ =⇒ ∃

∀ =⇒ ∃

∀ =⇒ ∃

− =⇒ Jstrict

− =⇒ Jstrict

Jstrict =⇒ J

Jstrict =⇒ J

− =⇒ J

Arnaud Casteigts Distributed Computing in Dynamic Networks 21 / 20

Classifying dynamic networks

C6 C4

C5

C2

C3

C7

C1

∗ − ∗ ∗ st
 ∗

1− ∗ 1 st
 ∗

∗ ∗ ∗ 1

1 ∗

∀ =⇒ ∃ ∀ =⇒ ∃

∀ =⇒ ∃

∀ =⇒ ∃

− =⇒ Jstrict

− =⇒ Jstrict

Jstrict =⇒ J

Jstrict =⇒ J

− =⇒ J

Arnaud Casteigts Distributed Computing in Dynamic Networks 21 / 20

Classifying dynamic networks

C6 C4

C5

C2

C3

C7

C1

∗ − ∗ ∗ st
 ∗

1− ∗ 1 st
 ∗

∗ ∗ ∗ 1

1 ∗

PN (countingv1) PN (countingv2)

PS(countingv1)

PS(countingv2)

→ Comparison of algorithms on a formal basis

→ Decision making (what algorithm to use ?)
→ e.g. using automated property checking on network traces).

→ Formal proofs ? (Coq)

Q : How far beyond toy examples ?

Arnaud Casteigts Distributed Computing in Dynamic Networks 22 / 20

Classifying dynamic networks

C6 C4

C5

C2

C3

C7

C1

∗ − ∗ ∗ st
 ∗

1− ∗ 1 st
 ∗

∗ ∗ ∗ 1

1 ∗

PN (countingv1) PN (countingv2)

PS(countingv1)

PS(countingv2)

→ Comparison of algorithms on a formal basis

→ Decision making (what algorithm to use ?)
→ e.g. using automated property checking on network traces).

→ Formal proofs ? (Coq)

Q : How far beyond toy examples ?

Arnaud Casteigts Distributed Computing in Dynamic Networks 22 / 20

Classifying dynamic networks

C6 C4

C5

C2

C3

C7

C1

∗ − ∗ ∗ st
 ∗

1− ∗ 1 st
 ∗

∗ ∗ ∗ 1

1 ∗

PN (countingv1) PN (countingv2)

PS(countingv1)

PS(countingv2)

→ Comparison of algorithms on a formal basis

→ Decision making (what algorithm to use ?)
→ e.g. using automated property checking on network traces).

→ Formal proofs ? (Coq)

Q : How far beyond toy examples ?

Arnaud Casteigts Distributed Computing in Dynamic Networks 22 / 20

Classifying dynamic networks

C6 C4

C5

C2

C3

C7

C1

∗ − ∗ ∗ st
 ∗

1− ∗ 1 st
 ∗

∗ ∗ ∗ 1

1 ∗

PN (countingv1) PN (countingv2)

PS(countingv1)

PS(countingv2)

→ Comparison of algorithms on a formal basis
→ Decision making (what algorithm to use ?)
→ e.g. using automated property checking on network traces).

→ Formal proofs ? (Coq)

Q : How far beyond toy examples ?

Arnaud Casteigts Distributed Computing in Dynamic Networks 22 / 20

Classifying dynamic networks

C6 C4

C5

C2

C3

C7

C1

∗ − ∗ ∗ st
 ∗

1− ∗ 1 st
 ∗

∗ ∗ ∗ 1

1 ∗

PN (countingv1) PN (countingv2)

PS(countingv1)

PS(countingv2)

→ Comparison of algorithms on a formal basis
→ Decision making (what algorithm to use ?)
→ e.g. using automated property checking on network traces).

→ Formal proofs ? (Coq)

Q : How far beyond toy examples ?

Arnaud Casteigts Distributed Computing in Dynamic Networks 22 / 20

Classifying dynamic networks

C6 C4

C5

C2

C3

C7

C1

∗ − ∗ ∗ st
 ∗

1− ∗ 1 st
 ∗

∗ ∗ ∗ 1

1 ∗

PN (countingv1) PN (countingv2)

PS(countingv1)

PS(countingv2)

→ Comparison of algorithms on a formal basis
→ Decision making (what algorithm to use ?)
→ e.g. using automated property checking on network traces).

→ Formal proofs ? (Coq)

Q : How far beyond toy examples ?

Arnaud Casteigts Distributed Computing in Dynamic Networks 22 / 20

Classifying further (C., Flocchini, Quattrociocchi, Santoro, 2012)

Extending the hierarchy

1 ∗
∗ ∗

1 st
 ∗

∗ st
 ∗

1–∗
∗–∗

∗ 1∗ ∗
∗R ∗

R–

B–P–

Foremost broadcast

Shortest broadcastFastest broadcast

Arnaud Casteigts Distributed Computing in Dynamic Networks 23 / 20

Classifying further (C., Flocchini, Quattrociocchi, Santoro, 2012)

Extending the hierarchy

1 ∗
∗ ∗

1 st
 ∗

∗ st
 ∗

1–∗
∗–∗

∗ 1∗ ∗
∗R ∗

R–

B–P–

Foremost broadcast

Shortest broadcastFastest broadcast

Arnaud Casteigts Distributed Computing in Dynamic Networks 23 / 20

Classifying further (C., Flocchini, Quattrociocchi, Santoro, 2012)

Extending the hierarchy

1 ∗
∗ ∗

1 st
 ∗

∗ st
 ∗

1–∗
∗–∗

∗ 1∗ ∗
∗R ∗

R–

B–P–

Foremost broadcast

Shortest broadcast

Fastest broadcast

Arnaud Casteigts Distributed Computing in Dynamic Networks 23 / 20

Classifying further (C., Flocchini, Quattrociocchi, Santoro, 2012)

Extending the hierarchy

1 ∗
∗ ∗

1 st
 ∗

∗ st
 ∗

1–∗
∗–∗

∗ 1∗ ∗
∗R ∗

R–

B–P–

Foremost broadcast

Shortest broadcastFastest broadcast

Arnaud Casteigts Distributed Computing in Dynamic Networks 23 / 20

Classifying further (C., Flocchini, Quattrociocchi, Santoro, 2012)

Extending the hierarchy

1 ∗
∗ ∗

1 st
 ∗

∗ st
 ∗

1–∗
∗–∗

∗ 1∗ ∗
∗R ∗

R–

B–P–

∗R–∗

R– –

∗R– –∗

∗ ∗– –∗

T-∗ ∗– –∗

Foremost broadcast

Shortest broadcastFastest broadcast

Population
protocols

“Static”
routing

“Static”
broadcast

Bounded
broadcast

Speed up for
some problems
(by a factor T)

Ring exploration

Leader
election

Arnaud Casteigts Distributed Computing in Dynamic Networks 24 / 20

Classifying further (C., Flocchini, Quattrociocchi, Santoro, 2012)

Extending the hierarchy

1 ∗
∗ ∗

1 st
 ∗

∗ st
 ∗

1–∗
∗–∗

∗ 1∗ ∗
∗R ∗

R–

B–P–

∗R–∗

R– –

∗R– –∗

∗ ∗– –∗

T-∗ ∗– –∗

Foremost broadcast

Shortest broadcastFastest broadcast

Population
protocols

“Static”
routing

“Static”
broadcast

Bounded
broadcast

Speed up for
some problems
(by a factor T)

Ring exploration

Leader
election

Arnaud Casteigts Distributed Computing in Dynamic Networks 24 / 20

Classifying further (C., Flocchini, Quattrociocchi, Santoro, 2012)

Extending the hierarchy

1 ∗
∗ ∗

1 st
 ∗

∗ st
 ∗

1–∗
∗–∗

∗ 1∗ ∗
∗R ∗

R–

B–P–

∗R–∗

R– –

∗R– –∗

∗ ∗– –∗

T-∗ ∗– –∗

Foremost broadcast

Shortest broadcastFastest broadcast

Population
protocols

“Static”
routing

“Static”
broadcast

Bounded
broadcast

Speed up for
some problems
(by a factor T)

Ring exploration

Leader
election

Arnaud Casteigts Distributed Computing in Dynamic Networks 24 / 20

Classifying further (C., Flocchini, Quattrociocchi, Santoro, 2012)

Extending the hierarchy

1 ∗
∗ ∗

1 st
 ∗

∗ st
 ∗

1–∗
∗–∗

∗ 1∗ ∗
∗R ∗

R–

B–P–

∗R–∗

R– –∗R– –∗

∗ ∗– –∗

T-∗ ∗– –∗

Foremost broadcast

Shortest broadcastFastest broadcast

Population
protocols

“Static”
routing

“Static”
broadcast

Bounded
broadcast

Speed up for
some problems
(by a factor T)

Ring exploration

Leader
election

Arnaud Casteigts Distributed Computing in Dynamic Networks 24 / 20

Classifying further (C., Flocchini, Quattrociocchi, Santoro, 2012)

Extending the hierarchy

1 ∗
∗ ∗

1 st
 ∗

∗ st
 ∗

1–∗
∗–∗

∗ 1∗ ∗
∗R ∗

R–

B–P–

∗R–∗

R– –∗R– –∗∗ ∗– –∗

T-∗ ∗– –∗

Foremost broadcast

Shortest broadcastFastest broadcast

Population
protocols

“Static”
routing

“Static”
broadcast

Bounded
broadcast

Speed up for
some problems
(by a factor T)

Ring exploration

Leader
election

Arnaud Casteigts Distributed Computing in Dynamic Networks 24 / 20

Classifying further (C., Flocchini, Quattrociocchi, Santoro, 2012)

Extending the hierarchy

1 ∗
∗ ∗

1 st
 ∗

∗ st
 ∗

1–∗
∗–∗

∗ 1∗ ∗
∗R ∗

R–

B–P–

∗R–∗

R– –∗R– –∗∗ ∗– –∗

T-∗ ∗– –∗

Foremost broadcast

Shortest broadcastFastest broadcast

Population
protocols

“Static”
routing

“Static”
broadcast

Bounded
broadcast

Speed up for
some problems
(by a factor T)

Ring exploration

Leader
election

Ex : Bounded broadcast in (∗ ∗––∗) (O’Dell and Wattenhofer, 2005)

The graph is arbitrarily dynamic, as long as every Gi remains connected :

Arnaud Casteigts Distributed Computing in Dynamic Networks 24 / 20

Classifying further (C., Flocchini, Quattrociocchi, Santoro, 2012)

Extending the hierarchy

1 ∗
∗ ∗

1 st
 ∗

∗ st
 ∗

1–∗
∗–∗

∗ 1∗ ∗
∗R ∗

R–

B–P–

∗R–∗

R– –∗R– –∗∗ ∗– –∗

T-∗ ∗– –∗

Foremost broadcast

Shortest broadcastFastest broadcast

Population
protocols

“Static”
routing

“Static”
broadcast

Bounded
broadcast

Speed up for
some problems
(by a factor T)

Ring exploration

Leader
election

Ex : Bounded broadcast in (∗ ∗––∗) (O’Dell and Wattenhofer, 2005)

The graph is arbitrarily dynamic, as long as every Gi remains connected :

Min cut of size 1 between informed and uninformed nodes :
→ At least one new node informed in each step.

Arnaud Casteigts Distributed Computing in Dynamic Networks 24 / 20

Classifying further (C., Flocchini, Quattrociocchi, Santoro, 2012)

Extending the hierarchy

1 ∗
∗ ∗

1 st
 ∗

∗ st
 ∗

1–∗
∗–∗

∗ 1∗ ∗
∗R ∗

R–

B–P–

∗R–∗

R– –∗R– –∗∗ ∗– –∗T-∗ ∗– –∗

Foremost broadcast

Shortest broadcastFastest broadcast

Population
protocols

“Static”
routing

“Static”
broadcast

Bounded
broadcast

Speed up for
some problems
(by a factor T)

Ring exploration

Leader
election

Arnaud Casteigts Distributed Computing in Dynamic Networks 24 / 20

Classifying further (C., Flocchini, Quattrociocchi, Santoro, 2012)

Extending the hierarchy

1 ∗
∗ ∗

1 st
 ∗

∗ st
 ∗

1–∗
∗–∗

∗ 1∗ ∗
∗R ∗

R–

B–P–

∗R–∗

R– –∗R– –∗∗ ∗– –∗T-∗ ∗– –∗

Foremost broadcast

Shortest broadcastFastest broadcast

Population
protocols

“Static”
routing

“Static”
broadcast

Bounded
broadcast

Speed up for
some problems
(by a factor T)

Ring exploration

Leader
election

Arnaud Casteigts Distributed Computing in Dynamic Networks 24 / 20

Classifying further (C., Flocchini, Quattrociocchi, Santoro, 2012)

Extending the hierarchy

1 ∗
∗ ∗

1 st
 ∗

∗ st
 ∗

1–∗
∗–∗

∗ 1∗ ∗
∗R ∗

R–

B–P–

∗R–∗

R– –∗R– –∗∗ ∗– –∗T-∗ ∗– –∗

Foremost broadcast

Shortest broadcastFastest broadcast

Population
protocols (1)

“Static” (5)
routing

“Static” (4)
broadcast

Bounded (3)
broadcast

Speed up for (2)
some problems
(by a factor T)

Ring exploration (6)

Leader (7)
election

(1) Complete graph of interaction (Angluin, Aspnes, Diamadi, Fischer, Peralta, 2004)
(2) T-interval connectivity (Kuhn, Lynch, Oshman, 2010)
(3) Constant connectivity (O’Dell and Wattenhofer, 2005)
(4) Eventual instant connectivity (Ramanathan, Basu, and Krishnan, 2007)
(5) Eventual instant routability (Ramanathan, Basu, and Krishnan, 2007)
(6) T-interval connectivity (Ilcinkas, Wade, 2013)
(7) Recurrent temporal connectivity (Arantes, Greve, Sens, Simon, 2013)

(Gòmez-Cazaldo, Lafuente, Larrea, Raynal, 2013)

Arnaud Casteigts Distributed Computing in Dynamic Networks 24 / 20

Classifying further (C., Flocchini, Quattrociocchi, Santoro, 2012)

Real mobility contexts

1 ∗
∗ ∗

1 st
 ∗

∗ st
 ∗

1–∗
∗–∗

∗ 1∗ ∗
∗R ∗

R–

B–P–

∗R–∗

R– –∗R– –∗∗ ∗– –∗T-∗ ∗– –∗

?

? ?

How to proceed ?

→ Generate connection traces

→ Test properties

- Temporal Connectivity (Whitbeck et al. 2012 ; Barjon et al., 2014)

- T-Interval Connectivity (C. et al., 2014)

Arnaud Casteigts Distributed Computing in Dynamic Networks 25 / 20

Classifying further (C., Flocchini, Quattrociocchi, Santoro, 2012)

Real mobility contexts

1 ∗
∗ ∗

1 st
 ∗

∗ st
 ∗

1–∗
∗–∗

∗ 1∗ ∗
∗R ∗

R–

B–P–

∗R–∗

R– –∗R– –∗∗ ∗– –∗T-∗ ∗– –∗

?

? ?

How to proceed ?

→ Generate connection traces

→ Test properties

- Temporal Connectivity (Whitbeck et al. 2012 ; Barjon et al., 2014)

- T-Interval Connectivity (C. et al., 2014)

Arnaud Casteigts Distributed Computing in Dynamic Networks 25 / 20

Classifying further (C., Flocchini, Quattrociocchi, Santoro, 2012)

Real mobility contexts

1 ∗
∗ ∗

1 st
 ∗

∗ st
 ∗

1–∗
∗–∗

∗ 1∗ ∗
∗R ∗

R–

B–P–

∗R–∗

R– –∗R– –∗∗ ∗– –∗T-∗ ∗– –∗

?

? ?

How to proceed ?

→ Generate connection traces

→ Test properties

- Temporal Connectivity (Whitbeck et al. 2012 ; Barjon et al., 2014)

- T-Interval Connectivity (C. et al., 2014)

Arnaud Casteigts Distributed Computing in Dynamic Networks 25 / 20

Classifying further (C., Flocchini, Quattrociocchi, Santoro, 2012)

Real mobility contexts

1 ∗
∗ ∗

1 st
 ∗

∗ st
 ∗

1–∗
∗–∗

∗ 1∗ ∗
∗R ∗

R–

B–P–

∗R–∗

R– –∗R– –∗∗ ∗– –∗T-∗ ∗– –∗

?

? ?

How to proceed ?

→ Generate connection traces

→ Test properties

- Temporal Connectivity (Whitbeck et al. 2012 ; Barjon et al., 2014)

- T-Interval Connectivity (C. et al., 2014)

Arnaud Casteigts Distributed Computing in Dynamic Networks 25 / 20

Classifying further (C., Flocchini, Quattrociocchi, Santoro, 2012)

Real mobility contexts

1 ∗
∗ ∗

1 st
 ∗

∗ st
 ∗

1–∗
∗–∗

∗ 1∗ ∗
∗R ∗

R–

B–P–

∗R–∗

R– –∗R– –∗∗ ∗– –∗T-∗ ∗– –∗

?

? ?

How to proceed ?

→ Generate connection traces

→ Test properties

- Temporal Connectivity (Whitbeck et al. 2012 ; Barjon et al., 2014)

- T-Interval Connectivity (C. et al., 2014)

Arnaud Casteigts Distributed Computing in Dynamic Networks 25 / 20

Classifying further (C., Flocchini, Quattrociocchi, Santoro, 2012)

Real mobility contexts

1 ∗
∗ ∗

1 st
 ∗

∗ st
 ∗

1–∗
∗–∗

∗ 1∗ ∗
∗R ∗

R–

B–P–

∗R–∗

R– –∗R– –∗∗ ∗– –∗T-∗ ∗– –∗

?

? ?

How to proceed ?

→ Generate connection traces

→ Test properties

- Temporal Connectivity (Whitbeck et al. 2012 ; Barjon et al., 2014)

- T-Interval Connectivity (C. et al., 2014)

Arnaud Casteigts Distributed Computing in Dynamic Networks 25 / 20

Classifying further (C., Flocchini, Quattrociocchi, Santoro, 2012)

Real mobility contexts

1 ∗
∗ ∗

1 st
 ∗

∗ st
 ∗

1–∗
∗–∗

∗ 1∗ ∗
∗R ∗

R–

B–P–

∗R–∗

R– –∗R– –∗∗ ∗– –∗T-∗ ∗– –∗

?

? ?

How to proceed ?

→ Generate connection traces

→ Test properties

- Temporal Connectivity (Whitbeck et al. 2012 ; Barjon et al., 2014)

- T-Interval Connectivity (C. et al., 2014)

Arnaud Casteigts Distributed Computing in Dynamic Networks 25 / 20

Classifying further (C., Flocchini, Quattrociocchi, Santoro, 2012)

Real mobility contexts

1 ∗
∗ ∗

1 st
 ∗

∗ st
 ∗

1–∗
∗–∗

∗ 1∗ ∗
∗R ∗

R–

B–P–

∗R–∗

R– –∗R– –∗∗ ∗– –∗T-∗ ∗– –∗

?

? ?

How to proceed ?

→ Generate connection traces

→ Test properties
- Temporal Connectivity (Whitbeck et al. 2012 ; Barjon et al., 2014)

- T-Interval Connectivity (C. et al., 2014)

Arnaud Casteigts Distributed Computing in Dynamic Networks 25 / 20

References (external) :
I. Litovsky, Y. Métivier, and E. Sopena, Graph relabelling systems and distributed algorithms., Handbook of graph grammars and computing by graph

transformation, 1999.
F. Marchand de Kerchove and F. Guinand, Strengthening Topological Conditions for Relabeling Algorithms in Evolving Graphs, Technical report,

Université Le Havre, 2012.
B. Bui-Xuan, A. Ferreira, and A. Jarry, Computing shortest, fastest, and foremost journeys in dynamic networks, JFCS 14(2) : 267-285, 2003.

Y. Métivier, N. Saheb, A. Zemmari, Analysis of a randomized rendezvous algorithm, Information and Computation 184(1) :109-128, 2003.

A. Ferreira, Building a Reference Combinatorial Model for manets, IEEE Network 18(5) : 24-29, 2004.

R. O’Dell and R. Wattenhofer, Information dissemination in highly dynamic graphs, DIALM-POMC, 2005.

F. Kuhn, N. Lynch, R. Oshman, Distributed computation in dynamic networks, STOC, 2010.

R. Ramanathan, P. Basu, and R. Krishnan, Towards a Formalism for Routing in Challenged Networks, CHANTS, 2007.

D. Angluin, J. Aspnes, Z. Diamadi, M. J. Fischer, R. Peralta, Computation in networks of passively mobile finite-state sensors, PODC, 2004.

J. Chalopin, Algorithmique Distribuée, Calculs Locaux et Homomorphismes de Graphes, PhD Thesis, University of Bordeaux, 2006.

D. Ilcinkas and A. Wade, Exploration of the T-Interval-Connected Dynamic Graphs : the Case of the Ring, SIROCCO, 2013.

J. Whitbeck, M. Dias De Amorim, V. Conan, J.-L. Guillaume, Temporal Reachability Graphs, PhD Thesis, University of Bordeaux, 2006.

L. Arantes, F. Greve, P. Sens, V. Simon, Eventual Leader Election in Evolving Mobile Networks, OPODIS 2013

C. Gomez, A. Lafuente, M. Larrea, M. Raynal, Fault-Tolerant Leader Election in Mobile Dynamic Distributed Systems, PRDC 2013.

References (self) :
A. Casteigts, P. Flocchini, W. Quattrociocchi, N. Santoro, Time-Varying Graphs and Dynamic Networks., IJPEDS 27(5) : 387-408, 2012.

A. Casteigts, S. Chaumette, A. Ferreira, Characterizing Topological Assumptions of Distributed Algorithms in Dynamic Networks, SIROCCO, 2009.

A. Casteigts, P. Flocchini, B. Mans, N. Santoro, Measuring Temporal Lags in Delay-Tolerant Networks, IEEE Transactions on Computer,

63(2) :397-410, 2014.
A. Casteigts, B. Mans, L. Mathieson, On the Feasibility of Maintenance Algorithms in Dynamic Graphs, CoRR abs/1107.2722, 2011.

A. Casteigts, P. Flocchini, B. Mans, N. Santoro, Shortest, Fastest, and Foremost Broadcast in Dynamic Networks, IFIP-TCS 2010

M. Barjon, A. Casteigts, S. Chaumette, C. Johnen, Y.M. Neggaz, Testing Temporal Connectivity in Sparse Dynamic Graphs, ALGOTEL 2014

A. Casteigts, R. Klasing, Y.M. Neggaz, J. Peters, Efficiently Testing T-Interval Connectivity in Dynamic Graphs, Ref to be added. 2014.

Arnaud Casteigts Distributed Computing in Dynamic Networks 26 / 20

